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Abstract

Cavity bulk optomechanics experiments require the use of two optical resonances with
a free spectral range equal to that of the Brillouin frequency of a crystal. To keep the
frequency of a laser at resonance a Pound-Drever-Hall control loop is used, which requires
a signal of light reflected from the cavity. In case of an experiment that would use light
pulses to coherently manipulate the optomechanical degrees of freedom, the reflected
signal may not be sufficient to maintain the frequency stabilization feedback loop. In
this work we propose the use of a third frequency, generated via intensity modulation
and tuned to a cavity mode, to stabilize the frequency without interacting with the
optomechanical experiment. We delve into the noise sensitivity of the mode structure
of such cavity in order to explore the viability of our design, and construct a proof of
concept experiment by doing measurements on a free-space Fabry-Perot cavity and a
cavity containing a crystal for optomechanical coupling.
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Chapter 1

Introduction

We have transitioned from the abstract mathematics of quantum mechanics to pursuing
more and more complex implementations of these systems in labs around the world.
While quantum mechanics has a rigid structure of Hilbert spaces and states, translating
that to the language of experimental physicist it can mean working with atoms, ions,
superconducting circuits, nitrogen vacancies, and many other creative implementations.
Each platform has varied technical and scientific advantages and limitations, but also
offer exciting opportunities for progress in the field. One such novel approach is the use
of vibrations of a crystal that can interact coherently with light [1], by placing it inside
an optical cavity such that for some optical modes their frequency difference is equal to
a crystal dependent constant known as the Brillouin frequency.

In order to shine light inside the cavity at the desired frequencies we need to protect
the system against undesired noise of both the cavity or the laser, for that a common
and useful technique is the Pound-Drever-Hall frequency stabilization (PDH) [2]. The
PDH technique works by modulating the phase of the incoming laser beam and mixing
the reflected cavity light with the same local oscillator to create an error signal that is
linear around the cavity resonances, and thus can be stabilized using a standard control
loop. While there are subtleties to the PDH technique, for our purposes if we observe an
error signal similar to the one in 1.1, then it’s possible to stabilize the frequency in our
experiment.

In a typical bulk optomechanics experiment the laser is locked into one of the two modes
separated by the Brillouin frequency, and then a sideband with the desired frequency
spacing is generated using an Intensity Modulator (IM). But in the case we desire a
coherent control of the vibrational modes it will be necessary to use pulses of light instead
of a continuous beam. However if there is no reflected signal then there is no PDH error
signal,nd noise in the system can cause the laser frequency to shift out of resonance.

To offer a possible solution to the pulsed operation problem we investigate the viability
of performing the laser locking with a third mode of the cavity that does not participate in
the optomechanical interaction, and it’s then not affected by the pulsing of the two modes
separated by the Brillouin frequency. This third mode is generated with an intensity
modulator, so it will be a sideband to the carrier frequency. We will refer to this process
as sideband locking. The goal of this report is to test whether we can lock the laser
frequency using a sideband, if we can have the carrier frequency stay on resonance after
locking to the sideband, and to test how reliable sideband locking is by testing it on a
Fabry-Perot cavity and the optomechanical cavity with a crystal inside.

This report is divided into a simulation and experimental portion. The simulation
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1 Introduction

section presents the Free Spectral Range (FSR) spectrum of the optomechanical cavity,
which we use it to study the sensitivity of different mode pairs with respect to changes in
the cavity length. This provides information about which sets of mode pairs frequency
differences are less susceptible to cavity length noise, which we refer to as displacement
insensitive modes. The experimental section describes the optical setup and procedure
used to achieve sideband locking, and results from experiments in a standard Fabry-Perot
cavity and the previously described optomechanical cavity.

Figure 1.1: Scheme proposal for using sideband locking in the bulk optomechanics exper-
iment. Here ΩB represents the Brillouin frequency. Laser frequency is locked
to the cavity mode ω0 via the PDH error signal, and the ω1 and ω2 modes
are used for the optomechanical experiment. Different mode frequencies are
generated with intensity modulators
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Chapter 2

Simulations

2.1 Cavity Transmission Spectrum

A Fabry-Perot cavity is one of the most commonly used optical resonators, consisting of
two mirrors facing each other at a distance L and, in our case surrounded by vacuum (or
air) between them. A relevant property of the cavity is the frequency difference between
two adjacent modes, called the Free Spectral Range (FSR) and defined as

FSRi = νi − νi−1 =
c

2L
, (2.1)

with c being the speed of light. For this simple case the FSR is constant across all
different modes of the cavity.

In the case of the bulk optomechanical experiment, the quartz crystal inside the Fabry-
Perot modifies the uniform FSR spectra of the Fabry-Perot, thanks to reflections at the
faces of the crystal as can be seen in figure 2.1.

Figure 2.1: Cavity used for the optomechanical experiment. Arrows represent reflections
on the edges of the crystal Figure taken from [1].

To find the index of refraction we follow the procedure outlined in the supplementary
material of reference [1], where the transmission matrix method is used. Taking into
account all of the reflections and propagation inside of the system the final transmission
matrix is of the form
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2 Simulations
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and the reflection power spectrum can be found with Pr =
∣∣∣T1,2T2,2

∣∣∣2 Pin, with Pin be-
ing the input power. It’s possible to analytically find the reflection spectrum but the
expression results too cumbersome and complicated to be worth it. The simulations
were performed using a python code developed internally by Tom Schatteburg, the out-
put of which contains an array of the mode resonances for a given set of parameters by
performing the matrix multiplications from equation 2.2.

In figure 2.2 an example FSR spectrum is shown in blue points, the apparent oscilla-
tions are a consequence of the crystal surfaces passing through the nodes and anti-nodes
of the standing wave optical cavity modes.

Choosing parameter values would change the shape of the FSR spectrum, in the case
of very small perturbations of cavity length the mode frequencies shifts slightly, and the
FSR of the corresponding mode also changing as a result. To understand the trajectory
the FSR spectrum the figure 2.2 presents a sweep of the cavity length by about 1 µm
with very fine steps. As a results the possible values the FSR spectrum can take are more
apparent, with clearly defined maximums and minimums that are usually not reached
for a given set of cavity parameters.

The periodic nature of the FSR spectrum is due to oscillations in the supported modes
whenever the cavity length is changes. As observed in figure 2.3 the frequency of the
modes does decrease whenever L is increased, as expected given larger wavelengths are
allowed in the cavity. But each mode presents small oscillations on top of the linear
behaviour.

2.2 Displacement Insensitive Modes

The system under consideration is particularly sensitive to vibrational noise given it is
placed inside a dilution fridge and not isolated on top an optical table. The experiment
relies on a particular mode pair having an FSR of ΩB, and we know from the previous
section that the FSR fluctuates with respect to cavity size changes, therefore choosing a
pair of modes that are less susceptible to vibrations is a good strategy to obtain clean ex-
perimental results. This behaviour has been previously observed when Optomechanically
Induced Transparency and Amplification (OMIT/A) experiments were performed, choos-
ing different pairs of modes yielded better or worse results depending on their positions
relative to the FSR spectrum.

Considering the set of three modes proposed for the sideband locking scheme, we
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2.2 Displacement Insensitive Modes

Figure 2.2: Simulated FSR spectrum of the optomechanical cavity. Cavity parameters
given in the figure, the crystal index of refraction is set to n = 1.55. A fine 1
µm cavity length sweep is plotted in black to showcase the oscillatory nature
of the FSR. Blue points represent the usual cavity spectrum encountered for
a fixed set of parameters. The green line represents the Brillouin frequency
of ΩB = 12.645 GHz taken from [1].

require two pairs of modes which simultaneously fulfill the displacement insensitive con-
dition of ∂FSR

∂L = 0 for a specific cavity length. The experimental justification being
that while the PDH lock corrects for the noise of the locked cavity mode, noise from the
second mode shifts the FSR away from the Brillouin frequency.

To search for displacement insensitive pairs of modes we not only look at adjacent
modes but also ones that are further apart, we still keep using the terminology of FSR but
refer to frequency differences of arbitrary pairs of modes, focusing mostly on pairs with
one or two other modes in between them. On figure 2.4 we can observe the generalized
distance for different pairs of modes for different cavity lengths. Notice consecutive pairs
(19-20,20-21) present the same periodic behaviour but with a phase difference, the same
as for pairs (18-20,20-22). Modes of distance three (23-20,17-20) apart don’t exhibit
the same oscillations as the rest of the pairs, this behaviour appears to be more or less
general and repeats itself over simulations with different parameters and focusing on
different sets of modes, but given the complicated nature of the analytical expression it
would be difficult to call this a general result.

Figure 2.5 plots the changes in FSR for different mode pairs. This is where the sensi-
tivity of the system is more noticeable. There are some configurations where mode pairs
can have changes of a few MHz for only a nm in cavity length noise, which is about the
Full Width Half Maximum (FWHM) of the optical resonances in the cavity. The maxi-
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Figure 2.3: Change of the mode frequency with respect to changes in the cavity length.
The expected decrease in frequency for a free space cavity is evident, but also
visible are small oscillation due to the presence of the crystal

Figure 2.4: Absolute distance between different pairs of modes for different cavity dis-
placements. The commonly defined FSR ( fj − fj−1) corresponds to the red
curve. Due to oscillations present in the modes, as seen in figure 2.3, their
distances also have an oscillatory behaviour.
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2.2 Displacement Insensitive Modes

mum amplitude of the derivatives seems to be roughly the same regardless of which pairs
of modes is compared (except for the modes distance three apart) but there is a phase
difference for each one. From this figure we can observe that whenever there is a length
value for which a mode pair is displacement insensitive, it’s not always possible to find
another one that is also crossing the zero line. But in some cases there are two pairs that
are displacement insensitive for a given cavity length, specifically in the interval between
−4000 nm and −3000 nm there is a point where both mode pairs 20-21 and 20-18 are
displacement insensitive simultaneously, the same for the pairs 20-22 and 20-19. It could
be the case that there are further pairs of modes for which this condition is fulfilled but
their frequency differences would be of more than approximately 40 GHz, which is not
feasible to achieve with intensity modulators.

Figure 2.5: Derivative of the general FSR (distances between arbitrary different set of
modes) with respect to cavity displacements. Data is the same one as in
figure 2.4. Displacement insensitive points correspond to positions for when
dFSR
dL = 0. The units in the y-axis should read [MHz/nm]

To facilitate visualization of the previous results we map the displacement insensitive
points onto the FSR spectrum of mode 20 in particular. That is, whenever the FSR
change crosses through zero in figure 2.5 we extract the respective cavity length and plot
the FSR of mode 20 (f20−f19) at that particular cavity length. The reason for this being
that during the lab experiments the FSR spectrum is the information available to us,
and being able to identify whether the modes pairs observed are displacement insensitive
or not is of great convenience. In figure 2.6, we can observe this mapping. Focusing first
on the displacement insensitive points for the mode pair 19-20 (FSR of mode 20), as a
sanity check we can see it’s displacement insensitive at the top and bottom of the black
curve of possible values for the FSR. This is expected from the expression
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∂FSR

∂L
=

∂FSR

∂f
· ∂f
∂L

(2.3)

so given ∂f
∂L ̸= 0 then a displacement insensitive point for the mode pair 19-20 is also

a point where ∂FSR20
∂f = 0, so at the top and bottom of the oscillation.

Figure 2.6: Mapping of the displacement insensitive points from figure 2.5 onto the FSR
spectrum of mode 20. Notice the positions where the red (f20 − f19 displace-
ment insensitive) and orange points agree (f22−f20 displacement insensitive).
This corresponds to a group of three displacement insensitive points.

Also of relevance are the mode pairs 20-21, where thanks to the phase difference ob-
served in figure 2.4 the displacement insensitive points are in the middle of the oscillations,
so it’s not possible to find three consecutive modes where their frequency differences are
displacement insensitive. As for the mode pair 20-22 the displacement insensitive points
seem to coincide with the displacement insensitive points for the mode pair 20-19 for
some frequencies, a pattern which was again observed to be consistent regardless of the
modes chosen or the cavity parameters. For example if choosing to plot the FSR of mode
19 then the displacement insensitive points at the top and the bottom of the oscillations
would be the pairs 18-19 and 19-21.

Although we cannot conclude our observations to be general for every case, we have
found convincing evidence that pairs of modes (j,j ± 1) and (j ∓ 2,j) to be potential
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2.2 Displacement Insensitive Modes

Figure 2.7: Visual representation of the group of three displacement insensitive points
from figure 2.6. This property seems to be general to modes other than the
ones presented above, that is, pairs (j,j ± 1) and (j ∓ 2,j).

candidates for the proposed sideband locking scheme.
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Chapter 3

Experiments

3.1 Experimental Setup

For the experimental section we focused on providing a proof of concept for the sideband
locking scheme by working with only two modes. The goal being to lock onto a sideband
while still keeping the carrier on resonance, so in this case no optomechanical interaction.
It will also be an important tool to test how stable the FSR of the cavity by studying
how the cavity noise levels displace the carrier off resonance.

The setup used to generate these two different modes is shown in figure ??. The
laser light is split into two amrs via a 50/50 beam splitter, with one arm having only a
Variable Optical Attenuator, and with the other one containing an IMP-1550-10-PM 10
GHz Intensity Modulator with an external RF signal produced by a Windfreak SynthHD
10 MHz - 15 GHz microwave generator whose signal is amplified by an iXblue DR-AN-
20-MO as to obtain enough power to resolve the sidebands. This is followed by an
MPZ-LN-10 Phase Modulator driven at around 32 MHz and 18 dB. Also not shown in
the diagram is the PDH locking scheme connected to the phase modulator to create the
error signal, for simplificity purposes we can assume that signals that pass through the
phase modulator are the ones that can create a PDH signal. After the phase modulator
we include a filter that we use to filter out the carrier frequency of the IM and keep
only the sideband signal, the filter used is the Ultra-Narrow Band-Pass Filter Module
IXC-FBG-PS-M with a 4 GHz bandwidth, small enough to discriminate the sideband
and tunable within a range of 1550 ± 0.1 nm. We label it as a Fiber Bragg Grating
(FBG) due to it using a combination of two FBG to archive the desired filtering. The
signal from both arms of the setup is recombined before being sent to the cavity, where
a circulator is used to measure the reflected signal.

3.1.1 Frequency Sweeping

The laser used for these experiment is the TOPICA CTL-1550 with the DLC pro Digital
Controller, which provides a quick and intuitive way to lock the laser frequency. We
just need to supply it with a PDH error signal as we’re able to lock onto the desired
resonance. For this to happen the controller has an option to do a fast frequency sweep
of a range around 50 GHz with frequencies of up to 100 Hz. This is the tool used to
identify the PDH error signal and then lock to the respective resonance. Also included
in the controller is an automatic locking scheme, we only need to supply the appropriate
error signal and select the resonance.
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3 Experiments

Figure 3.1: Modes uses for the experiments. Locking onto a sideband and pulsing at the
other mode frequency, no third mode was used.

Figure 3.2: a. Simplified experimental setup used for the experiments. The laser is
performing a frequency sweep over a range of 50 GHz with a frequency
of 100 Hz. The phase modulator (PM) is driven at 32 MHz with 18 dB
amplitude and is used to generate the PDH error signal for the locking. The
FBG represent a narrow band pass filter with transmission frequency of ω0.
b. Reflection spectrum of the frequency sweep when the IM is not driven.
Shape due to the narrow band pass filter having a bandwidth.

To make sense of the measured signals in the experiments we first focus on a simplified
version without driving the intensity modulator, so light passing through it is only at-
tenuated, with the DC bias voltage set to maximize transmission. The phase modulator
information makes it possible to lock onto any resonance within the frequency sweep
range, while the filter only transmits light around ω0, which we tune to be a resonance
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3.1 Experimental Setup

of the cavity. The experimentally measured reflection signal is shown in figure ??, the
cavity resonance is seen as a small dip around the center, but not well resolved enough
due to the coarse sampling rate of the frequency sweep.

Figure 3.3: a. Same experimental setup as in figure ?? but with the IM being driven
with frequency ∆. The frequency sweep parameters are kept the same. Light
from the frequencies ω0 ± ∆ is transmitted through the filter due to the
sidebands generated by the intensity modulator. b. Reflection spectrum
of the frequency sweep when the IM is driven at frequency ∆. Resonances
seen in both of the sidebands are light transmitted through the resonance at
frequency ω0.

In the case whenever we drive the intensity modulator with frequency ∆, light emitted
at a frequency ω0 −∆ will have sidebands at ω0 − 2∆ and ω0, the latter of which passes
through the filter and is measured. Similarly for light at ω0+∆. The resulting spectrum
is shown in figure ??. The resonances present in the sidebands corresponds to light at
frequency ω0 being reflected at the cavity and as such represent a mode at such frequency,
event though the light is detected whenever the laser shines a light at frequencies ω0±∆.
The presence of a resonance in the spectrum sidebands creates a PDH error signal as
seen in figure 3.4, allowing us to lock onto the carrier (frequency ω0), or the sidebands
(frequency ω0 ±∆).

Although there is a resonance signal in the sidebands of figure ??, the reflected intensity
is too low to successfully lock onto the sideband. Several factor contributing to this
are: the intensity modulator being rated at 10 GHz while we’re driving at 12 GHz, the
RF power provided directly by the generator can only provide 18 dB at our driving
frequency while the maximum rated power for the IM is 25 dB, the DC bias voltage not
being optimized to maximize sideband power and attenuation resulting from the optical
components in the arm. The problem was solved by including an RF amplifier that
increased the signal up to 21 dB and by tuning the DC bias voltage to a point where
the sideband power was maximized. The resulting spectrum as shown in figure 3.5, and
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Figure 3.4: Error signal obtained from the reflected signal shown in figure ??. Highlighted
section corresponds to the PDH error signal generated from the sidebands.

provided good enough to perform the sideband locking experiments.

Figure 3.5: Reflection spectrum of the experimental setup described in figure ?? in the
case of using an amplifier to increase the power of the RF signal used in the
modulation and with optimal bias voltage in the IM. Higher reflected power
on the sidebands mean a better signal for sideband locking.

3.1.2 Sideband Locking

Descriptions of the sideband locking scheme have so far not taken into account the
second arm of the experiment which is controlled by a VOA. While the arm without
the intensity modulator contains information about the resonance in ω0 in the sidebands
ω0±∆, the second arm contains information about the standard cavity spectrum, showing
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a resonance at ω0 and, considering for the moment a free-space Fabry-Perot cavity, at
ω0 ± FSR. So if we know the cavity FSR, which is normally the case, we can set ∆ ∼
FSR. The frequency spectrum of such case is shown in figure 3.6, where the mode with
the small sidebands is the light passing through the phase modulator.

Figure 3.6: Reflection signal frequency spectrum close around the sidebands. The res-
onance dip with low frequency sidebands being the same as the ones from
figure ??, identifiable because the sidebands are created due to the phase
modulator, and corresponding to the resonance at ω0 of the cavity. The sec-
ond dip coming from light passing through the second arm as seen in figure
??

Locking the laser to one of the sidebands results in its frequency set to ω0+∆, chosen
without lack of generality. The light from the IM arm will contain a small sideband with
frequency ω0, which as previously mentioned is a resonance of the cavity, while the VOA
arm will pass by without altering its frequency. Such that before entering the cavity
there a superposition of both frequencies, one that is on resonance (ω0) and another one
that we can tune to be on resonance ω0 +∆. We can then use the tunability of our RF
drive to sweep around the FSR of the cavity as a way to probe the cavity resonances,
and by setting ∆ = FSR we can have our desired sideband locking scheme with locking
onto sideband while pulsing (arbitrarily varying the intensity) of a second frequency tone
on resonance.

3.2 Free-Space Cavity

To provide an experimental proof of concept of the arrangement we first worked with a
free-space Fabry-Perot cavity set on top of an optical table. The equally spaced modes
and isolation from vibrational noise being ideal for this task. The FSR of the cavity being
measured to be 12.9135 GHz. For the setup we use use the procedure described in figure
3.7 to lock onto the sideband. Once the laser frequency is set we only have access to
time domain measurements of the cavity reflections and error signal. From here we can
observe that changing the RF frequency in the range of a couple MHz either increases or
decreases the average reflected signal. Taking 1 second measurements of every step and
plotting the average reflected signal with its respective error bars reveals the shape of the
resonances, as seen in figure ??. The measurements were repeated for different reference
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Figure 3.7: Frequency domain representation of the sideband locking experiments. The
laser is locked to a sideband with the frequency ω0+∆. After the 50/50 beam
splitter the arm with the intensity modulator will create a sideband with the
frequency ω0 which will pass through the filter, while the other arm will only
have an Variable Optical Attenuator (VOA). THe light from both arms are
recombined before reaching the cavity. If ∆ is tuned to the FSR of the cavity
then both tones of light will be resonances.

powers (power measured after a 90/10 beam splitter before light reaches the cavity) and
we can observe the expected increase of measured reflected signal, while on resonance the
measured reflected light stays roughly the same for different powers. In the case of the
VOA completely closing off the left arm of the setup (−24.6 dBm) and only light at ω0

entering the cavity, we see a constant reflected value for different RF frequencies, which
is expected given the light shined onto the cavity doesn’t have information about ∆.

The error signals shown in figure ?? seem to have a constant pattern independent of
the reference power measured. This is expected because the light intensity on the arm
passing through the phase modulator is constant and independent on the intensity of the
other arm. This means we can vary the intensity of the pulsing arm and not affect the
locking, we could in theory turn off the pulsing arm for an arbitrary amount of time and
the frequency would remain stable because of the locking using the second arm, which
proves we can indeed successfully perform sideband locking.

Noise in this experimental setup can arise either due to fluctuations on the locking
frequency (any non-zero error signal indicates deviations from the cavity resonance) or
changes in the cavity FSR which leads to the ω0 +∆ being shifted off resonance. While
the PDH lock is a robust method for stabilizing laser, frequencies changes in cavity
frequencies also lead to changes in the FSR, so both noises are generally correlated. To
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3.2 Free-Space Cavity

Figure 3.8: a. Average intensity with error bars of one second time traces of the sideband
locking scheme presented in 3.7, with different ∆ values and at different
optical powers obtained by tuning the VOA. b. Error signal statistics for the
data in figure ??. Both averages and error bars remain constant for different
optical powers, which is consistent with the error signal being encoded in
the sidebands created by the Phase Modulator (PM), and that arm having a
constant optical power across the different experiments.

Figure 3.9: a. Time trace signal for the RF reflection signal tuned to ∆ = FSR =
12.9135 GHz, that is both modes on resonance. The top black bar represents
the average signal whenever the ω0 +∆ mode is off resonance, and the lower
one is the minimum value of the plotted signal. b. Normalized statistics
of the time trace signal. Subtracting the white noise from the detector and
treating the upper black line in figure ?? as one. Also the average measure
reflectance is plotted alongside its error bars.

quantify the effect of such noise we use the time domain fluctuations of the reflected
cavity signal. If there are any noises processes slower than the detector sampling rate
(a few kHz) and faster than the measuring time (1 Hz), then the average reflected value
of the one second measurement will be larger than the minimum measured reflectance
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within that time period. In this way, a noisy locking would cause a shift off resonance of
our light frequencies and show a larger standard deviation.

As we can see from the time traced signal in figure ??, the signal stayed close to
the resonance during the whole measurement process. To accurately compare different
results later on we also present the statistics (mean and standard deviation) normalized
to the detector value when ∆ is far off resonance from the FSR and taking into account
the detector white noise. So in case of the free-space Fabry-Perot cavity we can conclude
that the noise levels are low enough as to call this an effective sideband locking scheme.

3.3 Optomechanical Cavity

After testing the sideband locking scheme with the Fabry-Perot cavity we can proceed
onto the optomechanical cavity previously described in the simulation section. The cavity
in question is mounted inside a dilution fridge operated at a temperature of 4K, with a
pulse tube compressing and expanding gaseous Helium to act as a heat exchanger. Given
the comparatively complex FSR spectrum, we first require to choose which mode pairs
we will be testing and calibrating the narrow band pass filter to be set in one of the two.
Although the filter has proven useful in the proof of concept for the sideband locking, its
limited by the tunability range available (1500 ± 0.1 nm), meaning it’s not possible to
reach every mode of the cavity. Figure 3.10 shows the labeling of the mode pairs to be
used in the experiments as well as their FSR spectrum. The goal is to prove the viability
of the sideband locking scheme for the optomechanical experiment, and to test the claims
about displacement insensitive modes from the simulation section.

Figure 3.10: FSR spectrum of the cavity with the crystal and inside the dilution fridge.
The numbered pairs of modes are the one the experiments were performed
on. Note this spectrum changes when the cavity warms up.

To perform the experiments we require to turn off the pulse tube supplying the liquid
helium, the vibrations it creates making it difficult to archive frequency locking. Once
off, the temperature of the cavity increased around 2 degrees within 5 minutes, shifting
the modes and the FSR spectrum in the process. Due to this problem we couldn’t
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3.3 Optomechanical Cavity

reproduce the cavity mode shape like in figure ??, but we can still manually look for a
minimum reflection point with the RF set around the FSR of that particular pair. The
strategy for finding the minimum turns out to be more complicated this time around,
with noisier reflection signals and shifting FSR, for this reason we took several half a
second measurements whenever the resonance point might have been found.

In figure 3.11 we found a collection of measurement results for the three different mode
pairs, alongside their normalized statistics. For the mode pair 0-1 shown in 3.11a and
3.11b we took a 16 second long measurement at the same RF frequency which were then
split into 32 measurements of half a second. As can be appreciated form the time trace
measurements, the statistics remain relatively constant but quite noisy. The normalized
statistics show how the oscillations present in the time domain measurements increase the
average reflection, reaching up to halfway to the off resonance point. This was consistent
with the hypothesised behaviour of the mode pairs 0-1 given it’s not a displacement
insensitive mode pair according to the results from figure 2.6, that is, it’s not located at
the top or bottom of the FSR spectrum oscillations.

The measurements for the mode pairs 1-2 (3.11c and 3.11d) still show the same oscil-
latory behaviour as the mode pair 0-1, but as the normalized statistics go it was possible
to find an RF frequency for which the average intensity closer to the minimum reflected
value. The same can be said about the mode pair 2-3 (3.11e and 3.11f). The measure-
ments for this mode pair also show the FSR shift occurring due the heating of the cavity
and the crystal, where three measurements were made at the RF frequency of 9.9829
GHz at different times and from the normalized statistics we can observe how the FSR
shifts the laser out of resonance.

Both mode pairs 1-2 and 2-3 are shown to be more displacement insensitive than the
0-1 mode, as expected given they are closer to the top and bottom of the oscillations.
But a conclusion from figure 2.6 was also that for a given displacement insensitive pair,
the FSR for the next pair was highly sensitive. An explanation for this is that neither
pairs 1-2 and 2-3 are fully displacement insensitive, recall that not all points in the FSR
spectrum reach the local maximum permitted by small displacement on the cavity. In
figure 2.2 for example, the FSR point at around 193.11 THz is displacement insensitive,
while the point before and after that one are highly sensitive, while for the points around
193.14 and 193.15 THz both are consecutive and while close to the local maximum and
minimum of the black curve neither one is fully displacement insensitive.

The Power Spectral Densities of the time domain measurements give us a greater
insight into the noisy oscillations observable in all measurements. As seen for the second
column of figure 3.12, all the measurements done have a significant peak at 8 and 16
Hz. These frequencies are relatively slow to arise from any electronics (the RF signals
are in the order of MHz and GHz) and may arise due to the vibration isolation stage the
cavity is set up on, consisting on a set of springs that the cavity hangs from. While the
vibration isolation stage has been successful in reducing noise in the system it appears
it has also given rise to either resonances or high transmission at low frequencies which
compromise the stability of the cavity FSR. In conclusion turns out the sideband locking
scheme has potential use as a sensor for the optomechanical noise, which is relevant in
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a b

c d

e f

Figure 3.11: Sideband locking measurements performed with the scheme in figure 3.7
with the cryo cavity and with the pairs of modes specified in figure 3.10.
The left column represents the time trace measurements at different RF
modulation frequencies and at different times. The warming up the cavity
slightly changes the mode frequencies making repeated measurements of the
same point at different times potentially different. The right column contains
information about the corresponding normalized statistics as presented in
figure ??.
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3.3 Optomechanical Cavity

a b

c d

e f

Figure 3.12: Power Spectral Density (PSD) of the time trace measurements from figure
3.11. The left column corresponds to the full spectrum available taking into
account the detector sampling rate and the right column only shows a shorter
slow frequency range where the highest peaks can be found. Prominent noise
contributions at 8 and 16 Hz are present across all different measurements.
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any kind of OMIT or thermometry experiment performed in it in the future.
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Chapter 4

Conclusion

In this work we proposed a setup for stabilizing the laser frequency of a cavity bulk
optomechanics by utilizing a third frequency tuned to a cavity mode generated by a
in intensity modulator for the locking, which we call sideband locking. We studied the
sensitivity of different pairs of modes to cavity length changes and found sets of three
modes that are shown to be displacement insensitive and might be candidates for the
proposed setup. We tested a proof of concept of the sideband locking scheme on a free-
space Fabry-Perot cavity and in an optomechanical cavity inside a dilution fridge. We
found evidence that supports our conclusion about displacement insensitive points in the
optomechanical cavity and used the setup to obtain information about noise sources that
affect the cavity.

While we showed that it’s possible to perform sideband locking more works needs to be
done in order to demonstrate whether it’s a viable proposal for the pulsed experiment.
No data was taken on the stability of modes that are further apart, for example how
would the measurements for the pairs 1-3 be, which is an important part of the proposal.
Also in the current state we don’t have much flexibly to choose the modes we experiment
with, due to the limited tuning range of the narrow band pass filter used, but the cavity
length could be tuned in situ as to find ideal sets of displacement insensitive modes.
Finding a way to suppress the 8 and 16 Hz noise could also give rise a much more stable
sideband locking measurements and thus significantly improve the viability of the setup,
given it requires not two but three modes maintaining their frequency distance with each
other in order to work. There is also work to be done to setup a free-space detector to
improve the signal to noise ration of the error signal and thus providing a more stable
lock loop. Although there are still may open questions, we hope the work here serves as
a stepping stone for further research and exploration of interesting phenomena related
to FSR spectrums and optomechanical cavities.
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