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Abstract

This project explores the e�ects of a fourth-order non-linearity in a driven multimode
quantum system on the example of a hybrid between a superconducting qubit and a high
overtone bulk acoustic wave resonator. Using the quantum package QuTiP, we simulate
the time evolution of the phonons under conditions that implement di�erent operations of
experimental relevance: the phonon drive, the SWAP gate and the CZ gate. Our results
indicate that it is viable to implement quantum operations described by quartic terms in
our system; however, further investigation is needed to fully describe them considering
possible competing e�ects.
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Chapter 1

Introduction

Much of the latest progress toward quantum information networks was accomplished
by coupling superconducting qubits to acoustic resonators, which allowed for the in-
vestigation of quantum states of mechanical motion [1]. In this project, we employ the
python package QuTiP to investigate quantum e�ects that are experimentally achievable
considering a circuit quantum acoustodynamics (cQAD) system and its fourth-order non-
linearity, which allows for the manipulation of the interactions between the qubit and the
phonon modes. This chapter summarizes the background information needed to under-
stand the integration between qubits and phononic systems. First, we brie�y introduce
the theory behind transmon superconducting qubits in Section 1.1. Then, we discuss
the utility of exploring quantum phenomena in the framework of mechanics, instead of
electromagnetic waves, and present current implementations of such systems in Section
1.2. Finally, in Section 1.3, we present a potential application of cQAD systems in the
storage of quantum information proposed by Hann et al. [2]. This proposal and its
prospects are the starting point for this project.

1.1. Superconducting qubits

A Josephson junction is a non-linear inductor described by the Cooper-pair box Hamil-
tonian

HCPB = 4EC(n̂− ng)2 − EJ cos(φ̂), (1.1)

where EC and EJ are the charging and the Josephson energy, respectively, φ is the �ux
across the junction, n̂ is the Cooper-pair number operator conjugate to φ̂ ([n̂, φ̂] = i) and
ng is the o�set charge caused by the electrostatic environment [3].

The transmon regime of the Josephson junction provides one important case of a
strongly non-linear harmonic oscillator: the transmon superconducting qubit. In this
regime EJ � EC and the anharmonicity becomes dominant over the �uctuations of ng
[4]. Then, the Hamiltonian of transmon qubit is given by

Hq = 4EC n̂2 − EJ cos(φ̂). (1.2)

The �ux φ is small in the transmon limit, which allows us to expand the cos(φ) term
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1. Introduction

in Eq. 1.2 as a harmonic potential with higher order corrections [5]:

Hq = 4Ec n̂
2 +

1

2
EJ φ̂

2 − 1

4!
EJ φ̂

4 +O(φ6)

≈ ~ωq̂†q̂ − 1

4!
EJφ

4
0(q̂
† + q̂)4,

(1.3)

where q corresponds to the annihilation operator of the qubit, φ̂ = φ0(q + q†) and
φ0 ∝ (2EC/EJ)1/4. Note that the second term contains 4th order terms in q̂ and q̂†.
Keeping only the energy conserving terms, the transmon qubit Hamiltonian becomes

Hq = ~ωq̂†q̂ − α

2
q̂†q̂†q̂q̂, (1.4)

where α = EJ/2φ
4
0 is the anharmonicity. This anharmonicity in the transmon regime

allows for the qubit to be operated as an e�ective two-level system [3].

1.2. Phonons for quantum mechanics

In order to perform quantum information tasks with transmon qubits, it is necessary
to gain �ne control over the interaction of the qubit with other elements in its environ-
ment [4]. In circuit quantum electrodynamics (cQED), for example, interactions between
qubits are engineered by coupling the transmon Josephson junctions to a microwave en-
vironment with discrete photon modes [4, 6].

Similar to cQED, circuit quantum acoustodynamics (cQAD) employs superconducting
transmon qubits to control mechanical�instead of electromagnetic�degrees of freedom
by using phononic�instead of photonic�cavity modes [1, 7]. At similar frequencies of
operation, acoustic resonators are more compact than their electromagnetic counterparts
because the speed of sound is much lower than that of light [1, 8]. As a consequence,
mechanical resonators provide more modes that can be individually explored with qubits
[1]. Acoustic modes can also be isolated very well from their environments and achieve
high quality factors ranging from ∼ 105 to 1010 depending on the device type [9�11].

Several experimental setups have achieved control over mechanical degrees of freedom
by coupling qubits to �exural modes in suspended beams [12], surface acoustic wave
(SAW) resonators [13�16], and bulk acoustic wave (BAW) resonators [17�21]. The high-
overtone bulk acoustic resonator (HBAR), a type of BAW resonator, has shown to be a
particularly e�ective and promising low-loss phonon source [7, 19, 20].

Recently, Chu and co-workers have developed the ~BAR device, a combination of
an HBAR and a superconducting qubit, and demonstrated that cQAD systems can be
used to prepare, control and characterize quantum states of motion in a macroscale
mechanical resonator [1]. This cQAD system, which can be a powerful component in
quantum circuits, is an important example of the usefulness of Josephson junctions,
whose non-linearity is exploited to achieve non-classical states of motion.
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1.3. Applications in quantum computing

Considering the promising capabilities of devices such as BAW and SAW resonators, a
scalable and hardware-e�cient quantum random access memory (QRAM) implementa-
tion for multimode cQAD systems has been proposed recently [2]. In multimode cQAD,
a transmon is piezoelectrically coupled to many phononic modes simultaneously, which
can be accomplished in a high-Q, single chip device such as an HBAR [19]. In the pro-
posed architecture, quantum information is stored in high-quality acoustic modes and
interactions between phonon modes are manipulated via the application of o�-resonant
drives to the transmon qubit.
This architecture relies on the virtual excitation of an ancillary superconducting trans-

mon qubit to mitigate the qubit decoherence, which occurs in a much shorter timescale
when compared to that of the phonons. The qubit acts as a four-wave mixer [22�24]
due to its 4th order non-linearity, described in Section 1.1. As a result, phonons can be
converted from one frequency to another by driving the transmon.
In this work, we simulate this system considering the multimode cQAD Hamiltonian,

which will be presented in Chapter 2. Chapter 3 reports on the interaction between a
qubit and a single phonon mode and between a qubit and three phonon modes, engineered
by up to two drives. For the �rst system, we estimate how strong of a drive can be applied
and how large of a coherent state can be obtained. For the second, we investigate di�erent
resonant e�ects�which stem from the Kerr non-linearity�that can be used to drive the
phonon on resonance and to achieve the CZ and the SWAP gate. In Chapter 4 we
summarize the outcomes of this work and present potential future directions and points
of improvement.
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Chapter 2

Theory

2.1. Multimode cQAD

In multimode cQAD, a transmon is piezoelectrically coupled to several acoustic modes.
The Hamiltonian describing this system is given by

H = ωqq
†q − α

2
q†q†qq +

∑

k

(ωkm
†
kmk + gkq

†mk + g∗kqm
†
k) +Hd, (2.1)

where we treat the transmon as an anharmonic oscillator with Kerr non-linearity α
coupled with strength gk to the k

th phonon mode, q andmk are the annihilation operators
for the transmon and phonon modes, respectively, and

Hd =
∑

j

Ωjq
†e−iωjt + H.c. (2.2)

describes the jth external drive of strength Ωj .

The application of o�-resonant drives to the transmon can be used to harness inter-
actions between phonon modes. As mentioned in Section 1.2, the transmon can act as
a four-wave mixer due to its Kerr nonlinearity. As a result, driving the transmon at
di�erent frequencies can convert phonons from one frequency to another [2].

In order to write down this Hamiltonian in a form which exhibits terms that describe
speci�c interactions between the phonon modes, a series of unitary operations must be
performed. The derivation, taken from Ref. [2], starts with Eq. 2.1 and the operation

U1 = eiH0t, (2.3)

where H0 = ωqq
†q +

∑
k ωkm

†
kmk.

The Hamiltonian becomes:

H = −α
2
q†q†qq +

∑

k

(gkmkq
†e−iδkt + H.c.) +

∑

j

(Ωjq
†e−iδjt + H.c.), (2.4)

where δk = ωk − ωq and δj = ωj − ωq are, respectively, the detuning of the kth phonon
mode and of the jth drive tone with respect to the qubit frequency. For ease of notation,
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2. Theory

we introduce dimensionless parameters to describe the coupling strength of the phonon,

λk ≡ gk/δk, (2.5)

and the strength of the drive,
ξj ≡ Ωj/δj , (2.6)

with respect to their detunings.

Then, we perform two additional transformations:

U2 = exp
(∑

k

(λ∗km
†
kqe

iδkt −H.c.)
)

(2.7)

eliminates the qubit-phonon couplings to leading order in λk, and

U3 = exp
(∑

j

(ξ∗j qe
iδjt −H.c.)

)
(2.8)

eliminates the drives. Together, these unitary transformations allow for the mapping

q → q +
∑

j

ξje
−iδjt +

∑

k

λkmke
−iδkt ≡ Q, (2.9)

and the Hamiltonian becomes:

H = −α
2
Q†Q†QQ, (2.10)

where linear terms of the form Ω∗jλkmke
i(δj−δk)t + H.c. are omitted, which is justi�ed

in the rotating-wave approximation if the drives are far detuned from the phonon modes
(|δj − δk| � Ωjλk).

2.2. Expansion

We can now obtain a cQAD Hamiltonian with terms that clearly describe particular
interactions between the phonon modes by expanding Eq. 2.10 into several summations.
Because Q = q +

∑
j ξje

−iδjt +
∑

k λkmke
−iδkt, each term must have four components,

which are either a qubit operator, a phonon operator accompanied by a factor of λ or a
drive ξ. The �nal expression contains terms with four (q†q†qq), three (q†q†q), two (q†q†

or q†q), one (q†) and zero qubit operators, along with all combinations of the remaining
components�such that the total of four components per term is preserved. This gives
rise to 64 = 1296 terms, which can be summarized in twenty-one convenient summations,
each with a particular pre-factor, and their respective Hermitian conjugate.
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2.2. Expansion

H = −α
2

(
1

2
q†q†qq + 2

∑

j

ξjq
†q†qe−iδjt + 2

∑

k

λkmkq
†q†qe−iδkt

+ 2
∑

ij

ξ∗i ξjq
†qei(δi−δj)t + 4

∑

jk

ξ∗jλkmkq
†qei(δj−δk)t

+ 2
∑

kl

λ∗kλlm
†
kmlq

†qei(δk−δl)t +
∑

ij

ξiξjq
†q†e−i(δi+δj)t

+
∑

kl

λkλlmkmlq
†q†e−i(δk+δl)t + 2

∑

jk

ξjλkmkq
†q†e−i(δj+δk)t

+ 2
∑

hij

ξ∗hξiξjq
†ei(δh−δi−δj)t + 2

∑

jkl

ξ∗jλkλlmkmlq
†ei(δj−δk−δl)t

+ 4
∑

ijk

ξ∗i ξjλkmkq
†ei(δi−δj−δk)t + 4

∑

kjl

ξjλ
∗
kλlm

†
kmlq

†ei(δk−δj−δl)t

+ 2
∑

kij

ξiξjλ
∗
km
†
kq
†ei(δk−δi−δj)t + 2

∑

klm

λ∗kλlλmm
†
kmlmmq

†ei(δk−δl−δm)t

+
1

2

∑

ghij

ξ∗gξ
∗
hξiξje

i(δg+δh−δi−δj)t +
1

2

∑

klmn

λ∗kλ
∗
l λmλnm

†
km
†
lmmmne

i(δk+δl−δm−δn)t

+
∑

ijkl

ξ∗i ξ
∗
jλkλlmkmle

i(δi+δj−δk−δl)t + 2
∑

hijk

ξ∗hξ
∗
i ξjλkmke

i(δh+δi−δj−δk)t

︸ ︷︷ ︸
XIX: Phonon drive

+ 2
∑

kljm

ξjλ
∗
kλ
∗
l λmm

†
km
†
lmme

i(δk+δl−δj−δm)t

︸ ︷︷ ︸
XX: CZ

+ 2
∑

ikjl

ξ∗i ξjλ
∗
kλlm

†
kmle

i(δi+δk−δj−δl)t

︸ ︷︷ ︸
XXI: SWAP

+ H.c.

)

(2.11)
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2. Theory

In the cQAD system that we will simulate in Chapter 3, there are three phonon modes
and up to two drive tones. Then, the phonon-mode indices k, l, m and n in Eq. 2.11
range from one to three, while g, h, i and j, the drive indices, range from one to two.
The summations give rise to a total of 1296 terms in the Hamiltonian.

2.3. Considerations on individual resonant terms

A term in the Hamiltonian expansion (Eq. 2.11) implements a particular operation when
its resonance condition is met, i.e., when the detunings of the laser drives and phonons
are such that the exponent of the term becomes zero. We can thus turn on a speci�c
e�ect in our system by choosing the appropriate detunings. In Chapter 3, we will focus
on the terms which implement the phonon drive (XIX), the controlled-Z, or CZ, gate
(XX), and the SWAP gate (XXI).
The e�ect of each term is expected to take place with an evolution time of t = π/gν ,

where the virtual coupling rate gν is determined by the pre-factor of the term, accounting
also for its Hermitian conjugate. For example, the exchange of the states of phonon
modes A and B occurs with the evolution under the SWAP gate term for a time t =
π/(2αξ∗1ξ2λ

∗
AλB). We note that evolution under this same term (XXI) for half of that

time results in a 50:50 beam splitter operation [2, 23].
Additionally, term XXI also represents a Stark shift of the phonon modes. In order to

account for this e�ect when considering evolution under the full Hamiltonian (Eq. 2.1),
we calculate the Stark-shifted detuning of the kth phonon mode due to the jth drive

δ̃k = δk − 2αλ2k
∑

j

|ξj |2 (2.12)

and use it to meet the resonant condition of each term of interest.
In the course of this project, python scripts were developed to e�ciently compute the

summations in each term of Eq. 2.11. The implemented strategy di�ers from the typical
approach of using the args variable to solve problems with time-dependent Hamiltonians
in QuTiP [25]. A sample script can be found in Appendix A.
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Chapter 3

Simulations

This chapter reports on the results of simulating a cQAD system composed by one qubit,
three phonon modes and up to two drive tones. For each of the four quantum objects�
the transmon and the three phonons�we implement a simulation considering a two-level
Hilbert space. Using the python package QuTiP, we solve the master equation for the
cQAD Hamiltonian from Eq. 2.1 in the frame rotating with the qubit frequency:

H = −α
2
q†q†qq +

∑

k

(
δkm

†
kmk + gkm

†
kq + g∗kmkq

†
)

+
∑

j

(
Ωjq

†e−iδjt + H.c.
)
. (3.1)

We aim to simulate the conditions of a device in which a transmon qubit is piezoelec-
trically coupled to two high-overtone bulk acoustic resonators. In Chapter 2, we have
identi�ed the terms of interest and their resonant conditions. Here, we simulate the
evolution of the system under the Hamiltonian in Eq. 3.1 with the goal to determine
whether the e�ects would be observable in experimental conditions.

To implement the phonon drive, we consider lifetimes of T1 = 7 µs for the qubit and of
T1 = 100 µs and T2 = 40 µs for the phonons, which were previously achieved in an ~BAR
device [1]. We use a slightly larger T2 of 60 µs for the CZ gate and the SWAP gate.
For each implementation, we will discuss the parameters�such as the drive strength,
the coupling strength and the detunings�which enable the target operation, as well the
limitations associated with using single quartic terms (Eq. 2.11) to make predictions
about the evolution of our system. The obtained values can serve as guidelines in future
experimental realizations of quantum operations in an ~BAR device.

3.1. Phonon drive

In the expanded Hamiltonian (Eq. 2.11), the phonon drive corresponds to term XIX:

− α

2

∑

hijl

ξ∗hξ
∗
i ξjλkmke

i(δh+δi−δj−δk)t + H.c. (3.2)

This term allows for the excitation of a phonon mode via the application of one resonant
frequency.
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3. Simulations

3.1.1. Phonon-qubit interaction

First, we will consider the interaction between a qubit and a single phonon to �nd an
upper bound for the drive strength ξ1 that should be used experimentally. Because the
lifetime of our qubits is much less than that of phonons in our HBAR resonator, exciting
the qubit severely limits the timescale of quantum gates and operations in our system.
In general, the drive strength determines the pulse duration that is required for the
e�ects of selected phonon excitations to take place. Thus, we aim to �nd an optimal
value that excites the phonons in the desired timescale, while not indirectly exciting the
ground-state qubit through the coupling of the transmon and phonon modes.

By simulating the interaction between a qubit and a single phonon, it is computation-
ally viable to account for the large Hilbert space of the phonons and thus describe the
system more realistically. To improve the computational speed we neglect the dephasing
lifetime T2 = 40 µs of the phonons, which plays no major role in the timescale relevant
for the simulations in this section (< 15 µs).

We use the Hamiltonian from Eq. 3.1 containing a single phonon A and a single drive
instead of a sum:

H = −α
2
q†q†qq + δAm

†
AmA + g(m†Aq + q†mA) + Ω1q

†e−iδ1t + Ω1qe
iδ1t. (3.3)

Fig. 3.1 displays the average qubit and phonon populations during the application
of drives of di�erent magnitudes for a coupling strength of g/2π = 0.5 MHz. Partial
excitation of the qubit occurs for all drive strengths, and an average population of 〈nq〉 =
0.25 is reached at ξ1 = 0.35. Therefore, we estimate that ξ1 = 0.35 should be used as a
benchmark upper-limit for initial experimental investigations and for the simulations of
the full system in the following sections. Note that in the transformations performed in
the cQAD Hamiltonian (see Section 2.1) one of the assumptions was that ξ1 � 1, so in
order for the derived equations to be valid in our system, it is not advisable to employ
dimensionless drive strengths close to 1.

We note that the size of the Hilbert space that was considered for the phonon (N = 30)
is not su�cient to describe this interaction for pulse lengths greater than approximately
5 µs. This is a short timescale when compared to the lifetime of our qubit (7 µs), which
limits the predictive power of these simulations. Employing larger Hilbert spaces leads
to undesirably long computation times.

The simulation of the phonon-qubit interaction also allows us to estimate how large
of a coherent state can be achieved in our system. We use QuTiP to plot the Wigner
function of the resulting state after evolution under the Hamiltonian from Eq. 3.3 in the
rotating frame of phonon A:

H = −α
2
q†q†qq + gmAq

†e−iδAt + gm†Aqe
iδAt + Ω1q

†e−iδ1t + Ω1qe
iδ1t. (3.4)

The Hamiltonian in Eq. 3.4 yields a computationally more e�cient calculation and allows
us to use a larger Hilbert space of N = 50 for the phonon. Fig. 3.2 indicates that a
coherent state of α ≈ 5 is achieved after evolution for 12.3 µs using typical experimental
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3.1. Phonon drive

ξ1 = 0.15 ξ1 = 0.25 ξ1 = 0.35

Figure 3.1.: Average populations of the qubit (top row) and of phonon mode A (bottom
row) for g/2π = 0.5 MHz and selected values of the dimensionless drive
strength ξ1.

parameters. Given these preliminary results of the phonon drive, we now turn to studying
this operation considering a multimode cQAD system.

Figure 3.2.: Wigner functions of the states achieved at the resonance condition of the
phonon drive (δ̃1 = δ̃A). A coherent state of α ≈ 5 (〈n〉 ≈ 25) is achieved
after evolution for 12.3 µs. The parameters are ξ1 = 0.15, g/2π = 0.5 MHz,
α/2π = 150 MHz and δA/2π = 74 MHz.
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3. Simulations

3.1.2. Phonon drive resonance condition in the cQAD Hamiltonian

In order to simulate the interaction between one qubit and three phonon modes, we
model each of these objects as a two-level system. This reduction of the Hilbert space,
when compared to that used in Section 3.1.1, can give rise to unphysical results. This
can be seen in Fig. 3.3, which displays the time evolution of each quantum object of
our system in the z-axis of the Bloch sphere according to the full cQAD Hamiltonian.
We have enacted the phonon drive by initializing all the qubit and phonon modes in the
ground state (ψ0 = |0, 0, 0, 0〉) and setting the detuning of the drive with respect to the
qubit equal to the that of one of the phonon modes, in the example of phonon A (δ̃1 = δ̃A,
considering the Stark-shifted frequencies). As expected, the qubit and phonons B and
C remain in the ground. Phonon A, however, undergoes Rabi oscillations, which is a
direct consequence of using a Hilbert space of size two, and not a physical phenomenon.
The expected behavior under the phonon drive resonance condition with a larger Hilbert
space, but considering only one phonon-qubit interaction, can be found in the previous
section.

Figure 3.3.: Populations of the qubit and the phonon modes against time at the resonance
condition of the phonon drive (δ̃1 = δ̃A, accounting for the Stark shift). Rabi
oscillations are driven in phonon A, as characterized by oscillations in the
expectation value of the z-axis of the Bloch sphere. The system is initialized
in the ground state, ψ0 = |0, 0, 0, 0〉, and the parameters are ξ1 = 0.15,
g/2π = 0.5 MHz, α/2π = 150 MHz, δA/2π = 74 MHz, δB/2π = 114 MHz,
δC/2π = 54 MHz.

Although they may give rise to unphysical Rabi oscillations, simulations using a Hilbert
space with size N = 2 are very useful, as they allow us to account for the interaction
between all the components of the full system. Further, the Rabi oscillations signal that
the resonance condition of a given term from Eq. 2.11 was met. Fig. 3.4 displays the
Rabi oscillations in phonon A as the detuning of the drive δ1 is varied near the resonance
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3.1. Phonon drive

condition. The Rabi oscillations achieve the largest amplitude when δ̃1 = δ̃A, indicating
that they are indeed a consequence of the phonon drive term.

Figure 3.4.: Population of phonon A against time and drive detuning δ1. When the
resonance condition of the phonon drive (δ̃1 = δ̃A) is achieved, we observe
the strongest Rabi oscillations. The color scale represents the expectation
value of the z-axis of the Bloch sphere, in which -1 (red) corresponds to the
excited state and +1 (blue) to the ground state. The system is initialized
in the ground state, ψ0 = |0, 0, 0, 0〉, and the parameters are ξ1 = 0.15,
g/2π = 0.5 MHz, α/2π = 150 MHz, δA/2π = 74 MHz, δB/2π = 114 MHz,
δC/2π = 54 MHz.

We note that the resonant e�ect of exciting one phonon mode occurs within a few
microseconds. Considering the latest achieved lifetimes of phonons and qubits [1], this
short timescale makes the phonon drive an e�ect of particular interest. The phonon drive
could, for instance, be a component of algorithms involving other qubit gates, and it is
thus important to investigate how quickly this e�ect can take place.

To that end, Fig. 3.5 displays the Rabi oscillations achieved by phonon A when the
resonant condition is met for controllable experimental parameters. Fig. 3.5a shows that
the Rabi oscillations can be made signi�cantly faster by increasing ξ1. Fig. 3.5b shows
that the phonon drive is independent of the system's Kerr non-linearity α, as expected.
Here, we considered a conservative estimate of g/2π = 0.5 MHz, but we note that if larger
qubit-phonon coupling strengths are achieved in an experimental setting, the period of
the Rabi oscillations can be further reduced.

3.1.3. E�ects of the quartic term

Fig. 3.6a shows the time evolution of phonon A under the quartic term only (term XIX
in Eq. 2.11), and not under the full Hamiltonian, as in the previous section. With all
remaining conditions kept the same, we observe that the period and amplitude of the
Rabi oscillations are greatly di�erent.

The expected period of the phonon drive operation is π/gν , where the virtual coupling
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3. Simulations

(a) (b)

Figure 3.5.: Population phonon A against time and (a) dimensionless drive strength ξ1
and (b) Kerr non-linearity α at the resonance condition of the phonon drive,
δ̃1 = δ̃A. Increasing ξ1 results in signi�cant faster Rabi oscillations, whereas
large variations in α do not a�ect the phonon drive. The color scale and the
parameters are the same as in Fig. 3.4.

rate gν = 2αξ∗21 ξ1λA is determined by the term's prefactors in Eq. 2.11 [2]. This
corresponds to the period of ∼ 70 µs observed when considering the quartic term only
(Fig. 3.6a). The oscillation happens much faster when the resonance condition is met in
the full Hamiltonian (Fig. 3.6b). This discrepancy suggests the presence of competing
resonant or near-resonant e�ects that emerge in the actual system.

We note that in the derivation of Eq. 2.10, we have neglected linear terms considering
the rotating-wave approximation. Here, however, the drive tones are not far detuned
from the modes of interest, and these previously-omitted lower-order terms could explain
the discrepancies. They are:

Hlinear = g
∑

mj

((
1− λ2m

2

)2

q†mme
−iδmt −

(
1− λ2m

2

)
q†qe−iδmt

+ λm

(
1− λ2m

2

)
m†mmme

−iδmt − λ2mm†mqe−iδmt

+ ξj

(
1− λ2m

2

)
ei(ωj−ωm)tmm

︸ ︷︷ ︸
v

−λ2mξjei(ωj−ωm)tq + H.c.

)
(3.5)

Fig. 3.6c indicates that the addition of term v from Eq. 3.5 accounts for the di�erence
in timing and amplitude almost completely, and that the Rabi oscillations have a very
similar pro�le to that of the full Hamiltonian. This result indicates that the e�ects of the
fourth-order non-linearity might be signi�cantly modi�ed by other processes that occur
in the system.

14



3.2. CZ gate

(a) (b) (c)

Figure 3.6.: Time evolution of the population of phonon A at the resonance condition
of the phonon drive (δ̃1 = δ̃A) for one oscillation period, as determined by
the e�ective coupling strength of the quartic term. The period of the Rabi
oscillations considering the quartic term only (a) agrees with the predicted
time and is much larger than that considering the full cQAD Hamiltonian
(b). This timing di�erence is explained by a previously neglected linear term,
which, when added to the quartic term, yields a near identical oscillation
pro�le (c) when compared to (b). The parameters are ξ1 = 0.15, g/2π =
0.5 MHz, α/2π = 150 MHz, δA/2π = 74 MHz, δB/2π = 114 MHz, δC/2π =
54 MHz.

3.2. CZ gate

We can engineer a three-mode interaction using a single drive tone with detuning δ1 =
δA + δB − δC using term XX from Eq. 2.11:

− α
∑

kljm

ξjλ
∗
kλ
∗
l λmm

†
km
†
lmme

i(δk+δl−δj−δm)t + H.c. (3.6)

This interaction allows for the implementation of a controlled phase (CZ) gate, in which
phonon C is initialized in the |0〉 state and acts as an ancilla, while phonons A and B are
initialized in the excited state. Fig. 3.7 displays the e�ects of the CZ gate in the qubit
and in the three phonons as we scan the detuning of the drive δ1 across the resonance
condition. The mapping |0110〉qABC → |0001〉 → − |0110〉 con�gures a CZ gate, as the
system acquires a global geometric phase. This can be directly observed in Fig. 3.8,
where the system is initialized in the ψ0 = |0, 1, (0 + 1)/

√
2 ≡ +x, 0〉 state. Then, the

expectation value of the population in the x-axis of the the Bloch sphere changes sign
during the time evolution, indicating the change in phase.

Fig. 3.9 displays the e�ects of the CZ operation in the qubit and phonon states while
experimental parameters are scanned. Fig. 3.9 (top row) shows that, for the simulation
conditions, the optimal ξ1 is slightly below 0.20. Fig. 3.9 (middle row) shows that the
phonon drive can be implemented for a wide range of α values, with an optimal near
α/2π = 150 MHz. Then, in Fig. 3.9 (bottom row), we scan the detuning of phonon B in
a range that avoids a coincidental mode spacing, i.e., that ensures |δA− δB| 6= |δA− δC |.
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3. Simulations

Figure 3.7.: Populations of the phonon modes A, B and C against time and drive detun-
ing δ1. When the resonance condition of the CZ gate (δ̃1 = δ̃A + δ̃B − δ̃C) is
achieved, phonon C acts as ancilla. The color scale represents the expecta-
tion value of the z-axis of the Bloch sphere, in which -1 (red) corresponds to
the excited state and +1 (blue) to the ground state. The system is initialized
with phonons A and B in the excited state, ψ0 = |0, 1, 1, 0〉, and the param-
eters are ξ1 = 0.19, g/2π = 2 MHz, α/2π = 150 MHz, δA/2π = 14 MHz,
δB/2π = 19 MHz, δC/2π = 10 MHz.

Figure 3.8.: Time evolution of the population of phonons A, B and C at the resonance
condition of the CZ gate (δ̃1 = δ̃A + δ̃B − δ̃C). The blue (orange) line
represents the expectation value of the population in the z-axis (x-axis) of
the Bloch sphere. The change in 〈x〉 from 1 to -1 for phonon B indicates that
the CZ gate indeed causes the system to acquire a global geometric phase.
Here, the system is initialized in the ψ0 = |0, 1, (0 + 1)/

√
2, 0〉 state and

the parameters are ξ1 = 0.19, g/2π = 2 MHz, α/2π = 150 MHz, δA/2π =
14 MHz, δB/2π = 19 MHz, δC/2π = 10 MHz.
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3.2. CZ gate

The results indicate that the phonon drive is sensitive to the mode separation, and that,
given the other simulation parameters, δB/2π ≈ 19 MHz is optimal.

Figure 3.9.: Populations of phonon modes A, B and C against time and (top row) dimen-
sionless drive strength ξ1, (middle row) Kerr non-linearity α, and (bottom
row) δB at the resonance condition of the CZ gate, δ̃1 = δ̃A+ δ̃B− δ̃C . There
is an optimal range for the three parameters. The color scale and other
parameters are the same as in Fig. 3.7.

Fig. 3.10 indicates that the conditions that work for the full Hamiltonian also e�ect
the CZ gate when using the quartic term individually. Unlike for the phonon drive, the
addition of the linear terms identi�ed in Eq. 3.5 does not explain the timing discrepancy
that arises between these two implementations of the CZ operation. This indicates
that there are other competing e�ects that change the timescale of our system, which
could stem, for example, from coincidental resonances with other terms in the cQAD
Hamiltonian (Eq. 2.11). We note that, in order to implement the CZ gate considering
the full Hamiltonian, we had to assume a large coupling strength g/2π = 2 MHz and a
small phonon-mode separation.
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3. Simulations

Figure 3.10.: Time evolution of the population of phonons A, B and C at the resonance
condition of the CZ gate (δ̃1 = δ̃A+ δ̃B− δ̃C). The period of the oscillations
considering the CZ quartic term only (top row) is much shorter than when
we consider the full cQAD Hamiltonian (bottom row). In both cases, the
parameters are ξ1 = 0.19, g/2π = 2 MHz, α/2π = 150 MHz, δA/2π =
14 MHz, δB/2π = 19 MHz, δC/2π = 10 MHz.
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3.3. SWAP gate

3.3. SWAP gate

We can implement the SWAP gate in our system through XXI from Eq. 2.11:

− α
∑

ikjl

ξ∗i ξjλ
∗
kλlm

†
kmle

i(δi+δk−δj−δl)t + H.c., (3.7)

which e�ects a SWAP operation when we employ two drives whose frequency separation
matches that between two phonon modes, for example, modes A and B (δ̃1 = δ̃A−δ̃B+δ̃2).
In this manner, the excitation of a phonon in mode A of one resonator can be swapped
into mode B of the other, for example. Fig. 3.11 displays the SWAP between phonons
A and B as δ1 is varied across the resonance condition.

Figure 3.11.: Populations of phonon modes A and B against time and drive detuning
δ1. When the resonance condition of the SWAP gate (δ̃1 = δ̃A − δ̃B + δ̃2)
is achieved, the excitation of phonons A and B swap. The color scale
represents the expectation value of the z-axis of the Bloch sphere, in which
-1 (red) corresponds to the excited state and +1 (blue) to the ground state.
The system is initialized with phonon A in the excited state, ψ0 = |0, 1, 0, 0〉,
and the parameters are ξ1 = ξ2 = 0.19, g/2π = 2.5 MHz, α/2π = 150 MHz,
δA/2π = 44 MHz, δB/2π = 64 MHz, δC/2π = 26 MHz, δ2/2π = 79 MHz.

Fig. 3.12 (top row) shows that the SWAP operation can be more quickly e�ected when
the drive strengths ξ1 and ξ2 (which is scanned along with ξ1) are slightly below 0.3, given
the other parameters employed in the simulation. Fig. 3.12 (middle row) shows that this
gate is more e�ective with a non-linearity of α/2π = 150 MHz. Our simulation also
indicates that a successful implementation of the SWAP gate is very restrictive in terms
of mode separation, as can be seen in the bottom row of Fig. 3.12.

Similar to the CZ gate, achieving the SWAP operation with the simulation was only
possible with a large coupling strength g/2π = 2.5 MHz, although the phonon-mode
separation can be much larger than that in the previous section. Again, we were not able
to identify a speci�c term that accounts for the di�erences between the time evolution
under the full Hamiltonian and that under the SWAP quartic term (term XXI in Eq.
2.11), displayed in Fig. 3.13.
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3. Simulations

Figure 3.12.: Populations of phonon modes A, B and C against time and (top row) dimen-
sionless drive strength ξ1, (middle row) Kerr non-linearity α, and (bottom
row) δB at the resonance condition of the SWAP gate (δ̃1 = δ̃A − δ̃B + δ̃2).
There is an optimal range for the three parameters. The color scale and
other parameters are the same as in Fig. 3.11.
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3.3. SWAP gate

Figure 3.13.: Time evolution of the population of phonons A and B at the resonance con-
dition of the SWAP gate (δ̃1 = δ̃A− δ̃B + δ̃2). The period of the oscillations
considering the SWAP quartic term only (top row) is much shorter than
when we consider the full cQAD Hamiltonian (bottom row). In both cases,
the parameters are ξ1 = ξ2 = 0.19, g/2π = 2.5 MHz, α/2π = 150 MHz,
δA/2π = 44 MHz, δB/2π = 64 MHz, δC/2π = 26 MHz, δ2/2π = 79 MHz.
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3. Simulations

3.4. Summary

In this chapter, we have investigated three operations that can be achieved in a cQAD
system. Our predictions are based on a device in which a transmon qubit is piezoelec-
trically coupled to two high-overtone bulk acoustic resonators. Considering lifetimes of
T1 = 7 µs for the qubit and T1 = 100 µs, T2 = 40 µs for the phonons, previously reached
in an ~BAR device [1], the phonon drive should be readily achievable. The CZ and
SWAP gates are limited by the dephasing of the system, but, assuming that T2 can be
increased to 60 µs, both operations are promising experiments to perform in our system.
When studying the phonon drive, we �rst considered the interaction between a qubit

and a single phonon to make preliminary estimates on reasonable drive strengths that
can be applied to our system and on the size of the coherent state that can be achieved.
Then, we identi�ed parameters that allow for the implementation of the phonon drive
considering the full system, and described discrepancies that arise with respect to the
e�ects of the quartic interaction only. Likewise, the CZ and SWAP operations occur
within a time frame di�erent than that predicted by their quartic terms. Besides being
limited by the dephasing of the phonons, both gates seem to require larger coupling
strength than those currently achieved in an ~BAR device, although g/2π of few MHz
have been observed in similar systems [13, 26, 27].
Overall, the simulations suggest that we can drive the phonons into a coherent state

and perform quantum operations in the cQAD system. While we can identify operations
of interest and resonance conditions using individual quartic terms, the results presented
in this chapter suggest that our system cannot be fully described with the fourth-order
terms, but rather, we must take into account how these might be impacted by their
lower-order counterparts and by coincidental resonances on the cQAD Hamiltonian.
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Chapter 4

Conclusion

In this project, we have derived the expansion of the quartic terms of the cQAD Hamilto-
nian, identi�ed the e�ects of interest starting from a pool of twenty-one terms and found
their corresponding resonant conditions. Then, we used the quantum package QuTiP
to simulate the time evolution of our system considering realistic qubit and phonon life-
times. The simulations allowed us to identify potential parameters that can be used to
experimentally e�ect the phonon drive, the CZ gate and the SWAP gate. Our results
indicate that three parameters strongly in�uence the experiments: the spacing of the
phonon modes, the coupling strength between the qubit and the phonon mode, and the
strength of the drive tone.
Many challenges arise when observing the e�ect of the quartic terms in experimental

conditions, i.e., when performing simulations using the full cQAD Hamiltonian. Compet-
ing e�ects seem to bring the timescale of the operations to the same order of magnitude
as the relevant decay times of the phonons. For the investigated terms, the main lim-
itation is predicted to be the dephasing of the phonons, T2, which occurs in the same
timescale as the CZ and SWAP gates when they are inserted in the full Hamiltonian of
the system.
In the phonon drive case, we successfully identi�ed the term responsible for the dis-

crepancy in the frequency of the Rabi oscillations that arises when comparing the results
of the cQAD Hamiltonian to those of the corresponding quartic term. Once the other
sources of timing discrepancies are identi�ed, and possibly mitigated, the next step would
be to de�ne and calculate the �delity of the CZ and SWAP gates. This calculation could
be achieved, for instance, by simulating the evolution for the six cardinal points on the
Bloch sphere and comparing it to the ideal gate [28]. If our system can be engineered
such that the quartic terms are dominant over the rest of the Hamiltonian�through the
choice of mode spacing, for example�, we predict that high �delities can be achieved,
as in Ref. [2].
Throughout the course of this work, we have developed python scripts for di�erent

types of simulations, as well as predicted useful benchmarks to guide future experi-
mental work. The developed capability of performing the summations corresponding to
individual quartic terms greatly simpli�ed previous methods and can be easily adapted
to investigate the e�ects of any desired operation. Ultimately, we have identi�ed and
simulated operations of experimental relevance in a cQAD system, discussed their lim-
itations and laid a computational background with promising directions to be further
explored.
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Sample simulation script on the example of the phonon drive

July 5, 2020

1 Initialization
[1]: import numpy as np

from matplotlib import pyplot as plt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from datetime import datetime
from mpl_toolkits.axes_grid1 import ImageGrid
import pprint
pp = pprint.PrettyPrinter(indent=4)
import qutip as qt
from itertools import combinations
import timeit
#load_ext memory_profiler
from memory_profiler import profile
from scipy import linalg as lg
from scipy.signal import argrelextrema
from scipy.signal import find_peaks
#layout
basefs=16
plt.rcParams['font.size'] = basefs
plt.rcParams['axes.titlesize'] = basefs+2
plt.rcParams['axes.labelsize'] = basefs+2
plt.rcParams['xtick.labelsize'] = basefs
plt.rcParams['ytick.labelsize'] = basefs
plt.rcParams['legend.fontsize']= basefs-2

def find(condition):
res, = np.nonzero(np.ravel(condition))
return res

Define Pauli matrices and states:

[2]: sp = qt.sigmam()
sm = qt.sigmap()
sx = qt.sigmax()
sy = qt.sigmay()
sz = qt.sigmaz()

1

Appendix A

Simulation script
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Id = qt.qeye(2)
vplus = 1/np.sqrt(2)*(qt.fock(2,0)+qt.fock(2,1))
vminus = 1/np.sqrt(2)*(qt.fock(2,0)-qt.fock(2,1))
vgr = qt.fock(2,0)
vex = qt.fock(2,1)

Define Pauli matrices for the Hilbert space composed of one qubit and three phonons:

[3]: def spN(a,N=4):
return qt.tensor([qt.qeye(2)]*a+[sp]+[qt.qeye(2)]*(N-a-1))

def smN(a,N=4):
return qt.tensor([qt.qeye(2)]*a+[sm]+[qt.qeye(2)]*(N-a-1))

def sxN(a,N=4):
return qt.tensor([qt.qeye(2)]*a+[sx]+[qt.qeye(2)]*(N-a-1))

def syN(a,N=4):
return qt.tensor([qt.qeye(2)]*a+[sy]+[qt.qeye(2)]*(N-a-1))

def szN(a,N=4):
return qt.tensor([qt.qeye(2)]*a+[sz]+[qt.qeye(2)]*(N-a-1))

[4]: N = 4
# hilbert space is
# 0: qubit
# 1: phonon mode to be swapped from (A)
# 2: phonon mode to be swapped into (B)
# 3: some other phonon mode that we will need for the CZ gate (C)
# parameters (in MHz)
pi2 = np.pi * 2

Define plotting functions:

[5]: def plot4modeEvolution(result,taxis, tickspace, savename, axis='xyz'):
fig, ax = plt.subplots(2,2,figsize=(6,4),sharex=True, sharey=True)
tn = 1
titles = ['qubit', 'phonon A', 'phonon B', 'phonon C']
for mind in range(N):

x,y,z = result.expect[3*mind:3*(mind+1)]
if 'x' in axis:

ax[mind%2,mind//2].plot(taxis[::tn],x[::tn],label='x')
if 'y' in axis:

ax[mind%2,mind//2].plot(taxis[::tn],y[::tn],label='y')
if 'z' in axis:

ax[mind%2,mind//2].plot(taxis[::tn],z[::tn],label='z')

ax[mind%2,mind//2].set_ylim([-1,1])
ax[mind%2,mind//2].set_xticks(np.

↪→arange(min(taxis),max(taxis),tickspace))
ax[mind%2,mind//2].set_title(f'{titles[mind]}')

2

A. Simulation script
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# add a big axis, hide frame
fig.add_subplot(111, frameon=False)
# hide tick and tick label of the big axis
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False,␣

↪→right=False)
plt.xlabel(r'time (�s)')
plt.ylabel(r'$\left\langle z \right\rangle$')
plt.subplots_adjust(left=None, bottom=None, right=None, top=None,␣

↪→wspace=None, hspace=0.4)
plt.show()
fig.savefig(savename,bbox_inches='tight',dpi=300)

def plot1modeEvolution(mind,result,taxis,tickspace,savename, axis='xyz'):
fig, ax = plt.subplots(1, 1, figsize=(4, 3))
tn = 1
titles = ['qubit', 'phonon A', 'phonon B', 'phonon C']
x,y,z = result.expect[3*mind:3*(mind+1)]
if 'x' in axis:

ax.plot(taxis[::tn],x[::tn],label='x')
if 'y' in axis:

ax.plot(taxis[::tn],y[::tn],label='y')
if 'z' in axis:

ax.plot(taxis[::tn],z[::tn],label='z')
ax.set_ylim([-1,1])
ax.set_xticks(np.arange(min(taxis),max(taxis),tickspace))
ax.set_xlabel(r'time (�s)')
ax.set_ylabel(r'$\left\langle z \right\rangle$')
ax.set_title(f'{titles[mind]}')
plt.tight_layout()
plt.show()
fig.savefig(savename,dpi=300)

def plot4modeBloch(result, tn=100, meth='l'):
fig = plt.figure(figsize=(6,6))
for mind in range(4):

ax = fig.add_subplot(2,2,mind+1,projection='3d')␣
↪→#Axes3D(fig,azim=-60,elev=30)

b = qt.Bloch(axes=ax)
b.clear()
x,y,z = result.expect[3*mind:3*(mind+1)]
b.add_points([x[::tn],y[::tn],z[::tn]], meth=meth)
b.show()

Define operators:

3
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[7]: # bare operators
q = smN(0,N=N)
mA = smN(1,N=N)
mB = smN(2,N=N)
mC = smN(3,N=N)
qd = q.dag()
mAd = mA.dag()
mBd = mB.dag()
mCd = mC.dag()

# expectation values
e_ops = [sxN(0,N=N), syN(0,N=N), szN(0,N=N),

sxN(1,N=N), syN(1,N=N), szN(1,N=N),
sxN(2,N=N), syN(2,N=N), szN(2,N=N),
sxN(3,N=N), syN(3,N=N), szN(3,N=N)]

Define collapse operators that take into account the lifetime of the qubit and of the phonons:

[8]: #Coherence times in us
T1q = 7 #qubit
T1pn = 100 #phonon
T2pn = 40 #phonon

#construct collapse operators
c_ops = []
c_ops.append(np.sqrt(1/T1q) * smN(0,N=N))
c_ops.append(np.sqrt(1/T1pn) * smN(1,N=N))
c_ops.append(np.sqrt(1/T1pn) * smN(2,N=N))
c_ops.append(np.sqrt(1/T1pn) * smN(3,N=N))
c_ops.append(np.sqrt(1/T2pn) * szN(1,N=N))
c_ops.append(np.sqrt(1/T2pn) * szN(2,N=N))
c_ops.append(np.sqrt(1/T2pn) * szN(3,N=N))

Define exponential functions

[9]: def exp_d_p(t,args):
d = args['d']
return np.exp(1j*d*t)

def exp_d_m(t,args):
d = args['d']
return np.exp(-1j*d*t)

#exp functions for single terms
def exp_4_p(dp,dq,dr,ds,t):

return np.exp(1j*(dp+dq-dr-ds)*t)

def exp_4_m(dp,dq,dr,ds,t):
return np.exp(-1j*(dp+dq-dr-ds)*t)

4
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2 Simulations
2.1 Term XIX only
−α

2

∑
hijl ξ

∗
hξ

∗
i ξjλkmke

i(δh+δi−δj−δk)t + H.c.

for δ1 = δA, j = 1 (1 drive), k = A, B, C (3 phonons)

[10]: wq = 6300
wA = wq + 74
wB = wA + 40
wC = wA - 20
w1 = wA
alpha = 150
g = 0.5
Ω1 = (w1-wq)*0.15
wq, wA, wB, wC, w1, alpha, g, Ω1 = list(np.array([wq, wA, wB, wC, w1, alpha, g,␣
↪→Ω1])*pi2)

dA = wA - wq
dB = wB - wq
dC = wC - wq
d1 = w1 - wq

# dimensionless couplings
lambdaA = g/dA
lambdaB = g/dB
lambdaC = g/dC
lambdaAc = np.conj(lambdaA)
lambdaBc = np.conj(lambdaB)
lambdaCc = np.conj(lambdaC)

# dimensionless drive strengths
xi1 = Ω1/d1
xi1c = np.conj(xi1)

# effective time
pre_19 = (alpha/2)*4
g_19 = pre_19*(xi1c**2)*xi1*lambdaA
t_19 = np.pi/g_19

#Store parameters in lists, so that we can use loops to perform the summations
D_phonon = [dA,dB,dC]
D_drive = [d1]
Lambda = [lambdaA,lambdaB,lambdaC]
Lambda_c = [lambdaAc,lambdaBc,lambdaCc]
M = [mA,mB,mC]
Md = [mAd,mBd,mCd]
Xi = [xi1]

5
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Xi_c = [xi1c]

Now we loop through the lists of variables defined in the previous cell in order to calculate the
sums. The typical approach in QuTiP is to use the args variable, but this would require definining
each term of the summation individually.

[11]: t = np.linspace(0,t_19,1001)

H_19 = []
for h in range(1):

for i in range (1):
for j in range (1):

for k in range (3):
H_19.append([pre_19*Xi_c[h]*Xi_c[i]*Xi[j]*Lambda[k]*M[k],

␣
↪→exp_4_p(D_drive[h],D_drive[i],D_drive[j],D_phonon[k],t)])

H_19.append([pre_19*Xi[h]*Xi[i]*Xi_c[j]*Lambda_c[k]*Md[k],
␣

↪→exp_4_m(D_drive[h],D_drive[i],D_drive[j],D_phonon[k],t)])

psi0 = qt.tensor([vgr,vgr,vgr,vgr])

H = [*H_19]
res_19 = qt.mesolve(H, psi0, t ,c_ops=c_ops,e_ops=e_ops,options=qt.
↪→Options(nsteps=10001))

[12]: tickspace=15
savenameA='200705_Term19_1D_A_1.png'
plot1modeEvolution(1,res_19, t,tickspace,savenameA,axis='z')

6
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3 Full Hamiltonian with the resonance condition of term XIX
[13]: wq = 6300

wA = wq + 74
wB = wA + 40
wC = wA - 20
w1 = wA
alpha = 150
g = 0.5
Ω1 = (w1-wq)*0.15
wq, wA, wB, wC, w1, alpha, g, Ω1 = list(np.array([wq, wA, wB, wC, w1, alpha, g,␣
↪→Ω1])*pi2)

dA = wA - wq
dB = wB - wq
dC = wC - wq
d1 = w1 - wq

# dimensionless couplings
lambdaA = g/dA
lambdaB = g/dB
lambdaC = g/dC

# dimensionless drive strengths
xi1 = Ω1/d1
xi1c = np.conj(xi1)

# STARK SHIFTS
sA = -2*alpha*xi1**2*lambdaA**2
sB = -2*alpha*xi1**2*lambdaB**2
sC = -2*alpha*xi1**2*lambdaC**2
wAt = wA + sA
wBt = wB + sB
wCt = wC + sC

# dimensionless couplings stark
dAt = dA + sA
dBt = dB + sB
dCt = dC + sC
d1t = dAt

lambdaAt = g/dAt
lambdaAtc = np.conj(lambdaAt)
xi1t = Ω1/d1t
xi1tc = np.conj(xi1t)

# effective time
pre_19 = (alpha/2)*2*2

7
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g_19 = pre_19*(xi1tc**2)*xi1t*lambdaAt
t_19 = np.pi/g_19

When considering the full Hamiltonian, we employ the args variable approach.

[14]: H_anh = -alpha/2*qd*qd*q*q
H_pop_rwa = dA*mAd*mA + dB*mBd*mB + dC*mCd*mC

H_int = g*(mAd*q + mBd*q + mCd*q)
H_int = H_int + H_int.dag()

H0 = H_anh + H_int + H_pop_rwa
H_drive1 = [[Ω1*qd,exp_d_m], [(Ω1*qd).dag(),exp_d_p]]

psi0 = qt.tensor([vgr,vgr,vgr,vgr])

T = t_19
npoints = 401
t = np.linspace(0,T,npoints)

H = [H0, *H_drive1]
res_19 = qt.mesolve(H, psi0, t, args = {'d':d1t}, c_ops=c_ops,e_ops=e_ops,

options=qt.Options(nsteps=1001))

[15]: tickspace=15
savenameA='200705_Res19_FullH_1D_A_1.png'
plot1modeEvolution(1,res_19, t,tickspace,savenameA,axis='z')
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