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Abstract

Quantum mechanics has passed all precision tests with flying colours, but it still seems
to be in conflict with common sense. Why are objects around us never found in superpo-
sitions of states that would be impossible in a classical description? One may emphasize
the smallness of Planck’s constant, or point to decoherence theory, which describes how
a system will effectively lose its quantum features when coupled to a quantum environ-
ment of sufficient size. More radically, objective collapse theories ascertain that quantum
mechanics breaks down beyond a certain mass or complexity scale, and that standard
quantum mechanics is but an approximation to a more general theory. These theories
posit that quantum theory must be modified at a fundamental level, designed to induce
an objective collapse of the wave function above a critical mass scale of a given quan-
tum system, thereby restoring classicality. The dynamics induced by collapse models are
controlled by a few parameters and give predictions that differ from standard quantum
mechanics. Most importantly, these differences can be verified experimentally, and thus
enable to place strong bounds on the values of these parameters. In this report, we calcu-
late upper bounds for two collapse parameters obtained from two different experimental
setups. We will show that the bounds placed by the experimental data are weaker than
those coming from non-interferometric tests of collapse models.
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Chapter 1

Introduction

1.1. Motivation

The classical dynamics of a system of particles having a Hamiltonian H is described in
phase space (qn, pn) by Hamilton’s equation of motion

d

dt
qn =

∂H

∂pn
,
d

dt
pn = −∂H

∂qn
(1.1)

The state of the system at an initial time t0 is a point in the phase space, and the
equations of motion determine the location of the system point at a later time. An
equivalent description of the dynamics is through the Hamilton-Jacobi equation

−∂S
∂t

= H

(
qn,

∂S

∂qn

)
(1.2)

where S is the action of the system. In contrast, quantum dynamics is described by the
time evolution a system’s wavefunction Ψ, which is a normalized element of a Hilbert
space and obeys the Schroedinger equation. For a single particle n of mass m moving in
one dimension, the Schroedinger equation, after defining ψ = eiS/ℏ, is

−∂S
∂t

=
1

2m

(
∂S

∂t

)2

+ V (qn)−
iℏ
2m

∂2S

∂2qn
(1.3)

In the approximation in which the last term in this equation can be neglected, this equa-
tion reduces to the classical Hamilton-Jacobi equation. This essentially corresponds to
the limit S ≫ ℏ. There is thus a well-defined sense in which the Schroedinger (quantum)
equation goes over the the Hamilton-Jacobi (classical) equation, and a description of the
dynamics in Hilbert space (quantum) gets replaced by a description in terms of evolution
of position and momentum coordinates (classical) in phase space. Yet, there is an aspect
which gets lost in the limiting process: The Schroedinger equation is linear, whereas the
Hamilton-Jacobi equation is non-linear: If S1 is a solution corresponding to one trajec-
tory in phase space, and S2 is a solution corresponding to another such trajectory, then
clearly a1S1+a2s2 is not a solution of this equation. In particular, if Ψ1 is a wave-packet
which is peaked around one classical solution and Ψ2 is a wave-packet peaked around
another classical solution, quantum mechanics predicts that the sum of these two wave-
packets is also a solution, and in principle such solutions should be observed in nature.
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1. Introduction

Figure 1.1.: Cartoon comparison of microscopic and macroscopic systems: While the
microscopic particle can be in a superposition state, the macroscopic pointer
system is always localized.

However, according to classical mechanics, such a superposition is not a solution of the
equations of motion, nor is it observed in the macroscopic world around us. Naively, we
believe that classical mechanics, which applies to macroscopic systems, is a limiting case
of quantum mechanics, and hence quantum mechanics should apply to large systems as
well. Why is it then that macroscopic objects which obey the rules of classical mechanics
are not found in superposition of different position states, in spite of quantum theory
suggesting otherwise? There is no unique universally accepted answer to this question.

1.2. The measurement problem

The absence of macroscopic superpositions is closely related to the measurement problem
in quantum theory, which we will briefly summarize in the following. For a detailed
treatment in the context of collapse models, see chapter III of [1]. Let us consider
a macroscopic apparatus with which we measure the spin of a single particle. The
corresponding Hilbert space is two-dimensional Hilbert, with basis kets {|↑⟩ , |↓⟩}. The
apparatus measures the spin via a pointer that can take two positions: "Left" (if |↑⟩ is
measured) and "Right" (if |↓⟩ is measured). As such, the Hilbert space for the pointer
has basis kets {|←⟩ , |→⟩}. Let us assume that the particle is in a superposition state, e.g.
|Ψ⟩ = c↑ |↑⟩+c↓ |↓⟩, where the complex coefficients are probability amplitudes chosen such
that their modulus squared sums to unity. By measuring the spin with the apparatus,
the pointer state cannot be described independently from the spin state. The resulting
entangled state is a tensor product of the particle and pointer states and is given by

|Ψ⟩ = c↑ |↑⟩ ⊗ |←⟩+ c↓ |↓⟩ ⊗ |→⟩ (1.4)

This state evolves continuously according to the Schrodinger equation, hence preserving
the superposition. However, in an actual measurement, we never observe the pointer
to point simultaneously to the left or to the right, as illustrated in Figure (1.1) Above
a critical mass or complexity scale, the superposition principle seems to break down,
and the pointer collapses to one of its basis states, as illustrated in Figure (1.2). This
collapse is certainly not continuous and breaks the superposition that should be pre-
served according the the Schrodinger equation. Even worse, the measurement outcome

2



1.3. Interpretations of the Measurement problem

Figure 1.2.: Cartoon of reduction process: Entangling a microscopic degree of freedom
(spin) with a macrosopic one (pointer) leads to a reduction in the state
vector. The collapse to the state |↑⟩ ⊗ |←⟩ happens with probability |c↑|2.

is probabilistic, even though the Schrodinger equation predicts a deterministic evolution
for the quantum state. As such, quantum theory seems two rely on two different evo-
lution processes: There is the U (unitary) process, where the state changes smoothly,
and the R (reduction) process, in which the state of the system changes instantaneously
and randomly. As such, as soon as the particle becomes entangled with the macroscopic
pointer, the superposition state collapses, and the spin state is either up or down:

|Ψ⟩ = c↑ |↑⟩ ⊗ |←⟩+ c↓ |↓⟩ ⊗ |→⟩
Reduction R−−−−−−−−→ |↑⟩ ⊗ |←⟩ or |↓⟩ ⊗ |→⟩ (1.5)

The U process is supposed to control a system’s dynamics all the time that the system
is left alone, while the R process is called upon whenever we entangle a microscopic degree
of freedom with a macroscopic one. The problem is then that no one has been able to
characterize in general when a physical process should be considered macroscopic. How
much mass, or degrees of freedom should an object have to be classified as macroscopic?
In other words, where is the quantum-classical divide?

1.3. Interpretations of the Measurement problem

In the following, we present the most prominent interpretations of quantum mechanics
dealing with the measurement problem, with a complete overview given in [2].

1.3.1. Copenhagen and Many-World interpretations

In Hugh Everett’s many-worlds interpretation, there is only one wave function, the su-
perposition of the entire universe. The act of measurement entangles different entities,
e.g. an observer, a measuring instrument, and an electron/positron. The measurement
hence induces correlations, and there is no R process or collapse postulate. In contrast,
viewpoints that broadly fall within the Copenhagen interpretation accept the collapse
postulate. In particular, they emphasize that the results provided by a measuring ap-
paratus are essentially classical. As such, the device used to observe a system must be
described in classical language, while the system under observation is treated in quantum
terms. This is a particularly subtle issue for which Bohr and Heisenberg came to differing
conclusions. According to Heisenberg, the boundary between classical and quantum can
be shifted in either direction at the observer’s discretion. That is, the observer has the
freedom to move what the quantum to classical" cut without changing any physically
meaningful predictions. On the other hand, Bohr argued both systems are quantum in

3



1. Introduction

principle, and the object-instrument distinction (the "cut") is dictated by the experi-
mental arrangement. For Bohr, the "cut" was not a change in the dynamical laws that
govern the systems in question, but a change in the language applied to them.

1.3.2. Decoherence

In the 1980’s, decoherence theories gained traction among the physics community. This
viewpoint maintains that state vector reduction (the R process) can be understood as
coming about because the environmental system under consideration becomes inextri-
cably entangled with its environment. The environment is assumed to be extremely
complicated and essentially ’random’. However, upon measurement, the observer only
gains information about the system under consideration (e.g. the spin of a particle), and
not about the environment, as illustrated in Figure (1.3). Most importantly, decoherence
does not claim to provide a mechanism for the actual wave-function collapse; rather it
puts forth a reasonable framework for the appearance of wave-function collapse. Decoher-
ence is needed to understand why a quantum system begins to obey classical probability
rules after interacting with its environment.

Figure 1.3.: A total, closed system divided into the system of interest, “System”, and the
environment. The interaction of the system of interest with the environment
cannot be avoided (they become entangled), and we require an approach
in which the environment can be effectively removed from the equations of
motion. Mathematically, tracing out the environment degrees of freedom
introduces a classical statistical uncertainty for the quantum state of the
system.
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1.3. Interpretations of the Measurement problem

1.3.3. Collapse models

An alternative interpretation is provided by collapse theories. There, the U and R pro-
cesses are unified and described by a single equation that governs both processes. There
is no observer and no measurement apparatus, and collapse arises simply because one
designs the evolution equation to include it. Combining the U and R process means that
the Schroedinger equation itself must be modified. This modification adds randomness to
the previously deterministic equation. In general, all modifications to the Schroedinger
equation must respect the principles outlined below:

1. Standard quantum theory is empirically verified for microscopic systems. The
collapse process must be negligible for these systems.

2. To explain the absence of macroscopic superpositions, the collapse must be am-
plified for larger system. To avoid an arbitrary cut-off (the original criticism to
Copenhagen interpretation), we need some kind of amplification mechanicsm.

3. The collapse process must account predicts random outcomes of measurements. In
particular, they need to respect the Born rule.

4. To not violate the theory of relativity, collapse models must not allow for superlu-
minal signalling.

These requirements are very demanding, and it is not clear from the outset why there
should be a solution at all. In the following, we give a chronological overview over
attempts to meet the above requirements, while at the same time emphasizing the most
important ideas of collapse processes.

5





Chapter 2

Theory

The GRW is the first spontaneous collapse theory that was devised, being proposed by
Ghirardi, Rimini & Weber in 1982 [3]. In the following years the field developed and
different models were formulated, among which the CSL model [4], which is formulated
in terms of identical particles; and the Diósi–Penrose model [5], which relates the spon-
taneous collapse to gravity. These models will be presented in the following.

2.1. GRW model

In GRW theory, the wave function (or state vector) represents the most accurate possible
specification of the state of a physical system. As such, it differs from hidden-variable
theories, according to which the wave function does not give a complete description
of a physical system. The GRW models differs from standard quantum mechanics for
the dynamical principles according to which the wave function evolves, and operates
according to the following principles [3]:

1. Each particle of a system of n distinguishable particles, described by the multi-
particle state vector |Ψ⟩, undergoes a spontaneous localization process:

|Ψ⟩ Localization−−−−−−−→
∣∣Ψi

x

〉√
⟨Ψi

x|Ψi
x⟩

(2.1)

where
∣∣Ψi

x

〉
= L̂i

x |Ψ⟩ is the state after the operator L̂i
x has localized the i-th particle

around the position x.

2. The localization process is random both in space and time. The jumps are Poisson
distributed in time, with mean rate λGRW; the probability density for a jump to
occur at position x is given by Pi(x) =

〈
Ψi

x

∣∣Ψi
x

〉
.

3. In the time interval between two localizations, the state vector evolves according
to the Schroedinger equation.

4. The localization operator has a Gaussian form:

L̂i
x =

(
1

πr2c

) 3
4

e
−(q̂i−x)2

2r2c (2.2)
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2. Theory

where q̂i is the position operator of the i-th particle, and the rc is the localization
distance which will be described in more detail in Section (2.1.2).

2.1.1. Single particle in 1D

To see how the Gaussian operator L̂i
x localizes the particle i at position x, consider a

superposition of two Gaussian wave functions with spread σ, centered at x = a and
x = −a respectively:

ψ(x) =
1

(πσ)1/4

[
e−

(x−a)2

2σ2 + e−
(x+a)2

2σ2

]
(2.3)

We assume that the particle undergoes a localization process at position x = a, i.e. we
have

ψa(x) = L̂x=aψ(x) = N e
− (x−a)2

2r2c

[
e−

(x−a)2

2σ2 + e−
(x+a)2

2σ2

]
(2.4)

whereN is a normalization factor. We now make two assumptions: Firstly, each Gaussian
is localized, i.e. σ ≪ rc. Secondly, the distance between the two Gaussian wave functions
is larger than the localization length, i.e. (2a≫ rc). We then find [1]

ψa(x) ≈ N ′

[
e
− (x+a)2

2σ2 − 2a2

r2c + e−
−(x−a)2

2σ2

]
(2.5)

We notice that the Gaussian that is hit by the localization operator is left unchanged (it
was already localized), whereas the other one is exponentially suppressed. The particle
thus becomes localized at x = a.

2.1.2. The collapse mechanism - choice of parameters

The collapse parameters λGRW and rc are phenomenological constants, whose values are
not fixed by any principle and should be understood as "new" constants of Nature, if
collapse theory is indeed a correct description of Nature. λGRW sets the mean rate of
collapse for a single particle, and thus determines how fast a superposition state reduces
to one of its basis states. As such, it should be chosen such that microscopic objects
are almost never localized, thus effectively recovering standard quantum mechanics. On
the other hand, macroscopic systems should be localized within a very small fraction
of a second. Ghirardi, Rimini & Weber originally set the value of the collapse rate to
λGRW = 10−16 s−1, meaning that a state reduction (collapse) process happens every 100
- 1000 million years for a single particle.

The localization length rc specifies which kind of superpositions are effectively sup-
pressed, as illustrated in Figure (2.1). It thus specifies a threshold between microscopic
and macroscopic systems. The localization distance should be large with respect to
atomic dimensions. In this way, even when one of the extremely infrequent localization
processes takes place for a particle of an atomic system, the localization does not modify
the internal structure of that system [1]. On the other hand, rc must be chosen large

8



2.1. GRW model

Figure 2.1.: Cartoon detailing the role of the localization length in reduction processes.
Taken from [6].

enough to avoid the occurrence of spatial superpositions of a macroscopic object such as
the measurement apparatus. There is broad consensus to set rc within the mesoscopic
scale, at rc = 10−7m.

2.1.3. Modification for ensembles

We can express the above principles more compactly using the density operator formal-
ism. The localization process is Poissonian, and hence in a time interval dt there is a
probability λGRWdt that a collapse occurs. As such, the pure state ρ = |Ψ⟩⟨Ψ| gets
transformed into the statistical mixture

|Ψ⟩⟨Ψ| →
∫
V
dxL̂i

x |Ψ⟩⟨Ψ| L̂i
x = T̂i[ρ] (2.6)

where T̂i is a completely positive, trace-preserving map that acts on the i-th particle.
Note that with probability (1 − λGRW)dt, no collapse occurs, and ρ̂ evolves according
to the standard Schroedinger equation. We thus arrive at the following GRW master
equation for N particles:

d

dt
ρ(t) = − i

ℏ
[Ĥ, ρ(t)]−

N∑
i=1

λGRW

(
ρ(t)− T̂i[ρ(t)]

)
(2.7)

where Ĥ is the Hamiltonian of the system, and the square brackets denote the commu-
tator.

9



2. Theory

2.1.4. Amplification mechanism

We next consider a macroscopic system, e.g. the measurement apparatus, that consists
of N particles. We describe the position of the particles in terms of center of mass (CM)
and relative (R) position operators, i.e. q̂i = Q̂CM+ r̂i. If the system Hamiltonian can be
split into a center of mass Hamiltonian ĤCM and a relative Hamiltonian Ĥr, the center
of mass statistical operator ρCM can be shown to have the following master equation [1]:

d

dt
ρCM(t) = − i

ℏ
[ĤCM, ρCM(t)]−

N∑
i=1

λGRW

(
ρCM(t)− T̂CM[ρCM(t)]

)
(2.8)

where T̂CM is again a completely positive, trace-preserving map. We thus have an am-
plification mechanism: For a single particle in a spatial superposition state, a reduction
process happens infrequently and the particle evolves according to the Schroedinger equa-
tion. For the measurement apparatus, the center of mass collapses with an amplified rate
ϵ = Nλ. Using the GRW value for λ, and assuming that the apparatus consists of an
Avogadro number of nucleons, we find a collapse rate ϵ = 107 s−1.

2.1.5. Energy conservation

The GRW model gives a master equation for the density operator different from standard
quantum dynamics (SQD). As such, the expectation values Tr(ρ̂Â) of an observable Â,
or its variance, might differ from SQD predictions. Bassi & Ghirardi [1] showed that for
a nucleon with mass m, the expectation value for the momentum operator p̂ is identical
to SQD: ⟨p̂⟩GRW = ⟨p̂⟩SQD. However, the momentum spread changes within a time t to
[1]

(p̂− ⟨p̂⟩)2GRW = (p̂− ⟨p̂⟩)2SQD +
λGRWℏ2

6m2r2c
t3 (2.9)

We thus see that there is a diffusion rate induced by the collapse process. This introduces
a steady amount of energy in the system

⟨E⟩GRW = ⟨E⟩SQD +
λGRWℏ2

4m
t (2.10)

leading to a violation of the energy conservation principle. Although such an energy
increase is negligible, this feature of the model is not appealing. For this reason, a
dissipative extension of the GRW theory has been investigated [7]. Other drawbacks of
the GRW theory include that it is a non-relativistic theory, and that it only applies to
distinguishable particles.

2.2. The CSL model

The continuous spontaneous localization (CSL) model solves two aspects of the GRW
model. First, it gives a continuous equation for the state vector in contrast to discrete

10



2.2. The CSL model

hitting processes. Second, it is applicable to identical particles. In the following, we
present the CSL model in its standard form. Various extensions to the CSL model have
been proposed, which include the colored CSL model, and the dissipative CSL model,
which aims to preserve energy conservation [7].

A "continuous" hitting process requires a continuous interaction of the system under
consideration with an external field that triggers the reduction. This external field is
commonly called the noise field, and its existence is a postulate of the theory. The
continuous reduction of the state vector to one of its eigenstates (as opposed to the
sudden localization in GRW) is called dynamical reduction. The benefit of a continuous
interaction is the possibility to write down a single equation (that governs the earlier
U and R processes) at the level of the wave function, something that is not possible
with the GRW model. In the GRW model, we only have a continuous equation for the
density operator, but not for the state vector itself. In continuous collapse models, one
obtains the updated equation that describes the evolution of the state vector in time by
adding non-linear and stochastic terms to the standard Schrodinger equation. The two
most popular models of this class are the QMUPL (Quantum Mechanics with Universal
Position Localization) model and the CSL model. One of the essential differences between
the two is the simpler mathematical structure of the QMUPL model: There, the noise
field “lives” only in the time dimension, whereas the CSL noise field is spread both in time
and space. A full derivation of the CSL modified Schrodinger equation is beyond the
scope of this report, and can be found in [4]. Instead, we present important conceptual
ideas of the dynamical reduction program.

2.2.1. Example

As an example, we consider a spin system with state vector |Ψ0⟩ at time t = 0, where
we expand the state in the basis {|↑⟩ , |↓⟩}:

|Ψ0⟩ = |↑⟩⟨↑| |Ψ0⟩+ |↓⟩⟨↓| |Ψ0⟩ (2.11)

In SQD, x↑(0) = | ⟨↑|Ψ0⟩ |2 and x↓(0) = | ⟨↓|Ψ0⟩ |2 are the probability amplitudes to find
the system in spin state up or down, respectively, at time t = 0. For an isolated system,
they stay constant for all times t, i.e. x↑(0) = x↑(t). Contrary to that, the amplitudes
aren’t constant in collapse theory, as the system continuously interacts with the external
noise field that triggers the collapse. We postulate that a reduction happens as soon as
one of the now fluctuating amplitudes is equal to one and denote the collapse time by τ ,
i.e. a reduction happens if x↑,CSL(τ) = 1. The remaining amplitudes are equal to zero
at the collapse time τ . We hence have

|Ψ0⟩CSL = |↑⟩x↑,CSL(0) + |↓⟩x↓,CSL(0)
Collapse−−−−−→ |↑⟩ ∗ x↑,CSL(τ) = |↑⟩ (2.12)

How do the amplitudes fluctuate exactly? This can be derived via the Born rule, and
is done in full in [8]. Here, we provide a brief overview: Let us measure the spin a
hundred times (N = 100). According to the Born rule, we should get the outcome "up"

11



2. Theory

(|↑⟩) exactly x↑(0) ∗ N times, whereas we should get outcome "down" the remaining
(1 − x↑(0)) ∗N times. In CSL theory, the fluctuations must hence chosen be such that
we have

x↑,CSL(0)
τ−→ 1 (2.13)

for precisely x↑(0)∗N times. An analogy to this behavior is given by the "gambler’s ruin
game", and is due to Pearle [9]. Let us consider two gamblers, with CHF 100 between
them. Gambler 1 starts with CHF X1(0), gambler 2 with CHF X2(0) = 100 − X1(0).
They toss a fair coin: "fair" is crucial, making the game what mathematicians call a
Martingale. Heads, gambler 1 gives a dollar to gambler 2, tails, the reverse. This is a
simple random walk in time, with probability to lose or gain a coin equal to 1/2. The
amount each possesses at each time step tk, Xn(tk), fluctuates. The game ends if one
gambler is in possession of all the money. What is the probability that gambler 1 wins?
If gambler 1 starts out with a fraction x1(0) =

X1(0)
100 of the total amount of money, that

is the fraction of repeated games he wins. This is precisely the behavior we want for our
spin-2 system. Since the continuous limit of a discrete random walk is Brownian motion,
the amplitudes x↑,CSL(t) follow a Wiener process. Just like a particular sequence of coin
tosses, say "Up, Up, Down, Down, Up", of coin tosses leads to gambler 1 winning, a
particular path of Brownian motion, denoted by B(t) and sampled with probability [8]

P (B(t)) =
1√
2πλt

e−B(t)2/2λt (2.14)

leads to amplitude x↑,CSL "winning". Here, λ is constant diffusion rate, and "sampled"
means that we sample a particular path from the external, stochastic noise field that
triggers the reduction process. If we happen to pick a different path, we get different
fluctuations, and hence a different outcome. An overview of this process is given in Figure
(2.2).

2.2.2. The modified Schroedinger equation

We are now in a position to understand the different modifications to the Schroedinger
equation. Ghirardi & Bassi proposed the original modification to the Schroedinger equa-
tion to be [1] (equation 7.9 in their review)

d |Ψ(t)⟩ = −iĤdt+ [ÂdB(t)− 1

2
λCSLÂ

†Âdt] |Ψ(t)⟩ (2.15)

Here, Â is the observable under consideration: If we want a collapse in the energy basis,
we choose Â = Ĥ, if we want a collapse in the momentum basis, we have Â = p̂. Equation
(2.15) is the standard Schroedinger equation with two modifications:

1. A diffusion term λCSLÂ
†Âdt, where λCSL denotes the mean rate of diffusion, as

such it can be interpreted similar to λGRW from the GRW model.

2. A stochastic term ÂdB(t) that enacts the amplitude fluctuations.

12



2.2. The CSL model

Figure 2.2.: Visualization of amplitude fluctuations. In CSL theory, the probability am-
plitudes are not constant in time, but flucutate due to interaction with an
external noise field. The reduction process is complete once a given am-
plitude reaches unity value. Depending on the path of Brownian motion
sampled from the noise field, the state vector |Ψ⟩ gets reduced to one of its
eigenstates |↑⟩ or |↓⟩.

The correct way to interpret the differential dB(t) is via Ito calculus [4]. At its most basic
level, Ito calculus is an extension of Riemann integrals to include stochastic processes,
i.e. processes where the integration measure is random and distributed according to a
Wiener process. If we evaluate equation (2.15) in the position basis, we get a stochastic
differential equation for the wave function Ψ(x, t) = ⟨x|Ψ(t)⟩. Note that now each point
in space x has a separate noise field assigned to it, such that equation (2.15) becomes

dΨ(x, t) = −iĤdt+ [ÂdB(x, t)− 1

2
Â†Âλdt]Ψ(x, t) (2.16)

We can formally characterize the noise field dB(x, t) via its correlation function and
average values. Confirming that the we indeed have a Martingale process (that our
gambler’s ruin game is "fair"), we have

⟨dB(x, t)⟩ = 0 (2.17)

The fields are correlated correlated at different points x, y in space

⟨dB(x, t)dB(y, t)⟩ = λCSLΦ(x− y)dt (2.18)

where Φ(x− y) is the correlator that is Gaussian for the CSL model [4].

2.2.3. Collapse basis

One question left to address in the previous part is onto which basis the collapse process
occurs, i.e. which operator Â we have to choose. In the CSL model, this is solved via

13



2. Theory

introducing a locally averaged density operator [1]

N̂(x⃗) =
∑
s

∫
Φ(y⃗ − x⃗)â†(y⃗, s)â(y⃗, s)dy⃗ (2.19)

Here, â†(y⃗, s)â(y⃗, s) are, respectively, the creation and annihilation operators of a particle
in space point y⃗ with spin s, and Φ is the Gaussian correlator defined above. It is given
by

Φ(x⃗) =

(
1√
2πrc

)3

e−x⃗2/2r2c (2.20)

and denotes the volume over which we take the density average. As such, an initial state
reduces to an eigenstate of the operator N̂(x⃗), i.e. the collapse happens in the position
basis. CSL theory hence addresses spatial superpositions. The parameter rc gives the
spread of the Gaussian volume over which we average, and corresponds to the localization
length that was discussed in the GRW theory section. To account for different kinds of
particles such as electrons or protons and their respective masses, we introduce the mass
density operator [1]

M̂(x⃗) =
∑
α

mαN̂α(x⃗) (2.21)

Here, the index α labels the different particle species, N̂α(x⃗) is the density operator for a
particle of species α, and mα is the mass of that particle species. The main motivation to
replace the number density operator N̂(x⃗) with the mass density operators M̂(x⃗) derives
from the desire to relate reductions to gravity (cf. Section (2.2.5)). A further benefit
of this is that the collapse rates for microscopic systems are even further suppressed,
leading to a smaller increase in energy and hence a smaller disagreement with SQD.

2.2.4. Operator formalism

While dynamical reduction is cumbersome to prove on the state level, it is comparatively
easy to calculate CSL effects using the density operator formalism. The CSL evolution
for the density operator ρ̂ is given by [1]

d

dt
ρ̂ = (L+ LCSL)ρ̂ (2.22)

where L = − i
ℏ [H, ρ(t)] is the standard Liouvillian and LCSL is the CSL term given as

LCSL = − λCSL

2r3cπ
3/2m2

0

∫
dx⃗[M̂(x⃗), [M̂(x⃗), ρ̂t]] (2.23)

with M̂(x⃗) defined in equation (2.21), and m0 = 1amu a reference nucleon mass. What is
the effect of the additional CSL term? According to our earlier reasoning, superpositions
of different points in space should be suppressed, so we expect that the CSL term drives
the off-diagonal elements of the density operator (in the position basis) to zero. This

14



2.2. The CSL model

is precisely what happens when doing the calculation. Let {|x⃗⟩} be the position basis,
where for a system of N particles x⃗ = (x⃗1, ..., x⃗N ). It can then be shown that for two
particles (at positions x⃗ and y⃗) separated by d = ||x⃗− y⃗|| ≫ rC , we have [1]

∂

∂t
⟨y⃗|ρt|x⃗⟩ = −Γ(x⃗, y⃗)⟨x⃗|ρt|y⃗⟩ (2.24)

To give an expression for −Γ(x⃗, y⃗) for different systems under consideration is the goal
this report.

2.2.5. Gravitational collapse

One question left unanswered by the CSL model is the origin of the stochastic noise field
B(x⃗, t). In 1989, Diosi proposed a modification to the GRW model with the explicit
aim of eliminating the "new" constants of nature λ and rc and of relating the process to
gravity [5]. He established a modification to the Standard Schroedinger equation that
can be related to CSL form. Instead of the Gaussian correlator Φ(x⃗ − y⃗) defined in
equation (2.19), we choose a different correlator:

ΦDP(x⃗− y⃗) =
G

ℏ
1

|x⃗− y⃗|
(2.25)

Here, G is the gravitational constant and the correlator has the typical form of a New-
tonian potential. Besides this formal argument, Penrose [10] provided a more intuitive
argument of why gravity could induce wavefunction collapse. He noted that when a
system is in a spatial quantum superposition, a corresponding superposition of two dif-
ferent spacetimes is generated, as illustrated in Fig. (2.3). He then gave a minimalist
argument [10] as to why nature "dislikes" and, therefore, suppresses superpositions of
different spacetimes; the more massive the system in the superposition, the larger the
difference in the two spacetimes and the faster the wave function collapse. Let us con-
sider an example: Two rigid balls with radius R with well-defined mass distributions are
in a quantum superposition

Ψ(x⃗, t = 0) = ψ1(x⃗) + ψ2(x⃗) (2.26)

where ψ1 and ψ2 are two energy eigenstates with eigenvalues E1 and E2. The Diosi-
Penrose criterion then predicts that gravity induces a collapse of this superposition after
a time τDP

τDP =
ℏ

∆E
(2.27)

Here, ∆E is the difference in gravitational self-energy. It is given by

∆E =
1

G

∫
dV (∇Φ1 −∇Φ2)

2 (2.28)

where Φ1 and Φ2 are the Newtonian gravitational potentials of the two states. In a way,
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2. Theory

Figure 2.3.: According to quantum gravity, a spatial quantum superposition of a sys-
tem (red sphere) generates a superposition of different spacetime curvatures
(grey sheets), corresponding to the possible different locations of the system.
Penrose argues that a superposition of different spacetimes is unstable and
decays in time, making the system’s wave function also collapse. Taken from
[11]

.

∆E measures how large, in gravitational terms, the superposition is. We calculate ∆E
for our two balls and arrive at

∆E ≈ G(E1 − E2)
2

c4R
(2.29)

such that the superposition is destroyed after a time

τ ≈ c4ℏR
G(E1 − E2)2

(2.30)

There is an argument by Gao [12] showing that this collapse time may be inconsis-
tent with the discreteness of space-time. In addition, a recent experiment in the Gran
Sasso underground laboratory has further questioned the validity of the DP model: The
particles, which are accelerated by the collapse noise, emit radiation if charged. This
emitted radiation can be detected and allows to place bounds on the DP parameters. A
corresponding experiment was done by Donadi et al. in 2020 [11].

2.2.6. Interpretation as stochastic potential

Another useful way to imagine the effect of the CSL noise field on a particle is by
considering the following modified Schroedinger equation

d

dt
|Ψ⟩ = (Ĥ + V̂ (t)CSL) |Ψ⟩ (2.31)
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2.2. The CSL model

where we added a stochastic potential to the standard Schroedinger equation that is
given as

V̂ (t)CSL =
ℏ
√
λ

π3/4r
3/2
C m0

∫
dx⃗

dt
M̂(x⃗)dB(x⃗, t) (2.32)

Here, B(x⃗, t) denotes the same stochastic noise field as above. This modified equation
yields the correct time evolution equation for the density operator, and was introduced
by Bassi [13]. Why is this useful? The stochastic potential appears as a stochastic force
in the quantum Langevin equations. For example, we have for the momentum operator
p̂

F̂CSL(t) =
i

ℏ
[V̂CSL(t), p̂] (2.33)

This provides an intuitive way to understand why the stochastic field B(x⃗, t) leads to
momentum diffusion: The particles get repeatedly kicked by the noise, similarly to dif-
fusion due to thermal noise. Besides this violation of energy conservation, another weak
point of CSL theory is the spectrum of the noise, which is flat. If one thinks that the
noise providing the collapse has a physical origin, it cannot be white but colored, with a
cut off. For this purpose, the colored CSL model has been developed [14].
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Chapter 3

Test of collapse models

Contrary to most other proposed solutions of the measurement problem, collapse models
are experimentally testable. Experiments testing the CSL model can be divided in two
classes: interferometric and non-interferometric experiments, which respectively probe
direct and indirect effects of the collapse mechanism. From now on, we also leave out
the subscript "CSL" when refering to the collapse rate λ.

3.1. Interferometric experiments

Interferometric experiments can detect the direct action of the collapse, which is to local-
ize the wavefunction in space. They include all experiments where a spatial superposition
is generated and, after some time, its interference pattern is probed. If interference fringes
appear, the superposition principle holds for that type of system within the measurement
error; otherwise, it is violated. This can be due to different reasons, such as localization of
the system’s wavefunction predicted by a collapse model. In particular, the action of CSL
is quantified by the reduction of the off-diagonal terms of the statistical operator. Exper-
iments testing such a reduction are carried out with cold-atoms [15], molecules [16] and
entangled diamonds [17]. One drawback of interferometric experiments is that preparing
and maintaining spatial superpositions of massive systems over time is challenging from
a technical perspective as it requires isolation from any external agent. Typically, this
requires low temperature, high vacuum and low-vibration conditions. State-of-the-art
interferometric experiments now employ particles of around 104 atomic mass units and
have set an upper bound of λ≪ 10−7 s−1 at rC = 10−7 m for the CSL model [18]. This
is a billion times weaker than what is needed to probe the GRW value.

3.2. Non-interferometric experiments

Non-interferometric experiments are not based on the preparation of a superposition,
but exploit the momentum diffusion induced by the interaction with the collapse noise.
As outlined in Section (2.2.6), the effect of the noise amounts to an effective stochastic
force acting on the system, and several experiments can be designed to quantify such a
force. As the typical strength of the collapse rate is very small, a successful experiment
will still have to suppress other noise sources from the environment. Non-interferometric
tests include radiation emission from charged particles [19], heating in bulk materials
[20], and diffusive effects. Most experiments that exploit diffusive effects aim to measure
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3. Test of collapse models

the increase of the spread in position of center-of-mass of a system. The strategy is then
to monitor the motion of the particle in a controlled environment, looking for Brownian
fluctuations that would signal the onset of CSL-induced effects. Conversely, the lack of
such a detection would place upper bounds on the collapse parameters λ and rc. Similar
relations can be obtained for cold-atom experiments, opto-mechanical systems [21][22],
and gravitational wave detectors [13]. Combined, they allow one to draw the so-called
exclusion plots that identify the regions of parameters that need to be explored to rule
out a given collapse model. Figure (3.1) reports the most current exclusion zone plot.

3.3. Examples

We have outlined (cf. Section (2.2.4)) that the CSL model leads to a modified time
evolution for the density operator given by

d

dt
ρ̂t = (L+ LCSL)ρ̂ (3.1)

A whole body of literature is devoted to find explicit expressions for the Lindblad term
LCSLρ̂ using many different experimental setups. We provide two examples below.

3.3.1. Cantilever tests

Let us focus first on cantilever configurations, where the center of mass of a rigid body of
mass m oscillates linearly, say, along the x axis with an amplitude x0 ≪ rc. This could
be a cubic mirror, an optically trapped nanosphere, or a micromembrane. The Lindblad
term is then given by [21]

LCSLρ̂ = −DCSL[x̂, [x̂, ρ̂]] (3.2)

with x̂ the center-of-mass position operator and DCSL = λ
r2c
α. The factor α depends on

the geometry oscillator and can be caluclated for simple configurations [21]. How can
this place bounds on the CSL parameters? The stochastic noise force kicks the particle
with a force proportional to DCSL, leading to momentum diffusion. This momentum
diffusion would dominate over diffusion from thermal noise that "kicks with force DT "
(and would thus be detectable in a noise spectrum), if DCSL > DT . By solving this
equation for λ, bounds on its value can be obtained. This idea, here presented at a very
basic level, can be extended to all kinds of systems: Gravitational wave detectors [13],
rotational opto-mechanics [6], and further cantilever-based experiments [23] [24].

3.3.2. Direct tests

Direct tests don’t rely on noise spectra to place bounds on the CSL parameters, but use a
"brute-force" approach instead. The goal is to derive an explicit expression for equation
(2.24), i.e. to derive an expression for the decay rate Γ(x⃗, y⃗). To do so, we first simplify
the CSL term LCSLρ̂. Next, we choose appropriate basis kets |x⃗⟩ and |y⃗⟩ and project the
simplified Liouvillian onto this basis. This yields the desired decay rate Γ(x⃗, y⃗), which
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subsequently allows us to place bounds on the CSL parameters. As an example, consider
a system where the off-diagonal elements decay exponentially in time

⟨x⃗|ρt|y⃗⟩ = ⟨x⃗|ρ0|y⃗⟩e−DCSL(λ,rc)t||(x⃗−y⃗)|| (3.3)

Figure 3.1.: Exclusion plot for CSL parameters λ and rc from non-interferometric tests.
The coloured areas correspond to experimentally excluded regions. The
green-coloured regions are from cantilever-based experiments. The blue ar-
eas are obtained from gravitational wave detectors. The purple areas are
from optomechanical systems levitating in a linear Paul Trap and a mag-
netic trap. The orange area is from spontaneous X-ray emission tests. The
yellow area is from phonon excitation in the CUORE experiment. The brown
area is calculated from heating rates, and the red area is drawn from cold-
atom experiments. The theoretical values proposed by GRW and the ranges
proposed by Adler are shown as a black dot and black dots with bars that
indicate the estimated range, respectively
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3. Test of collapse models

Here, DCSL is a function of the collapse paramters λ and rc, and sets the strength of
the decay. Its explicit form will be given in a later section. If, after a time τ , there is
an interference pattern (the superposition hasn’t collapsed), the following relation must
hold:

DCSL(λ, rc)||(x⃗− y⃗)||τ ≪ 1 (3.4)

The approach to calculate exclusion zones is then as follows: We first find an explicit
expression for DCSL(λ, rc). This expression changes for different experimental setups,
and can only be calculated in closed form for a selected few setups. In a next step, the
above inequality is evaluated for each pair (λ, rc) in parameter space. Both steps are
shown in detail in the following sections.

3.4. Experimental setups

We present two experimental setups that may be used for direct CSL tests. This first
one, which we call the diamond configuration, was proposed by Lee et al. [17], and is
illustrated in Figure (3.2a). The core consists of two 0.25 mm thick diamonds that are
a distance d apart. Using an ultrashort laser pulse split by a beam-splitter, a single
phonon in a mode with frequency ω = 40∗109 s−1 is excited with probability Pe ≪ 1 via
a Stokes process. After the pump pulse, the entanglement is verified with a probe pulse

a The diamond setup. b The sapphire setup.

Figure 3.2.: Comparison of two experimental setups A: Entanglement of two phonon
modes in diamond. A pump pulse split by a mirror (BS1) hits two dia-
monds normal to their surface and excites a phonon via a Stokes process.
The detector DS detects the Stokes process, the detector DA confirms the
entanglement via detecting the higher-frequency Anti-Stokes photon Taken
from [25]. B: A HBAR on top of a slab of sapphire. The phonon volume is
plotted in inset B. It gets excited via piezoelectric coupling to the Transmon.
Taken from [26].

22



3.4. Experimental setups

emitted a time τ after the pump pulse. Note that τ must be smaller than the phonon
lifetime of γ−1 = 7 ∗ 10−12 s. Intuitively, the probe pulse maps the phonon state to a
photon state via an Anti-Stokes process. We summarize the most important parameters
of the experiment below:

1. Superposition lifetime τ = 350 ∗ 10−15s.

2. Phonon frequency ω = 40 ∗ 109 s−1

3. Diamond mass density ρ = 3.51 g/cm3

4. Molar mass M = 12.01 g/mol

5. The laser beam hits the diamond normal to its surface. The cross section of beam
and diamond is hence a cylinder, where the cylinder height is equal to the diamond
thickness d = 0.25 mm and the diameter is the beam width, R = 3.6µm. As such,
the effective phonon volume is roughly given by V = πR2 ∗ d.

As we consider a single mechanical mode of two diamonds, we may describe the entangled
state in terms of the Fock basis {|n⟩ ⊗ |m⟩}. Labelling the left and right diamond by L
and R, respectively, it can be shown [25] that the entangled state can be written as

|Ψ⟩ =
√

1

2
(|nL = 1, nR = 0⟩+ |nL = 0, nR = 1⟩) (3.5)

For the present discussion, we restrict ourselves to a single excitation (nL ≤ 1, nR ≤ 1),
such that the resulting Hilbert space has dimension d = 4. We want to re-create an
identical state using a different experimental setup, in order to get different parameters
(e.g. a longer superposition time). One possible setup yielding an identical state is il-
lustrated in Figure (3.2b). It employs two HBARs (high overtone bulk acoustic wave
resonators) fabricated using a slab of sapphire. We call this experiment the sapphire
setup. We briefly explain the setup below, with detailed information in [26], [27]: Piezo-
electric crystals are attached on top of the sapphires, which deform when placed in an
electric field. Here, the electric signal comes from a superconducting transmon qubit.
The vibration generated by periodic deformations in the piezo crystal is passed on to the
sapphire, which can store it as an acoustic standing wave, i.e. a phonon. If the HBAR
is cooled close to absolute zero, the high-frequency mechanical modes are in the ground
state, and it becomes possible to excite and control individual phonons. Compared to
the diamond setup, we have an identical state |Ψ⟩, but with different parameters listed
below:

1. Superposition lifetime τ = 50 ∗ 10−6s. The lifetime is hence much longer than for
the diamond experiment.

2. Phonon frequency ω = 6 ∗ 109 s−1. This is one order of magnitude lower than in
the previous experiment.
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3. Sapphire mass density ρ = 3.98 g/cm3, which is similar to diamond.

4. Molar mass M = 101.96 g/mol, which is one order of magnitude higher than for
diamonds.

5. The phonon volume is a cylinder, this time with height d = 0.4mm and radius
R = 12.5µm.

3.4.1. Phonon mass

The displacement of the atoms that make up the phonon is related to the zero-point fluc-
tuations (ZPF) of the given phonon mode. To determine the ZPF, we require knowledge
of the oscillator mass, which is not straightforward to determine. In the main refer-
ence paper [25] of this semester report, the authors reference private communication to
conclude that the oscillator mass m∗ is given by m∗ = 6u for the diamond experiment,
where u is the atomic mass unit (AMU). This is exactly half of the mass m = 12u of a
carbon atom, and is likely because they consider optical phonons, where the atoms per
unit cell counter-oscillate, such that the number of atoms contributing to the phonon is
halved. We question this reasoning and provide an alternative calculation. To do so, we
consider the effective phonon volume V as well as the number density of the oscillator
material (diamond or sapphire), denoted by n. From these values, we determine the
number N = nV of atoms contributing to the phonon. The phonon mass is then given
by m = mAN , where mA is the mass of a single atom (e.g. carbon in diamond). We
hence define

mPH = mA ∗ n ∗ V (3.6)

and use mPH instead of m∗ in our following calculations. For the two experimental setups
introduced above, we use the following values for mA and the number density n:

1. For diamonds, we have carbon mass mA = 12u, and number density n = 176.29
1027 m−3. This leads to mPH = 3.56 10−11 kg.

2. Since sapphire is a compound, we calculate the atom mass using its molar mass:
mA = Mmol

NA
, where NA is the Avogadro constant. This yields mA = 101.96u.

The number density can be calculated by using n ≈ ρ
mA

, giving n = 2.35 1028

m3. We check the formulas presented here by inserting the values for the diamond
experiment. Doing so, we get the identical values as in our reference paper [25],
confirming the valditiy of this approach. In summary, we have mPH = 7.83 10−10

kg for the sapphire setup.

We thus have an updated oscillator mass for each setup. To complete the analysis,
we also provide a value m∗ for the sapphire setup following the "wrong" approach as in
reference paper [25]. The main difference is that instead of optical phonons, we excite
longitudinal phonons in the sapphire. This leads to m∗ = 101.96u = mA, compared to
m∗ = 6u for the diamond setup.
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a 3D exclusion zone plot.
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Figure 3.3.: Visualization of parameter exclusion zones. A: Plotted is the numerical
value of Γ evaluated at different tuples (λ, rC) on a log-log scale. Here,
λ ∈ [10−4, 1010] (vertical basegrid axis) and rC ∈ [10−9, 10−1] (horizontal
basegrid axis). To evaluate inequality (3.9), we choose a cut-off c = 0.01.
The bowl-shaped plateau indicates the coordinate subspace for which the
inequality is invalid. B: 2D plot of the same setup, i.e. we look at plot (A)
form a bird’s eye view. The light gray area denotes the parameter subspace
which contradicts experimental results.

3.4.2. Relevance of CSL effects

We previously highlighted that the CSL amplification mechanism relies on center-of-mass
(COM) motion. However, in the experiments discussed here, the COM is always well
localized, such that is a priori unclear if CSL dynamics are involved at all. Considering
the superposition state |Ψ⟩ for the diamond setup, the phonon cannot be assigned to
either the left or right diamond. Hence, the relevant superposition of matter is within
each diamond (atoms at rest vs. atoms oscillating), not between the two diamonds. The
separation distance of the diamonds does thus not play a role at all when considering
CSL effects.

3.5. Updated exclusion zone plots

We will show in detail in Section (4) that the decay rate Γ(x⃗, y⃗) at a time τ is given by

Γ(x⃗, y⃗) = −2βτD∗
CSL(rc)(xZPF)

2λ (3.7)
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where β is a factor that depends on the type of phonon under consideration. Note that
we have

D∗
CSL(rc) ∗ λ = DCSL(rc, λ) (3.8)

i.e. we have linear scaling in the collapse rate λ. Upper bounds on both collapse param-
eters are obtained by solving the inequality

Γ(x⃗, y⃗) ≤ c (3.9)

where c is a constant much smaller than 1, c≪ 1, following the reasoning from equation
(3.4). This inequality is evaluated numerically using Mathematica. We undertake the
following steps to obtain exclusion zones:

1. We specify a parameter range for both λ and rc, such that we have a 2D parameter
grid. We then evaluate inequality (3.9) for each coordinate tuple (λ, rc) of the
parameter grid. If the inequality evaluates to True, λ and rc are valid parameters
that don’t violate any experimental results. If not, the tuple under consideration
is ruled out.

In Figure (3.3), we plot the numerical value of Γ(x⃗, y⃗) for each set of parameter coor-
dinates (λ, rc), where we have set a cut-off c = 0.01. The coordinate tuples (λ, rc) for
which the above evaluates to "False" are colored in Light Gray in Figure (3.3b). This
yields the exclusion zone. Next, we compare the exclusion zones for both experimental
setups. In addition, we compare the decay rate calculated using the correct value for the
oscillator mass, mPH, with the one in the reference paper [25] using m∗, such that we
have two exclusion zones for both setups. This yields four new exclusion zones, all of
which are illustrated in Figures (3.4b) and (3.5).

Interpretation

Naturally, we expect the bounds on the parameters placed using mPH to be smaller than
in [25] since the value of Γ(x⃗, y⃗) obtained when using the updated phonon mass is much
smaller. To quantify the difference, we note that Γ(x⃗, y⃗) = −2βτD∗

CSL(rc)(xZPF)
2 ∗λ has

the proportionality (cf. Chapter 4)

Γ ∝ mPH (3.10)

when using the updated oscillator mass, whereas it is proportional to

Γ ∝ m2
PH/m

∗ (3.11)

when using the wrong oscillator mass used in [25]. The factor γ = mPH/m
∗ quantifies

the difference in exclusion zones. For the diamond setup, we find γ ≈ 3.6∗10−15, whereas
for the sapphire setup we have γ ≈ 4.7 ∗ 10−15. As such, for both setups, the value of
the decay product Γ is about 15 orders of magnitude smaller in the correct approach
when compared to the calculation in [25] using m∗. Due to the linear scaling of Γ with
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λ, i.e. Γ ∝ λ, we expect the exclusion zones to be approximately identical in shape, but
displaced along the vertical (the λ) axis by γ. Intuitively speaking, λ has to make up the
15 orders of magnitude that we lose when using the updated oscillator mass.

Looking at the results, we do not obtain any new excluded paramter regions. This is
sensible since the superposition of matter is within each diamond, and the separation
distances involved are very small (on the order of xZPF). In addition, the superposition
time is very small as well, such that the value of the product Γ is negligible even though
the number of atoms that contribute to the phonon is large.

A second instructive comparison is between the sapphire setup and the diamond setup,
once using m∗ and once using mPH. For this, note that Γ is linearly proportional to the
superposition time

Γ(τ) ∝ τ (3.12)

Since we have τD
τS
≈ 10−8, we expect the exclusion zone for diamond to be displaced

along the λ axis by approximately 8 orders of magnitude compared to the sapphire one
using the same reasoning as above. The remainder can be attributed to differences in
phonon volume V and frequency ω. This is confirmed when looking at Figures (3.5) and

a Left b Right

Figure 3.4.: Visualization of parameter exclusion zones. A: Most recent exclusion zone
plot, described in detail in Section (3). Taken from [28]. B: Exclusion zone
plot for both the diamond (Dark Gray) and HBAR (Light Gray) experimen-
tal setups, obtained when following the "incorrect" calculation in [25]. A
log-log scale is used. The values of the parameters T,R,D, ω,mPH, and m∗

are given in Section (3.4). Confirming our remarks in the text, we find a or-
der of magnitude difference between diamonds and HBARs of about 10−10,
with the remainder attributed to differences in phonon volume (different ra-
dius and thickness). The Light gray area would indeed predict novel bounds
on the CSL parameters.
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3. Test of collapse models

(3.4b).

Figure 3.5.: Exclusion zone plot for both the diamond (Light Gray) and HBAR (Dark
Gray) experimental setups, obtained using the calculation presented here.
A log-log scale is used. The values of the parameters T,R,D, ω,mPH, and
m∗ are given in Section (3.4). We again find a order of magnitude difference
between diamonds and HBARs of about 10−10, similar to Figure (3.4b). The
different shapes are attributed to differences in phonon geometry (R, d). We
are into the positive regime for λ, and don’t obtain any new bounds.
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Chapter 4

Explicit calculation of reduction rate

In this section, we explicitly want to calculate the decay rate Γ(x⃗, y⃗). By doing so, we
provide closed-form expressions for DCSL(λ, rC), and simplify the CSL Liouvillian LCSLρ̂.
Following standard literature [13], [24], [23], we first linearize the mass density operator
M̂(x⃗) [25]

M̂(x⃗) =
∑
n

mne
−(x⃗−ˆ⃗xn)2/2r2c (4.1)

Note that the index n labels only nucleons and not electrons, as the mass of the latter
is negligible compared to the nucleon mass. The position operator ˆ⃗xn describes the
displacement of a single particle n from its equilibrium position. To linearize the mass
density operator, we note that the displacement of the atoms from their equilibrium
position is minimal, i.e. δx ≪ 1. This allows us to expand the position operator. We
denote the (classical) equilibrium position by x⃗

(0)
n,α, where the index α is necessary for

optical phonons and describes if the atom belongs the either the sublattice oscillating in
phase or out-of phase. This is illustrated in Figure (4.1). The displacement of a particle
due to a phonon may be described by a quadrature operator ˆ⃗xα:

ˆ⃗xα = xZPF(b̂+ b̂†) (4.2)

where b̂ and b̂† are the phonon creation and annihilation operators, respectively. Note
that there is no particle index n here as we employ the so-called rigid-body approximation
[13], and hence all particles assigned to sub-lattice α are displaced identically. Since we
consider only a single direction of excitation, simplifying the quadrature operator to
ˆ⃗xα = (0, 0, ẑα). We further note that for two counter-oscillating atoms labelled by a and
b that move at the same frequency, we have za = −zb, and as such

ẑL1 = −ẑL2 = q̂L (4.3)

which also holds for the index R. Combining all these assumptions, we write the position
operator ˆ⃗xn as:

ˆ⃗xn = x⃗(0)n,α + ˆ⃗xα ≈ x⃗(0)n,α + q̂ (4.4)

Using
∑

n =
∑

α

∑
n∈Aα

, this leads to

M̂(x⃗) =
∑
α

∑
n∈Aα

mne
−[x⃗−(x⃗

(0)
n,α+ˆ⃗xα)]2/2r2c (4.5)
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4. Explicit calculation of reduction rate

Figure 4.1.: Schematic representation of the displacements of carbon atoms in one dia-
mond. The two different colors represent the two different counter-oscillating
sublattices. Full colors denote the two sublattices at rest, while faded ones
represent the two sublattices at the maximum relative distance.

How do we relate this expression involving a discrete collection of microscopic nuclei to
the phonon geometry (the cylinder) outlined in Section (3.4)? Following [21], we assume
a constant, continuous mass distribution µ(r⃗) for both the diamond and the HBAR. With
phonon volume V , we then have

µ(r⃗) =

{
m
V , if r⃗ ∈ V
0, otherwise

where m is the sum of all individual nucleon masses in volume V that contribute to
the phonon. This assumption is valid if the dimensions of the phonon volume V exceed
the localization length, i.e. if R ≫ rC and d ≫ rC . Next, consider that the mass
of either sapphire or diamond is mainly concentrated in the nuclei located at x⃗(0)n,α, i.e.
its mass density is a discrete distribution of spheres of nuclear size. Since nuclei are
extremely small with respect to other distances involved in the collapse process, the
mass distribution can be considered as discrete. This approximation is often implicitly
assumed in the literature. For an in-depth discussion on the validity of this assumption,
see [29]. We can hence write

µ(r⃗)α =
m

V
=
∑
n

mnδ
(3)(r⃗ − x⃗(0)n,α) (4.6)

where the the index µ(r⃗)α reflects that we make the generalization "discrete → continu-
ous" independently for every atom lattice. We thus obtain a mass density operator than
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can be related to the material densities used in experiment via

M̂(x⃗) =
∑
α

∫
V
dr⃗µ(r⃗)αe

−(x⃗−ˆ⃗xα−r⃗)2/2r2c (4.7)

The final step in simplifying M̂ is to expand the exponential operator up to first order
in ˆ⃗xα, which is valid if ||ˆ⃗xα|| ≪ |x⃗|, |r|. For this purpose, we introduce the functional
g(ˆ⃗xα) = e−(x⃗−ˆ⃗xα−r⃗)2/2r2c and expand to first order, yielding

g(ˆ⃗xα) ≈ g(0) +∇g(ˆ⃗xα)|ˆ⃗xα=0
ˆ⃗xα (4.8)

We evaluate the second term containing the derivative:

∇g(ˆ⃗xα)|ˆ⃗xα=0
= exp

{
−(x⃗− r⃗)2/2r2c

}−2(x⃗− r⃗)
2r2c

∇(x⃗− ˆ⃗xα − r⃗)|ˆ⃗xα=0
(4.9)

Given that all ˆ⃗xs commute with each other, they can be treated as plain vector variables,
such that ∇(x⃗− ˆ⃗xα − r⃗)|ˆ⃗xα=0

= I and hence

exp
{
−(x⃗− ˆ⃗α− r⃗)2/2r2c

}
=

= exp
{
−(x⃗− r⃗)2/2r2c

}
− exp

{
−(x⃗− r⃗)2/2r2c

}(x⃗− r⃗)
r2c

ˆ⃗xα (4.10)

Inserting (4.10) into (4.7) gives

M̂(x⃗) =M0(x⃗) +
∑
α

∫
dr⃗

r2c
µ(r⃗)αe

(x⃗−r⃗)2/2r2c (x⃗− r⃗)ˆ⃗xα (4.11)

where we deliberately didn’t write out the first term as it doesn’t contain an operator
anymore, and hence the the double commutator in definition (2.23) vanishes. We thus
have our linearized description. In Appendix A, we show how inserting the linearized
mass density operator (4.11) into the CSL density term (2.23) leads a similar equation
as in the cantilever experiments (cf. Section (3)):

d

dt
ρt = −

i

ℏ
[H, ρt]−

∑
α

Dα
CSL[(ẑα)[(ẑα), ρt]] (4.12)

Here, the index α emphasizes that we might have different diffusion rates for different
atom lattices. As it turns out (and as also makes sense), the two lattices (for optical
phonons) have identical diffusion rates (they are symmetric after all). We thus use
Dα

CSL = DCSL for the remainder of the section. The closed-form expression for DCSL
(in position space) is provided in Appendix A as well, but is difficult to evaluate. We
are hence led to perform a similar approach (linearize M, simplify, write down DCSL)
in momentum space. This yields the same equation as (4.12), but with a different, and
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4. Explicit calculation of reduction rate

much more simple expression for DCSL:

DCSL =
λr3c

2m2
0π

3/2

∫
dk⃗e−r2ck

2 |µ(k⃗)|2k2z (4.13)

Here k are polar momentum variables. The detailed calculation that leads to (4.13) is
reported in Appendix B. It hence remains to calculate |µ(k⃗)| to obtain an expression for
DCSL, which is done in Appendix C. Finally, we get

DCSL(λ, rC) = λ
m2

d2m2
0

Γ⊥

(
R√
2rc

)(
1− e−d2/4r2c

)
(4.14)

Here, Γ(x) is given by (cf. Appendix C)

Γ⊥(x) =
2

x2

(
1− e−x2

[I0

(
R2

2r2c

)
+ I1

(
R2

2r2c

)
]

)
(4.15)

4.0.1. Density operator

In a next step, we write down equation (4.12) for both longitudinal (sapphire) and optical
(diamond) phonons. For the latter, we get using equation (4.3)

d

dt
ρt = −

i

ℏ
[H, ρt]− 2DCSL[q̂L[q̂L, ρt]]− 2DCSL[q̂R[q̂R, ρt]] (4.16)

whereas for the former, we obtain

d

dt
ρt = −

i

ℏ
[H, ρt]−DCSL[q̂L[q̂L, ρt]]−DCSL[q̂R[q̂R, ρt]] (4.17)

We find that, for optical phonons, the diffusion rate DCSL is amplified by a factor of
2, which simply reflects that we have two counter-oscillating atom lattices, each with
collapse rate DCSL. The rates DCSL themselves are different for both setups, of course.
We are thus able to give a value for the factor β introduced in equation (3.7): For optical
phonons, we have β = 2, whereas for acoustic phonons we get β = 1. Let’s appreciate for
a moment what we achieved: We have a simple equation that gives the time evolution
of the density operator, with an explicit form for DCSL. To calculate Γ(x⃗, y⃗), we need to
calculate this evolution in the position basis, i.e. we project on ⟨x⃗|.|y⃗⟩.

4.0.2. Position basis

What is the position basis here? Let us start with the most general case: For N particles,
we have the basis {

∣∣xL, xR〉}, with xL = {x⃗Li }Ni=1 being the set of the positions of particles
in the left diamond/sapphire, with x⃗Li = (xLi , y

L
i , z

L
i ). The index R refers to the right

diamond/sapphire. We next separate this into COM motion (denoted by ˆ⃗
XL

i ) and relative
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motion ˆ⃗rLi , such that
ˆ⃗xLi =

ˆ⃗
XL

i + ˆ⃗rLi (4.18)

In the setups presented here, the diamonds are at rest, such that the COM motion is
zero. The relative displacement is just the position quadrature operator x̂α defined in
equation (4.2). Using the notation from equation (4.3) for x̂α (remember, we just have
single direction of excitation), we obtain

ˆ⃗xLi = q̂L (4.19)

and similarly for the label R. The basis we want is thus the tensor product of quadrature
eigenstates {qL, qR}, i.e. we have

(q̂L ⊗ Id)
∣∣qL, qR〉 = qL

∣∣qL, qR〉 (4.20)

We can now make a simple approximation to estimate the CSL-induced decay of our
superposition state

|Ψ⟩ = 1√
2
(|0L, 1R⟩+ |1L, 0R⟩) (4.21)

Recall that the relevant superposition is within each diamond and entanglement doesn’t
play a role for CSL effects. The superposition is between a given lattice at rest (with
position ket |0L, 0R⟩) and between the lattice vibrating if one or more phonons are excited,
with corresponding ket

∣∣qL > 0, qR > 0
〉
. In simple terms, imagine that the atom lattice

is a massive lump, at the center of a 1D grid. Then the superposition is between a lump
at 0 (the lattice at rest) and between a lump at q (the lattice is displaced). We now
project equation (4.17) onto the quadrature basis, yielding

⟨0L, 0R| d
dt
ρ̂t|qL, qR⟩ − βDCSL⟨0L, 0R|[q̂L[q̂L, ρt]]|qL, qR⟩−

− βDCSL⟨0L, 0R|[q̂R[q̂R, ρt]]qL, qR⟩ (4.22)

We simplify the commutator and obtain

[q̂L[q̂L, ρt]] = q̂2Lρ̂− 2q̂Lρ̂q̂L + ρ̂q̂2L (4.23)

This, together with equation (4.20), yields

⟨0L, 0R| d
dt
ρ̂t|qL, qR⟩ = βDCSLq

LqR⟨0L, 0R| d
dt
ρ̂0|qL, qR⟩ (4.24)

The solution of this equation is a simple exponential decay law. The density operator at
time t in the position basis with initial operator ρ̂0 is hence

⟨0L, 0R|ρ̂t|qL, qR⟩ = ⟨0L, 0R|ρ̂0|qL, qR⟩e−βDCSLq
LqRt (4.25)
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4. Explicit calculation of reduction rate

which is the exponential decay law from Section (3.3.2). We conclude that

Γ(x⃗, y⃗)→ Γ(qL, qR) = −βDCSLq
LqRt (4.26)

What is the maximal decay rate that gives us the strongest possible bounds? Well, we
certainly choose the largest possible displacement (qL, qR). To estimate this displace-
ment, we calculate the variance of both quadrature operators. For a Fock state with n
phonons |n⟩, we find

⟨q̂2i ⟩ = (2n+ 1)x2ZPF (4.27)

giving an approximate maximal displacement of qLmax = xZPF
√
2n+ 1. Inserting this

maximal displacement for both quadratures into equation (4.25) gives a maximal decay
rate

Γ(qL, qR) = −βDCSLx
2
ZPF(2n+ 1)t (4.28)

For the setups presented here, we have one (delocalized) phonon, and hence get

Γ(qL, qR) = −βDCSLx
2
ZPFt (4.29)

whereas the decay rate given in equation (4.28) would be valid for NOON states with
phonon number N ≥ 2. This is just the result from [25]. In Appendix D, we report the
calculation for the Fock basis instead of the position basis, which might be useful for
further research.
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Chapter 5

Conclusion

The goal of this semester report was two-fold. We first gave an overview about quantum
collapse models, and highlighted the two most important models in particular: The GRW
model and the CSL model. We presented how collapse might be related to gravity, and
explained the most important assumptions behind CSL theory.

Secondly, we explicitly calculated exlcusion zones for the "new" constants of nature
in collapse theory, i.e. for the collapse rate λ and the localization length rc, using two
experimental setups. We compared our results against reference literature, in particular
against the calculations of Belli et al. [25]. We re-derived the calculations there, and
highlighted additional assumptions not mentioned in the reference paper. Most impor-
tantly, we presented a novel approach to calculate the phonon oscillator mass and used
this updated value to obtain new parameter exclusion zones that differ by 15 orders of
magnitude from the ones in the reference paper.

Confirming earlier literature, for the two setups presented, we do not obtain any new
exclusion zones, meaning that possible regions where collapse theory does not contradict
experimental evidence still exist. However, as of now, indirect tests of collapse theory
provide much stronger bounds than direct tests, hence limiting the usefulness of the
calculations presented here.
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Appendix A

A

This Appendix is devoted to derive equation (4.12). To do so, we insert the linearized
mass operator (4.11) into the CSL Liouvillian (2.23), yielding:

d

dt
ρt = −

i

ℏ
[H, ρt]−

− λ

2r3cπ
3/2m2

0

∑
α,α′

∫
dr⃗1

∫
dr⃗2µα(r⃗1)µα′(r⃗2)Iij(r⃗1, r⃗2)[(ˆ⃗xα)i, [(ˆ⃗xα′)j , ρt]] (A.1)

where the two indices α, α′ are due to M̂ appearing twice in the double commutator in
(2.23), meaning that we have two different mass distributions, and Ii,j is defined as

Iij(r⃗1, r⃗2) =
1

r2c

1

r2c

∫
dx⃗e−[(x⃗−r⃗1)2+(x⃗−r⃗2)2]/2r2c (x⃗− r⃗1)i(x⃗− r⃗2)j (A.2)

Here, the dot product is written using Einstein summation notation with indices i, j ∈
{1, 2, 3}. We want to bring this into the form of equation (4.12), which we write down
again below:

d

dt
ρt = −

i

ℏ
[H, ρt]−

∑
α

Dα
CSL[(ẑα)[(ẑα), ρt]] (A.3)

Defining a set of diffusion rates Dα,α′

CSL,ij as below almost does the job:

− λ

2r3cπ
3/2m2

0

∑
α,α′

∫
dr⃗1

∫
dr⃗2µα(r⃗1)µα′(r⃗2)Iij(r⃗1, r⃗2) =

=
∑
α,α′

∑
i,j=x,y,z

Dα,α′

CSL,ij (A.4)

except that we have to sort out the indices. We take a closer look at the left-hand side
of the above equation: The mass distributions µα, µα′ refer to different spatial regions
within the diamond or the sapphire, such that terms of the form

∫
dr⃗1
∫
dr⃗2µα(r⃗1), µα′(r⃗2)

vanish unless α = α′. We thus conclude∑
α,α′

→
∑
α

⇒ Dα,α′

CSL,ij → Dα
CSL,ij
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such that we finally have

Dα
CSL,ij =

λ

2r3cπ
3/2m2

0

∑
α

∫
dr⃗1

∫
dr⃗2µα(r⃗1)µα′(r⃗2)Iij(r⃗1, r⃗2) (A.5)

This is, in general, difficult to evaluate. However, as outlined in Section (3.4) we have
ˆ⃗xα = ẑα, such that the only nonzero integral Iij in equation (A.5) is Izz. Its calculation
is reported in [25], Appendix B. Here, we provide additional calculation to simplify the
understanding. Using u⃗ = x⃗− r⃗1, y⃗ = r⃗1 − r⃗2, (such that x⃗− r⃗2 = y⃗ + u⃗) we get

I33(r⃗1, r⃗2) = I33(y⃗) =
1

r4c

∫
du⃗e−[u⃗2+(y⃗+u⃗)2]/2r2c (u⃗)3(y⃗ + u⃗)3 (A.6)

Simplifying the exponent, this becomes

I33(r⃗1, r⃗2) =
e−y⃗2/2r2c

r4c

∫ ∏
i=1,2,3

duie
−[(ui+uiyi)]2ui/2r

2
c (u⃗)3(y⃗ + u⃗)3 (A.7)

Every other step is outlined in Appendix B of paper [25], giving

I33(r⃗1, r⃗2) =
π3/2

2rc
exp

{
−(r⃗1 − r⃗2)2

4r2c

}[
r3c −

(r⃗1 − r⃗2)23
4r2c

]
(A.8)

Inserting this into equation (A.5) gives a closed-form expression for DCSL. It is, however,
more convenient to calculate DCSL in momentum space, which is done in Appendix B.
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Appendix B

B

Following [21], we write M̂ as defined in equation (4.1) in momentum space

M̂(x⃗) =
∑
α

∑
n∈Aα

mne
−[x⃗−(x⃗

(0)
n,α+ˆ⃗xα)]2/2r2c =

=
∑
α

r3c
(2π)3/2

∫
dk⃗e−r2ck

2/2eik⃗(x⃗−
ˆ⃗xα)µα(k⃗) (B.1)

In the following, we will simplify this expression using similar methods as for the position
space derivation. First of all, note that we can rewrite the double commutator in (2.23)
as

LCSLρ̂ = − λ

2r3cπ
3/2m2

0

∫
dx⃗[M̂(x⃗), [M̂(x⃗), ρ̂t]] =

= − λ

r3cπ
3/2m2

0

∫
dx⃗

(
1

2
{M̂2(x⃗), ρ̂} − M̂(x⃗)ρ̂M̂(x⃗)

)
(B.2)

Inserting (B.1) into (B.2) gives

λ

r3cπ
3/2m2

0

r6c
(2π)3

∫
dx⃗
∑
α,α′

∫
dk⃗

∫
dk⃗′e−

r2ck
2

2rc e−
r2c (k

′)2
2rc µ(k⃗)αµ(k⃗′)α′eix⃗(k⃗−k⃗′)∗

∗
(
e−ik⃗ ˆ⃗xαρe−ik⃗ ˆ⃗xα′ − 1

2
{e−ik⃗ ˆ⃗xαe−ik⃗′ ˆ⃗xα′ , ρ}

)
(B.3)

which, using
∫
dx⃗eix⃗(k⃗−k⃗′) = δ(3)(k⃗ − k⃗′)(2π)3/2 and [ˆ⃗xα, ˆ⃗xα′ ] = 0, evaluates to

λr3c
m2

0π
3/2

∑
α

∫
dk⃗e−r2ck

2 |µ(k⃗)α|2(e−ik⃗ ˆ⃗xαρe−ik⃗ ˆ⃗xα′ − ρ) (B.4)
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Expanding the left term in the bracket to second order and using ˆ⃗xα = ẑα gives

e−ikzzρeikzz =

(
Id− ikzz −

k2zz
2

2
+ ...

)
ρ

(
Id + ikzz −

k2zz
2

2

)
=

= ρ− ikzzρ+ ikzρz +
k2z
2

(
z2ρ− 2zρz + ρz2

)
=

= ρ− ikz[z, ρ] +
k2z
2
[z, [z, ρ]] (B.5)

Inserting this into (B.3) gives

LCSLρ̂ =
λr3c

m2
0π

3/2

∑
α

∫
dk⃗e−r2ck

2 |µ(k⃗)|2k
2
z

2
[ẑ, [ẑ, ρ̂]] (B.6)

such that we find, identical to the expression for position space

d

dt
ρ̂t = −

i

ℏ
[Ĥ, ρ̂]−Dα

CSL

∑
α

[ẑα, [ẑα, ρ̂]] (B.7)

with

Dα
CSL =

λr3c
2m2

0π
3/2

∫
dk⃗e−r2ck

2 |µ(k⃗)|2k2z (B.8)

In the Appendix C, we will evaluate expression (B.8).
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Appendix C

C

By using Mathematica, we will calculate the following two expressions:

• First, the Fourier-transformed mass density µ(k⃗)

• Secondly, the integral in equation (B.8) itself.

Recall that µ(r⃗) is defined as (cf. Section (3.4)) as

µ(r⃗) =

{
m
V , if r⃗ ∈ V
0, otherwise

which yields

µ(k⃗) =

∫ ∞

−∞
dr⃗µ(r⃗)e−ik⃗r⃗ =

m

V

∫
V
dV e−ik⃗r⃗

=
m

πR2d

∫ R

0
rdr

∫ 2π

0
dϕ

∫ d/2

−d/2
e−ikzze−i(kxx+kyy)dz =

=
m

πR2d

∫ R

0
rdr

∫ 2π

0
dϕ

∫ d/2

−d/2
e−ikzze−ikrr cosϕdz =

=
m

πR2d

4πR

krkz
sin

dkz
2
J1(krR) =

2m

Rkr
J1(krR)

sin dkz
2

dkz
2

(C.1)

where we solved the integral in polar coordinates, employed the Hankel transform, and
used kr =

√
k2x + k2y. Defining now similarly

√
k2x + k2y = |k⊥|, we insert (C.1) into (B.8)
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and obtain

DCSL =
λr3c

2m2
0π

3/2

∫
dk⃗e−r2ck

2 |µ(k⃗)|2k2z =

=
λr3c

2m2
0π

3/2

4m2

R2

∫
dkzk

2
z

(
sin dkz

2
dkz
2

)2

e−r2ck
2
z

∫
dkxdky

|J1(|k⊥|R)|2

|k⊥|2
e−r2c |k⊥|2 =

=
λr3c

2m2
0π

3/2

4m2

R2

2
√
π

d2rc

(
1− e−d2/4r2c

)∫
dkxdky

|J1(|k⊥|R)|2

|k⊥|2
e−r2c |k⊥|2 =

=
λr3c

2m2
0π

3/2

4m2

R2

2
√
π

d2rc

(
1− e−d2/4r2c

)
2π

∫ ∞

0
drr
|J1(rR)|2

r2
e−r2cr

2
=

=
λr3c

2m2
0π

3/2

4m2

R2

2π1/2

d2rc

(
1− e−d2/4r2c

)
∗

∗ 2π
(
1

2
− 1

2
e−R2/2r2c [I0

(
R2

2r2c

)
+ I1

(
R2

2r2c

)
]

)
=

= λ

(
1− e−R2/2r2c [I0

(
R2

2r2c

)
+ I1

(
R2

2r2c

)
]

)(
1− e−d2/4r2c

) 4r2cm
2

R2m2
0d

2
=

= λ
m2

d2m2
0

Γ⊥

(
R√
2rc

)(
1− e−d2/4r2c

)
(C.2)

where

Γ⊥(x) =
2

x2

(
1− e−x2

[I0

(
R2

2r2c

)
+ I1

(
R2

2r2c

)
]

)
(C.3)

Using m = 12Nm0, this is equation (22) from [25]. We conclude that for a cylindrical
geometry with uniform mass distribution, the diffusion rate DCSL is given by

DCSL = λ
m2

d2m2
0

Γ⊥

(
R√
2rc

)(
1− e−d2/4r2c

)
(C.4)
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D

For completeness purposes, we include the Fock basis calculation here. We defined the
initial density operator ρ0 in Section (3.4) as

ρ0 =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


This is in the Fock basis. We calculate the time evolution for the 16 elements in the fol-
lowing section. The simplified differential equation for ρt is given in equation (D.7), and
the solution presented in a later section of this Appendix. More generelly speaking, we
have basis elements {

∣∣nR, nL〉}, where n(i), i ∈ {L,R} denotes the number of excitations
in the the left or right diamond/sapphire. Depending on the experiment, n ∈ {0, 1} (as
above) or {0, k}, k ≤ N . We want to project the density operator evolution equation
(4.17) onto the above basis. To do so, we use equation (4.2), make a change of notation
â↔ b̂, and let the creation and annihilation operators act on the Fock states as

âL ⊗ IR
∣∣nL, nR〉 = √n ∣∣(n− 1)L, nR

〉
(D.1)

â† ⊗ IR
∣∣nL, nR〉 = √n+ 1

∣∣(n+ 1)L, nR
〉

(D.2)

Writing down the quadrature operator in terms of annihilation and creation operators, we
obtain the following expression for the double commutator [q̂J [q̂J , ρt]], where J ∈ {L,R}:

[q̂L[q̂L, ρt]] =
x2ZPF
2

(
[â, [â, ρ̂]] + [â†, [â, ρ̂]][â, [â†, ρ̂]] + [â†, [â†, ρ̂]]

)
=

=
x2ZPF
2

(
â2ρ̂+ ρ̂â2 + (â†)2ρ̂+ ρ̂(â†)2

)
+

+
x2ZPF
2

(
−2âρ̂â− 2â†ρ̂â† − 2âρ̂â† − 2â†ρ̂â

)
+

+
x2ZPF
2

(
â†âρ̂+ ρ̂ââ† + ââ†ρ̂+ ρ̂â†â

)
(D.3)

where we the first row above contains second-order terms that vanish for N ≤ 1 and the
second row yields the off-diagonal coupling terms. The third line is further simplified by
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using ââ† = 1 + â†â, and by defining n̂ = â†â. We get

x2ZPF
2

(
â†âρ̂+ ρ̂ââ† + ââ†ρ̂+ ρ̂â†â

)
= x2ZPF (n̂ρ̂+ ρ̂n̂+ ρ̂) (D.4)

Doing now the projection, we obtain

⟨nRi nLj |[q̂L[q̂L, ρt]]|nRk nLl ⟩ =
x2ZPF
2

√
nLj + 1

√
nLj + 2⟨nRi , nLj + 2|ρ|nRk , nLl ⟩+

+
x2ZPF
2

√
nLl + 1

√
nLl + 2⟨nRi , nLj |ρ|nRk , nLl + 2⟩+

+
x2ZPF
2

√
nLj − 1

√
nLj ⟨n

R
i , n

L
j − 2|ρ|nRk , nLl ⟩

+
x2ZPF
2

√
nLl − 1

√
nLl ⟨n

R
i , n

L
j |ρ|nRk , nLl − 2⟩−

− x2ZPF

√
nLj + 1

√
nLl ⟨n

R
i , n

L
j + 1|ρ|nRk , nLl − 1⟩−

− x2ZPF

√
nLj

√
nLl + 1⟨nRi , nLj − 1|ρ|nRk , nLl + 1⟩−

− x2ZPF

√
nLj + 1

√
nLl + 1⟨nRi , nLj + 1|ρ|nRk , nLl + 1⟩−

− x2ZPF

√
nLj

√
nLl ⟨n

R
i , n

L
j − 1|ρ|nRk , nLl − 1⟩+

+ x2ZPF(n
L
j + nLl + 1)⟨nRi , nLj |ρ|nRk , nLl ⟩ (D.5)

An identical derivation holds for the commutator with q̂R instead of q̂L, with replacements
nLj ⇐⇒ nRi and nLl ⇐⇒ nRk . Equation (D.5) is valid for any nj , nl, nk, ni ∈ N . Here,
we restrict ourselves to the set nj , nl, nk, ni ∈ {0, 1} such that we have a 4-dimensional
basis and a total of 4x4 coupled equations ρab, a, b ∈ {1, 2, 3, 4}. We provide an example
using the diagonal element ρ22, i.e. we evaluate (4.17) for nLj = nLl = 0, nRi = nRk = 1 by
inserting the simplified commutator from equation (D.5). This yields

⟨0, 1| d
dt
ρ|0, 1⟩ = ⟨0, 1|

(
− i
ℏ
[H, ρt]− 2DCSL[q̂L[q̂L, ρt]]− 2DCSL[q̂R[q̂R, ρt]]

)
|0, 1⟩

= − i
ℏ
⟨0, 1|[H, ρt]|0, 1⟩ − 2DCSL ∗

(
−x2ZPF⟨1, 1|ρ|1, 1⟩+ x2ZPF⟨0, 1|ρ|0, 1⟩

)
−

− 2DCSL ∗
(
−x2ZPF⟨0, 0|ρ|0, 0⟩+ 3x2ZPF⟨0, 1|ρ|0, 1⟩

)
=

= − i
ℏ
⟨0, 1|[H, ρt]|0, 1⟩+ 2DCSLx

2
ZPF(ρ44 + ρ11 − 2ρ22) (D.6)

which agrees with the expression given in equation (17) of [25]. In a similar manner, the
remaining matrix elements ρab with a, b ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} can be evaluated,
yielding
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d

dt
ρab = −

i

ℏ
⟨a|[H, ρt]|b⟩ − 2DCSLx

2
ZPF(Γ[ρ])ab (D.7)

with

Γ[ρ] =


2ρ11 − ρ22 − ρ33 2ρ12 − ρ21 − ρ34 2ρ13 − ρ24 − ρ31 2ρ14 − ρ23 − ρ32
2ρ21 − ρ12 − ρ43 2ρ22 − ρ11 − ρ44 2ρ23 − ρ41 − ρ14 2ρ24 − ρ13 − ρ42
2ρ31 − ρ42 − ρ13 2ρ32 − ρ41 − ρ14 2ρ33 − ρ44 − ρ11 2ρ34 − ρ43 − ρ12
2ρ41 − ρ32 − ρ23 2ρ42 − ρ31 − ρ24 2ρ43 − ρ34 − ρ21 2ρ44 − ρ33 − ρ22


Solutions to the coupled equations

To solve equation (D.7), we first do a Laplace-Transform of the 16 equations ρab, solve,
and then transform back to the time domain. Of the resulting solutions, 8 are trivial
(i.e. ρab = 0), 4 are imaginary and the remaining 4 are independent of ω. A complete
Mathematica script, together with the solutions, is provided as well. The trivial solutions
are ρ12, ρ21, ρ13, ρ31, ρ24, ρ42, ρ34, ρ43. The diagonal elements are real and given as

ρ11 = ρ44 =
1

4

(
1− e−2Λt

)
(D.8)

ρ22 = ρ33 =
1

4

(
1 + e−2Λt

)
(D.9)

with Λ = 4DCSLx
2
ZPF. It is obvious that ρii = 1

4 in the limit t → ∞, as expected for a
fully mixed state. For the imaginary solutions, we define Ω2 = Λ2 − 4ω2 and obtain

ρ23 = ρ32 = e−Λt (Λ
2 cosh(Ωt)− 4ω2)

2Ω2
(D.10)

ρ14 =
Λe−Λt

2Ω2
(2iω cosh(Ωt)− 2iω +Ωsinh(Ωt)) (D.11)

ρ41 =
Λe−Λt

2Ω2
(−2iω cosh(Ωt) + 2iω +Ωsinh(Ωt)) (D.12)

For the non-zero off-diagonal terms, we observe the following limits:

1. For t→∞: ρ14 = ρ41 = ρ32 = ρ23 = 0

2. For t ≪ 1: Using cosh(Ωt) ≈ 1 + O(t2) and sinh(Ωt) ≈ Ωt + O(t3), we find
ρ14 = ρ41 =

Λ
2 e

−Λt(0 + 2) = Λe−Λt, as well as ρ32 = e−Λt

2 (Ω
2

Ω2 ) =
1
2e

−Λt

Figure (D.1) illustrates the evolution of the off-diagonal for given values of Λ and ω. In
the long-time limit, we have the fully mixed state

ρ0 =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 t→∞−−−→ ρt =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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Figure D.1.: Plotted is a toy model of the time evolution of the imaginary and real parts
of the non-zero off-diagonal terms ρij . To illustrate the behavior of the
various terms, we use values ω = 1 s−1 and Λ = 1. The off-diagonals decay
to zero, with ρ32 decaying from its inital value 1

2 as expected.

Solving the coupled equations and neglecting H

In the previous section, we observed that the coherences ρij decay to zero within a given
timescale. This decay is both due to the coherent Hamiltonian evolution ∝ [Ĥ, ρ̂] and
due to the CSL term ∝ ΛΓ[ρ]. We now want to estimate the contribution of the CSL
term to the total decay in the Fock basis. One possible approach to do so is to neglect
the the coherent evolution and solve the resulting equation

d

dt
ρab = −2DCSLx

2
ZPF(Γ[ρ])ab (D.13)

with Γ[ρ] given as below equation (120). This system of coupled equations can be solved
via a Laplace transform and yields 8 trivial solutions, as well as 8 real solutions. As
expected, the evolution of the diagonal terms doesn’t change since their time evolution
is decoupled from the off-diagonal elements. The remaining 4 solutions, however, change
and yield:

ρ14 = ρ41 =
1

4

(
1− e−2Λt

)
(D.14)

ρ32 = ρ23 =
1

4

(
1 + e−2Λt

)
(D.15)

46



High-NOON

How does this analysis look like for higher-order NOON states? We provide a tentative
calculation as an outlook, but couldn’t complete the calculation due to time constraints.
For a high-NOON state, we have the initial state |Ψ⟩ = 1√

2
(|0, N⟩+ |N, 0⟩). The com-

putational complexity to solve resulting system of equations increases quadratically, and
the resulting system of coupled equations can only be solved numerically. We provide an
example for the second-order NOON state given as

|Φ2⟩ =
1√
2
(|2, 0⟩+ |0, 2⟩) (D.16)

Restricting ourselves to a maximum number of two excitations per phonon mode, we
obtain a 32 = 9 dimensional basis set {|i, j⟩}, i, j ∈ 0, 1, 2. As such, we have 9x9 = 81
matrix elements ρmn, m,n ∈ {1, ..., 9}, where we follow the same naming convention as
in the 4-dimensional case above. To estimate the order of magnitude of the CSL-induced
decay, we have to determine

1. The initial density operator ρ0 projected onto the above Fock basis, yielding a 9x9
matrix.

2. The CSL matrix Γ[ρ], which is obtained by following the same procedure as in
equation (D.5). We will provide an example for this below.

3. The projection of the commutator [Ĥ, ρ].

To demonstrate on how to obtain the CSL matrix Γ[ρ], we calculate d
dtρ61 =

d
dt⟨12|ρ̂t|00⟩.

We thus obtain

⟨1, 2| d
dt
ρ|0, 0⟩ = ⟨1, 2|

(
− i
ℏ
[H, ρt]− 2η[q̂L[q̂L, ρt]]− 2η[q̂R[q̂R, ρt]]

)
|0, 0⟩ (D.17)

We evaluate the CSL term by employing equation (D.5), and use that by (our) definition
nRi = 1, nLj = 2, nRk = nLl = 0. This yields (using a change of notation DCSL = η)

⟨1, 2|[q̂L[q̂L, ρt]]|0, 0⟩ =

= 0 +
x2ZPF
2

√
2⟨1, 2|ρ|0, 2⟩+

x2ZPF
2

√
2⟨1, 0|ρ|0, 0⟩+ 0−

− 0− x2ZPF
√
2⟨1, 1|ρ|0, 1⟩ − 0− 0 + x2ZPF(2 + 0 + 1)⟨1, 2|ρ|0, 0⟩ =

=
x2ZPF√

2
(⟨1, 2|ρ|0, 2⟩+ ⟨1, 0|ρ|0, 0⟩)−

−
√
2(x2ZPF⟨1, 1|ρ|0, 1⟩+ 3(∆z)2⟨1, 2|ρ|0, 0⟩ =

=
x2ZPF√

2
(ρ63 + ρ41)−

√
2(∆z)2ρ52 + 3x2ZPFρ61 (D.18)

where we employed the naming convention in the last step.
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