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Abstract

Hybrid quantum systems consisting of a superconducting qubit and a high-overtone
bulk acoustic resonator are a promising platform for quantum information process-
ing. Due to the spectral properties of the acoustic resonator, a single superconduct-
ing qubit can couple to a multitude of phonon modes. By encoding qubit states
in these modes, a compact and controllable multi-qubit system is achieved. As a
proof of principle of quantum information encoding and control, we want to generate
and tomographically measure maximally entangled states between multiple phonon
modes. This semester thesis tackles the techniques used to generate and measure
multi-phonon entangled states. Specifically, pulse sequences for the generation of ar-
bitrary W-states and state reconstruction via quantum tomography were developed
and tested in simulations.
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2 THE SYSTEM Michael Eichenberger

1 Overview

This document is intended to be a short and concise summary of the work conducted during
the semester thesis. It is written with the intention that people in the Hybrid Quantum
systems group can reconstruct my work. It is designed as a report much more than a
thesis.

All of the data obtained during the semester project, as well as the written code, can be
found on the group drive under 10 - Personal Folders/Michael/Phonon Entanglement and
*/Control Gate.

Project Overview: The main goal of my semester project was to design and test a
sequence to generate and measure multi-phonon entanglement in the ℏBAR device. For
this, pulse-level simulations with the QIP processor framework from QuTip were carried
out. The simulation environment can be found on gitlab: hyqu simulator.

I managed to design and test (simulation) sequences that generate arbitrary sized (maxi-
mally entangled) W-states and measure the qubit states via multi-qubit tomography (quan-
tum state tomography for the qubit-like subspaces of the phonon modes). The new se-
quences were then included in the hyqu simulator framework.

As a next step, I tried to assess the robustness of the new protocols by testing them for
various device parameter sets. Additionally, I optimized the qubit π-pulse sequence and the
SWAP-gate sequence to maximize the fidelity of the entanglement protocols. The carried
out simulations show that the main limiting factor are the coherence times of the current
device. For high-coherence settings (T1 > 100µs), properties such as the envelopes of the
control pulses and the coupling to non-resonant phonon modes become relevant.

Lastly, after analyzing and optimizing the entanglement sequences, I started looking into
the realization of an entangling gate between two phonon modes. A controlled phonon-
phonon gate such as the CNOT- or CPHASE-gate is necessary to realize arbitrary quantum
circuits on the ℏBAR platform.

2 The System

We model the qubit - HBAR system by considering the following hamiltonian

Ĥ/ℏ = ωq(t)â†â+
1

2
αâ†â†ââ+

n∑
k=1

ωp
k b̂

†
kb̂k+

n∑
k=1

gk

(
b̂k + b̂†k

) (
â+ â†

)
+Ωcos (ωq(t)t+ δ(t))

(
â+ â†

)
(1)

where ωq is the tunable qubit-frequency, δ a tunable phase for the qubit drive, â the qubit
annihilation operator, b̂k the annihilation operator and ωp

k the frequency of the k-th phonon
mode, α the anharmonicity of the (transmon) qubit, gk the coupling between the qubit

HyQu - Hybrid Quantum Systems 3
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2 THE SYSTEM Michael Eichenberger

(a) (b)

Figure 1: (a) Sketch of the ℏBAR device consisting of a transmon qubit and a high overtone
bulk acoustic resonator (HBAR). The coupling between qubit and HBAR is realized via
the piezoelectric effect [1]. (b) shows the phonon modes considered for the simulations:
Four successive Laguerrre-Gaussian (0,0) modes. qubit rest indicates the default frequency
of the qubit when not tuned for an interaction process.

and the k-th phonon mode and lastly Ω the strength of the external drive (applied to the
qubit). Additionally to this hamiltonian, the decay- and decoherence times for both qubit
(T q

1 , T
q
2 ) and phonon modes (T p,k

1 , T p,k
2 ) are considered. Figure 1 shows a sketch of the

actual device and the phonon modes considered.

2.1 Simulation Parameters

For the simulations, a realistic parameter set obtained from the actual device were used.
This parameter set is denoted hero sample parameters. The name hero sample originates
from this specific device sample having superior properties compared to the other samples
(it is our current hero). The following table shows all the relevant parameter values:

Figure 2: hero sample parameters. This parameter set was used for simulations if not
stated differently.

In the carried out simulations two terms are often used: T1 limited scaling and hero sample
scaling. I used these terms to describe the process where the system parameters are swept,
but the relation between them is held constant. Specifically, the two terms mean

HyQu - Hybrid Quantum Systems 4



2 THE SYSTEM Michael Eichenberger

Figure 3: SWAP interaction between qubit and the k-th phonon mode.

T1 limited scaling T p
1 = 7.7T q

1 T q
2 ≈ 2T q

1 T p
2 ≈ 2T p

1

hero sample scaling T p
1 = 7.7T q

1 T q
2 = 1.5T q

1 T p
2 = 10.4T q

1

Note that for the simulation, the T2 times must be chosen strictly smaller than 2T1, since
else the QIP processor runs into zero division. For the simulations I chose T2 = 2·0.9999T1.

2.2 iSWAP Gate and Generalization

Assume that the qubit frequency ωq is tuned on resonance with the k-th phonon mode. If
the phonon FSR is sufficiently large, we can neglect the coupling between the qubit and
off-resonant phonons and the hamiltonian reduces to the simple beamsplitter interaction

H ≈ gk(a
†bk + ab†k). (2)

We can thus just consider the system composed of the qubit and the k-th phonon mode.
Figure 3 shows a sketch of the qubit-phonon interaction.

If we evolve the system under this hamiltonian, we achieve the generalized SWAP gate:

Ugswap = e−iĤt =


1 0 0 0
0 cos(gkt) −i sin(gkt) 0
0 −i sin(gkt) cos(gkt) 0
0 0 0 1

 . (3)

This unitary essentially describes Rabi-oscillations between the qubit and the k-th phonon
mode. By setting the interaction times t to the values tiSWAP = π/(2gk) and t√iSWAP =

π/(4gk) we can realize the iSWAP and the
√
iSWAP gate:

HyQu - Hybrid Quantum Systems 5



3 PHONON ENTANGLEMENT Michael Eichenberger

iSWAP =


1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

 √
iSWAP =

1√
2


1 0 0 0
0 1 −i 0
0 −i 1 0
0 0 0 1

 (4)

The generalized SWAP gate Ugswap is the main component of both the entanglement gen-
eration sequence and the phonon tomography.

3 Phonon Entanglement

For pure-state quantum mechanics a state on a bipartite Hilbert space HA ⊗ HB is con-
sidered entangled if it is not separable, where separability is defined as [2]

|ψ⟩ ∈ HA ⊗HB is separable ⇐⇒ |ψ⟩ = |ϕA⟩ ⊗ |ϕB⟩ =: |Φ⟩. (5)

Thus a pure state is separable if it can be represented as a single product state. For mixed
states, the condition for separability generalizes to

ρ is separable ⇐⇒ ρ =
∑
i

pi|Φi⟩⟨Φi|
∑
i

pi = 1, (6)

where ρ is the density matrix of the quantum state and ∀i : |Φi⟩ are product states. This
means that if we take mixed states into account, an entangled state cannot be represented as
a statistical mixture of product states. This definition still holds for multipartite systems,
if we group the full system partition into two groups

∃S : H =
⊗
i

Hi =

(⊗
m∈S

Hm

)
⊗

(⊗
n̸∈S

Hn

)
≡ HA ⊗HB, (7)

where S ⊂ {1, . . . , N} is a subset of system parts. Hence, for the multipartite system
entanglement means that the state is entangled in respect to at least one bipartition of
the full system. Maximal multipartite entanglement then would imply that for all subsets
S there is residual bipartite entanglement. Unfortunately, this definition is rather elusive
and the categorization of entanglement in multipartite quantum systems is much richer
than just the embedding of bipartite entanglement [3].

In order to asses the entanglement of a system, we now want to be able to do two things:
(1) Detect if the state is indeed entangled [4] and (2) quantify the entanglement [2]. For
multipartite systems, designing quantities that serve one of these tasks is highly non-trivial
and an active field of research [5–7]. Recently, a very general entanglement criterion for
multipartite systems with discrete and continuous variables has been constructed using
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3 PHONON ENTANGLEMENT Michael Eichenberger

entanglement witnesses [8, 9]. However, this construction comes with the cost of increased
computational complexity.

For the entangled phonon-states analyzed in this work, I used the following construction
to quantify the entanglement.

3.1 N-Negativity: Entanglement Measure for Phonon-States

We want to create a measure of entanglement which is applicable to an N -partite system.
For this, we use the well-established negativity N [10] defined for bipartite systems as

N (ρ,A) =
1

2

(
||ρTA||1 − 1

)
, (8)

where || · ||1 is the Schatten-1 norm and ρTA is the partial transpose in respect to subsystem
A. The negativity N vanishes for separable states and does not increase under local
operations and classical communication (LOCC), thus it is an entanglement monotone (also
for mixed states) [10]. This can now be extended to the multipartite-space by calculating
N for all possible bipartitions of the full space and averaging over the respective results.
Note that since the negativity is proper a measure of entanglement, the average of all
bipartitions is still a measure of entanglement [2]. For a composite system H =

⊗N
i=1Hi

the N -partite negativity, from now on called N-negativity, can thus be calculated as

NN(ρ) =
1

2N − 2

∑
∅≠S⊊{1,...,N}

N

(
ρ,
⊗
i∈S

Hi

)
, (9)

where S runs over all possible subsets of {1, . . . , N} except of the empty set ∅ and the
full set {1, . . . , N}. In theory, only subsets with ⌊N/2⌋ elements need to be considered
(because for H = A⊗ B : N (ρ,A) = N (ρ,B)). For simplicity in the calculation all terms
are considered, since they average out and thus do not change the obtained value.

3.2 The W-state

By general swap gate Ugswap(t) between the qubit and different phonon modes 1, . . . N an
N-dimensional W-state can be generated. An ideal W-state has the form

|W ⟩N =
1√
N

N−1∑
k=0

|(2k)2⟩ (10)

,

where the number in the kets indicates a bit-string (binary representation of the number),
e.g. for |W ⟩3:

HyQu - Hybrid Quantum Systems 7



3 PHONON ENTANGLEMENT Michael Eichenberger

Figure 4: Generation sequence for the N -Phonon W-state. Note that with the last in-
teraction, all the excitation from the qubit is deposited in the phonon modes, creating a
W-state among the phonon modes.

|W ⟩3 =
1√
3
(|001⟩+ |010⟩+ |100⟩) = 1

3
(|(20)2⟩+ |(21)2⟩+ |(22)2⟩). (11)

The achievable state in a real experiment has additional relative phases, because all the
phonon modes rotate at a different frequency.

|W ⟩realN =
1√
N

N−1∑
k=0

eϕk |(2k)2⟩ (12)

3.3 Entanglement Generation Sequence

The W-state is generated by first applying a π-Pulse to the qubit and then swapping the
excitation to the N phonon modes. The goal here is to choose the interaction time tk for
the k-th phonon mode such that exactly the a fraction of 1/

√
N (amplitude) is swapped to

the phonon mode. This condition can be calculated for each step, leading to the following
expression for the k-th interaction time

tk =
1

gk
arcsin

(
1√

N + 1− k

)
k ∈ {1, . . . , N}. (13)

The total sequence thus contains of a qubit π-pulse and N qubit-phonon interactions with
times tk. Figure 4 shows a sketch of the sequence.

Sequence Time Tgen

By summing up the necessary swap gate times tk for the entire W-state generation sequence
we can find the total process time as

HyQu - Hybrid Quantum Systems 8



4 PHONON TOMOGRAPHY Michael Eichenberger

Tgen = Tπ +
N∑
k=1

tk =
4

Ω
+

N∑
k=1

1

gk
arcsin

(
1√

N + 1− k

)
(14)

.

We can find an upper bound for the generation time (see Appendix A)

Tges < (0.5 + 1.2
√
N − 1) µs (15)

where N is the number of entangled phonon modes. Therefore the entire process scales
with O(

√
N). Figure 5 shows the sequence times including the derived upper bounds.

Figure 5: Generation sequence time as a function of the entanglement number N . Integral
approx. indicates a second approximation method for the generation sequence time which
yields an even better estimate (see Appendix A for details).

4 Phonon Tomography

We use quantum state tomography to reconstruct the density matrix of the multi-phonon
system. Since our code space only includes qubit-like encodings in the |0⟩ and |1⟩ Fock
states of the harmonic oscillator, we want to reconstruct the density matrix only of that
(multi-qubit-like) subspace

H =
N⊗
k=1

C2 ∼= C2N . (16)

The desired density matrix ρ̂ then is a positive, trace one hermitian operator on this Hilbert
space

HyQu - Hybrid Quantum Systems 9



4 PHONON TOMOGRAPHY Michael Eichenberger

ρ̂ ∈ End

(
N⊗
k=1

C2

)
, ρ̂† = ρ̂, Tr[ρ̂] = 1, ρ̂ ≥ 0. (17)

The main idea now is to use Linear Algebra to write ρ̂ as the linear combination of a
basis of {A ∈ End(H)|A† = A} we can measure in the experiment. For our purposes, the
basis of choice is the tensor-product pauli basis, consisting of all possible tensor-product
combinations of the Pauli operators σ̂x, σ̂y, σ̂z plus the identity matrix I. The individual
basis vectors are then given by

k-th basis vector: Σ̂k =
⊗
lk

σ̂lk σ̂lk ∈ {σ̂x, σ̂y, σ̂z, I}. (18)

Here lk iterates over all possible combinations of the Paulis plus identity. The set {Σ̂k}k
is then a basis of the full space, since the Paulis plus identity are a basis of the hermitian
single-qubit operators. In total there are 4N basis vectors for given system size N . We now
note that the chosen basis is orthonormal for the trace scalar product on the full space.
For Â =

⊗N
k=1 âk and B̂ =

⊗N
k=1 b̂k it is defined as

⟨A,B⟩ =
N∏
k=1

⟨âk, b̂k⟩ =
1

2N

N∏
k=1

Tr
[
â†kb̂k

]
(19)

Therefore we can describe the desired density matrix ρ̂ fully by the coefficients rk of the
expansion in the Pauli basis

ρ̂ =
1

2N

∑
k

rkΣ̂k rk = Tr
[
Σ̂kρ̂

]
, (20)

where the relation for the coefficients rk follows from {Σ̂k}k being an ONB. We thus have
reduced the problem to finding the coefficients rk for the expansion. These coefficients are
the expectation value of the hermitian operator Σ̂k

rk = Tr
[
Σ̂kρ̂

]
= ⟨Σ̂k⟩. (21)

Unfortunately, since the quantities directly observable in the experiment are the σ̂z pro-
jectors |g⟩⟨g| and |e⟩⟨e|, we still need to relate rk to these projectors. This can be done by
noticing two things:

1. The projectors of the σ̂x and σ̂y operators are also accessible via measurement of
|g⟩⟨g| and |e⟩⟨e|, by rotating the measurement frame first with a π/2-pulse in the x-
or y-direction. We find

HyQu - Hybrid Quantum Systems 10



4 PHONON TOMOGRAPHY Michael Eichenberger

Tr [|+ i⟩⟨+i|ρ̂] = Tr
[
R†

x

(
−π
2

)
|g⟩⟨g|Rx

(
−π
2

)
ρ̂
]

Tr [| − i⟩⟨−i|ρ̂] = Tr
[
R†

x

(
−π
2

)
|e⟩⟨e|Rx

(
−π
2

)
ρ̂
]

Tr [|+⟩⟨+|ρ̂] = Tr
[
R†

y

(π
2

)
|g⟩⟨g|Ry

(π
2

)
ρ̂
]

Tr [|−⟩⟨−|ρ̂] = Tr
[
R†

y

(π
2

)
|e⟩⟨e|Ry

(π
2

)
ρ̂
]

This means, that by applying a Ry(π/2) pulse to the system before readout, we
can measure in the x basis and by applying Rx(−π/2) pulse we can measure in the
y-basis.

2. The Pauli operators can be decomposed into projectors and thus the measurements
of the projectors is related to the full Pauli. We have

σ̂z = |g⟩⟨g| − |e⟩⟨e|
σ̂x = |+⟩⟨+| − |−⟩⟨−|
σ̂y = |+ i⟩⟨+i| − | − i⟩⟨−i|
I = |g⟩⟨g|+ |e⟩⟨e|

And thus for a given operator Σ̂k we can decompose it further into tensor products
of projectors. We make the notation more convenient by writing the projector of
the +1 eigenvalue state as |0x,y,z,I⟩⟨0x,y,z,I|. Similarly, for the −1 eigenvalue state
|1x,y,z,I⟩⟨1x,y,z,I|. E.g. in this notation the state | − i⟩⟨−i| would become |1y⟩⟨1y|. In
this notation the decomposition of Σ̂k takes the following form

Σ̂k =
∑

x∈{0lk ,1lk}
N

(−1)⊕x|x⟩⟨x|. (22)

Here x = x1x2 . . . xN is a bit-string (e.g. |x⟩ = |0z1x0x . . . 1z⟩) of the 0 and 1 states
and ⊕ is defined as

⊕ := #{xs|xs ∈ {1x, 1y, 1z}} (23)

With these two ingredients we can now write the coefficients rk as the sum of projector
measurements obtainable in the experiment:

HyQu - Hybrid Quantum Systems 11



4 PHONON TOMOGRAPHY Michael Eichenberger

rk = Tr
[
Σ̂kρ̂

]
= Tr

 ∑
x∈{0,1}N

(−1)⊕x|x⟩⟨x|ρ̂


=

∑
x∈{0lk ,1lk}

N

(−1)⊕xTr [|x⟩⟨x|ρ̂] ,

where on the third line we used the linearity of the trace. The expectation value Tr [|x⟩⟨x|ρ̂]
can be obtained via conditional probabilities. We have

Tr [|x⟩⟨x|ρ̂] = ⟨x⟩ = P ((phonon 1 is in state x1) ∩ · · · ∩ (phonon N is in state xN)) (24)

Using the notation

P (x1, . . . , xN) ≡ P ((phonon 1 is in state x1) ∩ · · · ∩ (phonon N is in state xN)) (25)

we apply Bayes’ law for conditional probabilities and obtain

Tr [|x⟩⟨x|ρ̂] = P (x1, . . . , xN)

= P (xN |x1, . . . , xN−1) P (x1, . . . , xN−1)

= . . .

= P (xN |x1, . . . , xN−1) P (xN−1|x1, . . . , xN−2) . . .P (x1)

=
N∏
k=1

P (xk|x1, . . . , xk−1)

These conditional probabilities can now be directly obtained from the experiment by se-
quentially measuring the phonon states and taking the statistical average

P (xk|x1, . . . , xk−1) ≈ ⟨⟨xk⟩⟩ and x1, ..., xk−1 measured before (26)

where we assume that the statistical average ⟨⟨.⟩⟩ is a good estimator of the population
average ⟨.⟩. This method is called Direct Inversion Tomography [11] and has its quirks (see
Section 8.4).

HyQu - Hybrid Quantum Systems 12
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Summary

We can do direct inversion tomography and reconstruct the state density matrix ρ̂ by
expanding it in a Pauli-Operator basis and then expanding the Pauli basis into projec-
tors. The expectation values for the projectors then translate to conditional probabilities
obtainable from the experiment by calculating the statistical average of σz projector mea-
surements. σx and σy projectors can be measured by rotating the measurement frame via
additional π/2-pulses. The full density matrix takes the form

ρ̂ =
1

2N

∑
k

 ∑
x∈{0lk ,1lk}

N

(−1)⊕x

N∏
m=1

P (xm|x1, . . . , xm−1)

 Σ̂k (27)

4.1 Tomography Sequence

The tomography sequence consists of sequential measurements of the N phonon mode. For
each phonon-mode, the following procedure is carried out:

1. swap in Phonon Mode k to qubit (iSWAP)

2. apply π/2-pulse to qubit (determine measurement direction). The x-direction can be
chosen arbitrarily from the xy-plane at the beginning of the tomography sequence by
setting the parameter tomography phase ϕ (ϕ = 0 : σx pulse, ϕ = π/2 : σy pulse)

3. measure qubit state

4. wait time (t wait)

5. cool qubit down with Mode k
. . .

6. swap in Phonon Mode k+1

The sequence for the k-th phonon mode is also illustrated in Figure 6. By repeating this
sequence many times for each measurement axis combination we can obtain the needed
measurement statistics. From these, we can calculate the conditional probabilities of the
state in post-processing, which gives sufficient information to calculate the full state density
matrix.

Sequency Time Ttom

The tomography sequence scales linear in the entanglment number N : Ttom ∈ O(N). The
specific times needed for the tomography sequence are shown in Fig. 7.

HyQu - Hybrid Quantum Systems 13



5 OPTIMIZATION Michael Eichenberger

Figure 6: Tomography sequence for the k-th phonon mode in the N -phonon tomography.
The depcited sequence must be repeated for all 1, . . . , N phonon modes.

Figure 7: Tomography sequence time as a function of the entanglement number N . Here
a wait time of twait = 2 µs was chosen.

5 Optimization

In this section the optimization of both the SWAP gate and the π-pulse are treated.

5.1 Optimizing the Swap Gate

The goal here is to analyze the SWAP gate characteristics in detail and understand in depth
which system properties influence the SWAP gate fidelity. For this, various simulations
were carried out. Figure 8 for example shows a sweep of the swap interaction time (swap
ratio) and detuning paramters and the corresponding achieved fidelity. From this we can
see that the ideal SWAP parameters seem to not be at the expected value of ratio=1 and
detuning=0. Figure 9 shows the coherence time scaling of the SWAP fidelity and the
optimal parameters. Here, for every coherence time parameter set the SWAP gate sweep
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is performed. We see that the optimal parameters depend on the mode that is swapped.
Especially mode 1 deviates from the expected ratio=1, detuning=0 behavior. Table 1 lists
the obtained optimal parameters.

mode 1 mode 2 mode 3 mode 4
max. fidelity 0.9389 0.9232 0.9231 0.9231

swap ratio 0.96410 0.99487 1.00513 1.00513
detuning kHz 56.41 15.38 5.13 5.13

Table 1: Optimized SWAP parameters (ratio and detuning) for the hero sample paramters.

Figure 8: SWAP gate parameter ratio and detuning sweep for first phonon mode (mode
1) and 4 modes present in simulation. The sweep resolution, which was 0.01 for the swap
ratio and 0.01MHz for the detuning
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Figure 9: SWAP gate parameter optimization as a function of coherence time scaling (hero
sample ratio).

5.2 Compare mode number influence

In a next step, we want to understand how the presence of phonon modes in the simulation
impacts the optimized parameters. For this mode 1 is swapped while a different number
of (higher) phonon modes is present in the simulations. The optimized paramters for
each of the settings are shown in Figure 10. We can see that increasing the number of
phonon modes in the simulation does not impact the optimal parameters significantly, thus
a different mechanism leads to the shift from ratio=1, detuning=0.
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Figure 10: Impact of the mode number to optimal SWAP gates parameters (hero sample
paramters). Here, phonon mode 1 swapped. Note that the obtained optimal value is
limited by the sweep resolution, which was 0.01 for the swap ratio and 0.01MHz for the
detuning.

Origin of mode 1 detuning

From Figure 10 we can see that even if only one phonon mode is present in the simulation,
the ideal SWAP fidelity is still not achieved for zero detuning, but for a higher detuning
value. I wanted to investigate the origin of this shift. Figure 11 shows the SWAP parameter
sweep for both an ideal SWAP pulse shape (no-gaussian tails, i.e. instant on/off behavior)
and an ideal π-pulse (qubit initialized in excited state). We see that for the ideal π-
pulse, the optimum is very close to the expected zero detuning settings. Thus we conclude
that the SWAP parameter optimum is dependent on the preceding π-pulse. This can be
understood as the SWAP optimum taking into account the already present error of the
π-pulse. Thus, for further optimization the π-pulse should be optimized. It is not yet fully
understood what the origin of the π-pulse infidelity is. I carried out a simulation without
any phonon modes present and without decoherence, which yields a π-pulse fidelity of 1 (up
to numerical error in the 10−6 range). This rules out problems with the simulation itself
(at least up to the interaction with phonon modes). With only one phonon mode present
(still without decoherence), the fidelity decreases to 0.990 and exhibits some dependence
on the tail-length of the gaussian pulse (it increases with longer tails up to 0.992). In my
opinion this suggests that the issue is frequency related, since it increases for more tail
”cut-off”. An explanation could be that the π-pulse on the qubit drives some interaction
with the phonon, leading to a decrease in the π-pulse fidelity.

HyQu - Hybrid Quantum Systems 17



5 OPTIMIZATION Michael Eichenberger

(a) (b)

Figure 11: SWAP parameter sweep for (a) SWAP-pulse with ideal block-shape (b) ideal
π-pulse.

5.3 Optimizing the π-Pulse

The current pulse-shape used for the qubit π-pulse is a gaussian with cut tails at #σ (i.e.
#σ selects up to what standard deviation the gaussian pulse is carried out), defined by the
following equation:

c(t,#σ) =
Ω

A

π

2
exp

(
−(t−#σ)2Ω2

2(#σ)2

)
cos(ϕ) (28)

where Ω is the drive-frequency (= qubit-frequency on resonance), A is a tunable amplitude
factor and ϕ defines the an angle in the x-y-plane (allows for arbitrary rotation around the
bloch-sphere) and #σ defines at what sigma value the tails of the gaussian are cut off. The
pulse duration is fixed to #σ/Ω.

Optimize Amplitude

We can now calculate the amplitude factor A to realize an ideal π-pulse. For this we
consider that the drive-hamiltonian (for ϕ = 0) is given as (for simplicity we don’t write
the dependence on the additional parameter #σ)

H(t) = c(t)(a+ a†) (29)

This leads to a unitary evolution (under H) of
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U(t, t0) = exp

[
i

(∫ t

t0

c(t̃)dt̃

)
(a+ a†)

]
(30)

Thus, for an ideal π-pulse, we require

∫ t

t0

c(t̃)dt̃
!
=
π

2
(31)

Thus in the case of the gaussian pulse envelope

∫ #σ/Ω

0

Ω

A
exp

(
−(t−#σ)2Ω2

2(#σ)2

)
dt

!
= 1 (32)

This equation can be numerically solved (I used scipy.optimize.minimize with the Nelder-
Mead solver and a tolerance of 10−12). For #σ = 4 (this is the standard value chosen in the
simulations) an amplitude factor of A = 2.393 was obtained. This lead to a small increase
of the simulated π-pulse fidelity from 0.9801 to 0.9848. Note that directly optimizing the
simulated fidelity leads to a very similar value of A = 2.389 with fidelity 0.9849. Figure
12 shows the initial and optimized π-pulse shapes. Note that these small increases in
fidelity can most likely not be measured in the actual experiment. Rather, if the simulator
is sufficiently accurate and precise, they allow to study the physical effects limiting the
achievable fidelity. Thus, these optimizations mainly treat the question where a perfect
system could get us, much more than trying to achieve fidelity increases in the actual
experiment.

(a) (b)

Figure 12: (a) π-pulse amplitude factor sweep for two different parameter sets (hero sample
ratio). (b) π-pulse shape before and after amplitude optimization.
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Figure 13: π-pulse duration (#σ) sweep for hero sample paramters. (a) π-pulse fidelity
with (b) corresponding amplitude factor A.

Optimize cut-off #σ

In a second step I tried to optimize the duration of the gaussian pulse by trying different
cut-off values #σ for the gaussian. Here, for every chosen cut-off #σ, the amplitude A is
numerically optimized (Nelder-Mead minimization). Figure 13 shows the found relations
between cut-off #σ and optimal amplitude factor A. Figure 14 shows the optimized pulse
shapes for some of the tested cut-offs. We can see that for short pulse durations, the optimal
pulse converges towards a dirac-delta pulse, which is not achievable in the real experiment.
Consequently, for the time being the old value of #σ = 4 was kept for simulations.

5.4 Coherence-time scaling

The SWAP gate was benchmarked by simulating the gate fidelity for various parameter
sets, shown in Fig. 15 and 16. The abbreviations have the following meaning

• Hero hero sample ratio

• T1lim T1-limited ratio

• T1q T q
1 scales (other coherence times fixed at hero sample values)

• T1/T2q only T q
1 , T

q
2 scales (other coherence times fixed at hero sample values)

• 1M only phonon mode 1 present in simulation

• OptPi optimized π-pulse (amplitude value)

• IdPi ideal π-pulse (state initialized in ideal qubit e state)

• OptD SWAP parameters optimized for every T q
1 value respectively (see Fig. 9)
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Figure 14: Optimal π-pulse shapes for different durations (#σ) (hero sample paramters).
Note that for short durations the ideal pulse converges to a dirac-delta dstribution.

• OptS SWAP parameters optimized with single value set (average for T q
1 > 10 µs of

the obtained optimal parameters from Fig. 9)

From the simulations we find that the biggest limiting factor of the gate fidelity of the
current device is the coherence times. Already a T q

1 increase to 20 µs would improve the
fidelity by over 2%. Also, we can see that through the optimization of both pi-pulse and
SWAP parameters a fidelity increase of 2% could be achieved. This is not a lot, but for
the tomography sequence with 2N swaps it does makes a difference. From Fig. 16 we can
also see that for long coherence times the π-pulse seems to be the main limiting factor.
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Figure 15: Coherence-time scaling of the SWAP gate. See list in 5.4 for an explanation of
the abbreviations. In these simulation 4 phonon modes of dimension 2 were present.

Figure 16: Coherence-time scaling of the SWAP gate for a subset of the simulated qubit
decay times T q

1 . See list in 5.4 for an explanation of the abbreviations. In these simulation
4 phonon modes of dimension 2 were present.
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6 Simulation Results

This section contains the carried out simulations on entangled state generation and tomog-
raphy. If not specified differently, the used simulation parameters are as listed in Table 6.
Note that for this section, the π-pulse amplitude is optimized if not mentioned, as opposed
to the SWAP parameters which are only optimized if specifically indicated.

number of phonon modes 4
phonon mode Hilbert space dimension 2

tomography phase ϕ 0
tomography wait time twait 2 µs

coherence times hero sample

Table 2: Default simulation parameters. These values were used if not stated differently.
The tomography phase ϕ indicates an additional rotation angle for the tomography coor-
dinate system (x′ = ϕ, y′ = ϕ+ π/2).

In order to get a feeling for the depicted Hinton-diagrams, the ideal 2,3 and 4 phonon
W-states are shown in Figure 17. For non-ideal states, an additional plot is need to depict
the complex phase of the density matrix entries.

(a) N=2, NN = 0.5 (b) N=3, NN = 0.471 (c) N=4, NN = 0.462

Figure 17: Hinton diagrams of ideal W-states for N=2,3 and 4 phonon modes.

6.1 State Generation

In this section the state generation is analyzed without the tomography. Thus, here we
only look at the state preparation fidelity which cannot be assessed in the real experiment.
Figure 18 shows the resulting density matrices after state generation for 2,3 and 4 phonon
modes. We see that they are different from the ideal states by not having an equal dis-
tribution in the populated states. Also, there always is a finite population of the ground
state due to decay. Lastly, the individual components of generated states pick up a relative
phase due to the different frequency of the phonon modes. These phases are plotted on
the right side.
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(a) N=2, F = 0.914, NN = 0.416

(b) N=3, F = 0.894, NN = 0.378

(c) N=4, F = 0.882, NN = 0.358

Figure 18: Hinton diagrams of the generated W-states with optimized SWAP parameters
for N=2,3 and 4 phonon modes. This is the state preparation without tomography.
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Figure 19 shows the obtained fidelities for the state generation sequence. We see that
increasing the Hilbert space dimension of the phonon modes has almost no impact to
the fidelity, making simulations with only 2 phonon modes to be sufficient. We also find
that with optimized SWAP parameters the generation fidelity can be increased by roughly
0.4%. Lastly, by reversing the sequence (populate highest phonon mode first) it is shown
that ideally crossing phonon modes should be minimized as much as possible to get high
fidelities.

Figure 19: State generation fidelity for different settings. ”dim” indicates the dimension
of the phonon mode Hilbert space. We can see that the phonon mode dimension does not
impact the generation fidelities considerably. This legitimizes only using dim=2 for the
simulations. ”reversed” describes the state generation, where the phonon mode with the
highest frequency was populated first (and all others passed by the qubit as a consequence).
We see that this leads to lower state preparation fidelity. Thus the crossing of non-target
phonon modes should be avoided.

As a last analysis for the state preparation, Figure 20 shows the fidelity scaling with the
system coherence time for both T1-limited and hero sample ratio. We can see that for
long coherence times the fidelities are independent of the specific scaling relation. In this
region, the pulse shapes of the applied gates limit the achievable fidelity.

HyQu - Hybrid Quantum Systems 25



6 SIMULATION RESULTS Michael Eichenberger

Figure 20: Coherence-time scaling of the entanglement generation sequence. Here we
compare the T1-limited ratio to the hero sample ratio for N=2,3 and 4 phonon modes. We
can see that for long coherence times the two scalings converge, indicating that the specific
scaling ratio does not impact the protocol fidelity for large enough coherence times. In
this, the pulse shapes of the applied gates limit the achievable fidelity.

6.2 State Tomography

In this section the implemented state tomography sequence is tested with various param-
eters. Note that ”optimized” for this section means that the SWAP parameters were
optimized, but not for the state generation. Figure 21 shows the reconstructed density
matrices for initialized ideal W-states. Figure 22 shows the reconstructed density matrix
for the generated W-states. We can see that for the generated states and tomography a
considerable amount of the population has already decayed back to the ground state.

Figure 23 now shows the achievable tomography fidelity for both the ideal initial state
and the generated state. We observe that for N=3 and 4 for the ideal initial state the
optimization does not increase the achievable fidelity considerably (although it does also
not decrease). My explanation for this behavior is that the hero sample coherence times the
optimization does not influence the tomography greatly. The increase for the generation
then mostly comes from the optimized π-pulse and not the optimized SWAP parameters
(see Section 8.1 for more details).
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(a) N=2, F = 0.874, NN = 0.376

(b) N=3, F = 0.821, NN = 0.319

(c) N=4, F = 0.789, NN = 0.298

Figure 21: Hinton diagrams of the tomography results for ideal W-states with N=2,3
and 4 phonon modes. This is the tomography without state preparation. The SWAP
parameters were optimized.
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(a) N=2, F = 0.793, NN = 0.302

(b) N=3, F = 0.757, NN = 0.266

(c) N=4, F = 0.698, NN = 0.224

Figure 22: Hinton diagrams of the tomography results for the generated W-states with
N=2,3 and 4 phonon modes. This is state preparation and tomography combined. The
SWAP parameters were optimized.
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(a) Ideal state (b) Generated state

Figure 23: Achievable tomography fidelities for N = 2,3 and 4 phonon modes (hero sample
parameters). We can see that the optimization of the SWAP gate leads to a fidelity increase
in the 1-2% range. Note that here the initial state was without optimized π-pulse.

Next, figure 24 shows the scaling behavior of the tomography sequence with coherence
times. We can see that even for very long coherence times the achievable fidelity is not
approaching 1.0. This means that the fidelity is limited due to other effects such as the
pulse shapes of the SWAP gates and the π-pulse. An additional reason could also be the
loss of population to crossed phonon modes when swapping. Figure 25 shows the scaling
of the N-Negativity NN for the tomography and generation sequence.

Figure 24: Coherence-time scaling of the fidelity for the tomography sequence. Here we
compare the tomography of an ideal initialized state to tomography and state generation
for the hero sample ratio. ”opt” indicates that the SWAP parameters were optimized.
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Figure 25: Coherence-time scaling of the N-NegativityNN for the generation & tomography
sequence.

Phonon Number and Dimension impact

Here I wanted to analyze what effect the phonon number in the simulation (higher frequency
modes) and the phonon mode Hilbert space size has on the tomography fidelities. Figure
26 shows a Sweep over these two dimensions for the 2-phonon tomography. We see that
the fidelity decrease for Hilbert space dimensions > 2 is approximately 0.2%.

Figure 26: impact on the 2-phonon tomography fidelity (mode 1 and 2) for different phonon
number present in simulation and different phonon mode Hilbert space size. We can see
that the impact of the phonon mode number and Dimension on the fidelity is in the 0.1%,
justifying only simulating with Hilbert space size 2 and 4 phonon modes. Note that for
the grey boxes the simulation was not carried out.
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Tomography Phase Sweep

Here, the tomography phase ϕ is swept in order to see what effect it has on the reconstructed
state. This means that the phases set for the σx and σy rotation axes are rotated with an
angle ϕ relative to the initial value ϕx = 0, ϕy = π/2. The sweep is carried out both for an
initialized ideal W-state and for the generated state. We can see that for the ideal state
with maximum fidelity the phase does not have an influence on the tomography fidelity.
This changes for the generated state, where the fidelity has a local minimum and maximum.
My intuitive explanation for this behavior is that for the error prone generated state the
tomography phase can be used to ”align” the infidelity induced by the tomography to the
non-ideal generated state. With this, we can pick a measurement basis that mitigates the
stacking of generation plus tomography infidelities.

Figure 27: Tomography phase ϕ sweep for 2-phonon tomography. (a) ideal initialized
W-state and (b) generated W-state. ”opt” indicates that the simulation was carried out
with optimized SWAP parameters. We see that the phase has no impact on the ideal
state tomography (as theoretically expected) as opposed to the generated state, where we
can see local maxima and minima of the fidelity. I explain this phase dependence by the
non-ideal character of both generation and tomography: By choosing the phase correctly,
we can ”align” the infidelities of generation and tomography so that they add up most
destructively. For the ideal generation we have a perfectly symmetric input state with
respect to the tomography phase, therefore we cannot ”align” the infidelity. Note that due
to the periodicity of the phase the obtained fidelities are 2π-periodic.
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Tomography wait time twait Sweep

In Figure 28 the tomography wait time twait is swept for 2-phonon tomography. Two
different regimes are separated: (1) The scaling from very low times to 1 µs, where decay
is not a dominant effect. (2) From 1 to 10µs, where decay becomes important. We can
see that for the longer wait times, the achievable fidelity decreases nearly linearly with the
wait time, showing the impact of decay for long sequence times. In the short time regime,
the obtained data is rather surprising: The fidelity fluctuates in the 1-2% range depending
on the wait time. Since decay nor decoherence is a dominant factor in this regime, the
effect must be depending on the different phase oscillation speeds of the phonon modes.
Figure 29 shows a high resolution sweep for the wait times up to 0.02 µs. From this we
can see that the fidelity fluctuates up to 1% in magnitude with frequencies in the tens of
MHz range. Thus, in the real experiment the wait time should be tuned to acquire a local
maximum.

Figure 28: Tomography wait time twait sweep for 2-phonon tomography. (a) logarithmic
wait time increase from 0.01 to 1 µs (b) linear increase from 1 to 10 µs. ”ideal” indicates an
initialized ideal W-state, ”gen” the generated one. ”opt” indicates that the simulation was
carried out with optimized SWAP parameters. We can see that below 1 µs the achieved
fidelity is fluctuating rather strongly. Since these times are much shorter than the coherence
time this is not an effect connected to decay or decoherence, but could be connected to
the different rotating speeds of the different phonon modes. Maybe specific phase relations
during SWAP gates can increase or decrease the state reconstruction fidelity. For wait
times > 1 µs the fidelity seems to decrease linearly with the wait time. This effect is
related to the decay and decoherence of the system.
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Figure 29: Tomography wait time twait sweep for 2-phonon tomography with an initialized
ideal W-state and high temporal resolution. We can see that the achieved Fidelity does
fluctuate up to 1% with a frequency in the range of tens of MHz.

6.3 Entanglement

After analyzing generation and tomography with the fidelity as the measurement metric,
we also want to look at the entanglement in the created states. For this we calculated
the proposed N-negativity NN entanglement measure described in Section 3.1. Figure 30
shows the obtained N-negativity NN for the optimized state generation and tomography.

Figure 30: N-negativity NN for generated W-state, tomography of the ideal W-state and
tomography of the generated W-state for N=2,3 and 4. The SWAP parameters are opti-
mized. In blue, the ideal entanglement number of the respective W-state is shown (calcu-
lated for the ideal W-state).
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7 Towards a two-phonon gate

7.1 Available Gates

In the current ARQC-System we can use the following types of gates for the system con-
taining the qubit and phonon modes (let us just consider one mode for this discussion):

1. Single-qubit-Gates U q
single. This family of gates allows for full control of the qubit

state by making arbitrary rotations on the qubit Bloch-sphere. These gates are
implemented via the external drive.

2. Generalized Swap-Gate Ugswap(α). This gate implements a rotation in the {|01⟩, |10⟩}
subspace for arbitrary rotation angle α.

3. Qubit-Phase Gate U q
phase(q). This gate changes the phase of states where the qubit

is in the Fock 1 state. It can be realized by tuning the qubit with a stark shift such
that a relative phase of q with respect to the phonon mode is acquired.

4. Phonon-Phase Gate Up
phase(p). Analogous to the qubit-phase gate, but affecting

the states where the phonon is in the Fock 1 state.

In order to realize full Universality of the available gates, we need to additionally imple-
ment a qubit-phonon control gate like the CPHASE or CNOT [12]. Via additional SWAP
gates this can then be extended to a phonon-phonon entangling gate.

7.2 Insufficiency of gates (2)-(3) for CPHASE

We can show that even in the two-qubit subspace H = (C2)
⊗2

the operations (2)-(3) do not
suffice to realize a CPHASE gate (see Appendix B). Therefore we need to include single
qubit gates (1) in order to achieve the operation.

For the two-qubit subspace both the CPHASE and the CNOT gate can be decomposed
into the generalized SWAP gate and single-qubit operations:

7.3 CPHASE Decomposition

This decomposition includes a ”rotated” variation of the
√
iSWAP gate. I think it should

be possible to decompose this into a standard
√
iSWAP and single-qubit rotations, but I

did not investigate it further since the decomposition is not applicable for our system (see
Section 7.5). The full decomposition reads
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7.4 CNOT Decomposition

This composition was found in the QuTip source code [13] and achieves a CNOT gate with
various single-qubit gates and two

√
iSWAP gates. The total sequence is rather involved,

therefore we first define the necessary single-qubit operations to write the decomposition
in a more compact form:
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We now write single-qubit operations on the qubit with the superscript q, e.g. Rq
x(θ) and

on the phonon mode with superscript p, e.g. Rp
y(θ). Additionally, we introduce the unitary

Uglob
phase(ϕ), which just adds a global phase. Then the full decomposition reads

Rq
y

(
−π
2

)
Rq

x

(π
2

)
Rp

x

(
−π
2

)√
iSWAPRq

x (π)
√
iSWAPRq

y

(π
2

)
Uglob
phase

(π
4

)
Rq

z

(π
2

)
Uglob
phase

(
3π

2

)
(33)

Since we are usually not interested in global phases, the sequence can be shortened a bit.
Up to global phase, the following protocol still realizes a CNOT gate

Rp
x

(
3π

2

)
Rq

y

(
3π

2

)
Rq

x

(π
2

)√
iSWAPRq

x(π)
√
iSWAPRq

y

(π
2

)
Rq

z(π) (34)
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7.5 The Bosonic Problem

Because of the bosonic nature of the phonon modes we need to check whether the usage of
the two-qubit subspace H = (C2)

⊗2
is appropriate for our problem. For this we include the

next higher Fock level |2⟩ of the phonon mode in the decompositions. Unfortunately, this
shows that we cannot use the two above proposed sequences to realize a controlled gate.
The problem lies in the usage of the SWAP-operation: If we start in the |11⟩ state (first
entry qubit, second entry phonon), a generalized SWAP gate always leads to information
leakage into the |02⟩ state. Thus our code space is not closed under the generalized swap
and this operation cannot be used to realize a controlled qubit-phonon gate. Figure 31
shows the operator matrix of the iSWAP and

√
iSWAP gate with non-vanishing |02⟩−|11⟩

elements.

Figure 31: The SWAP-type gates have elements that lead to leakage out of the code-space.
Here, the first entry of the states indicates the qubit population, the second entry the
phonon population.

This can be made even more clear if the state |11⟩ is evolved under the two gates. Figure
32 shows the occupation probability after the iSWAP and

√
iSWAP gates.
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Figure 32: Occupation Probability of the system states after the iSWAP or
√
iSWAP gate

acted on the state |11⟩.

Therefore, we have to consider other mechanisms to realize a two-qubit gate.

7.6 Two-phonon gate possibilities

Since a direct decomposition with the SWAP gates is not possible, we need to consider
other approaches to realize a controlled gate between two phonon modes. The general idea
here is to realize a controlled gate between the qubit and a phonon mode first and then
modify it to a phonon-phonon gate via additional swapping. I have found the following
methods to be candidates for this purpose:

1. Dispersive Regime. By tuning the qubit frequency far away from the phonon
mode, a dispersive interaction between qubit and phonon mode can be achieved.
By controlling this interaction, a CPHASE gate can be realized. We start with the
dispersive hamiltonian (holds if ∆ = |ωq − ωp| ≫ g) in the rotating frame of the
qubit and the phonon:

Hd =
g2

∆
a†ab†b. (35)

For the computational states between qubit and phonon we thus find

Hd|g0⟩ = 0

Hd|g1⟩ = 0

Hd|e0⟩ = 0

Hd|e1⟩ =
g2

∆
|e1⟩
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Thus the time evolution under this hamiltonian is given by

Ud(t) = exp(−iHdt) =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 exp
(
−ig2

∆
t
)
 , (36)

By choosing the time t we can then achieve an arbitrary CPHASE operation between
the qubit and the phonon. For this gate, the gate time is inversely proportional to
the detuning. However, the detuning needs to be sufficiently large for the dispersive
regime condition to hold. Thus it requires long coherence times for high fidelity.

2. Sideband iSWAP [14]. This gate is implemented by tuning the qubit on resonance
with the |e1⟩− |f0⟩ transition, where |f⟩ is the second excited state of the transmon
and 0 and 1 indicate the fock state of a phonon mode. By performing two consecutive
iSWAP gates, a CPHASE gate between qubit and the phonon mode is realized. In
our system this implementation is currently not possible, since the tuning range via
the stark-shift is not large enough.

3. Sideband Modulation [15]. For this gate the qubit frequency is parametrically
modulated (e.g. with a time-dependent stark-shift). If the modulation frequency
equals the frequency difference between the qubit and the phonon, then these two
”virtually” couple. Modulating the qubit frequency at the frequency of the |e1⟩−|f0⟩
transition might allow the realization of a CPHASE gate. It can be shown that
the achievable coupling strength between qubit and phonon is ≈ g/2, where g is
the initial coupling. Therefore the gate is most likely to be slower than the direct
Sideband iSWAP.

4. The Cross-Resonance Gate [16]. This gate is implemented by applying a drive
to the qubit with the resonance frequency of a phonon mode. The gate operation
is then realized via the qubit-phonon interaction, effectively implementing a CNOT
gate (up to single qubit rotations). Unfortunately, this gate has a maximum coupling
strength of g/4, where g is the initial qubit-phonon coupling, making the sequence
too long for current device parameters (hero sample). Also, it is not clear if the gate
only applies quibt-qubit like systems and there is leakage out of the code space for
our setting.

5. Optimal Control [17]. Optimal Control uses machine learning algorithms to find
the most ideal composed gate sequence out of an available set of sub-gates. It is a
heuristic approach and thus is not guaranteed to succeed.

6. Phonon Blockade [18]. Phonon blockade describes the process, that if one phonon
is present in an oscillator, the excitation of a second one is prevented. If we could
manage to introduce a phonon-blockade process into our system, then the code-space
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cannot be left (= no leakage) and thus the above described decompositions are valid
again. Phonon blockade could potentially be achieved by coupling the mechanical
resonator quadratically to a 2-level system (e.g. another qubit) and using the energy
shift of the dressed states.

8 Challenges & Improvements

There are some open ends I was not able to tackle during the time of the Semester Thesis:

8.1 SWAP gate optimization

As of now, the SWAP gate optimization was done for the full sequence π-pulse + SWAP.
Thus the parameter optimization also accounted for the non-ideal π-pulse. But this π-
pulse is not present in the tomography sequence, thus the ideal parameters for tomography
could potentially differ from the found optimum. To solve this issue, the optimization
should be done again for only the SWAP gate without the preceding π-pulse. However,
it is questionable if all these optimizations are necessary in the first place, since the main
limiting factor are still the coherence times. Without better coherence times these fine-tune
optimizations will not be impactful.

8.2 Analytical Fidelity Estimation

During the semester project I tried to find an analytic expression for the fidelities of both
the W-state generation and the phonon tomography. The idea was that in the limit of
short gate times the fidelity for a single sub-gate can be expressed as

F (t) = 1− eΓ1t, (37)

where Γ1 is the decay time of the system. For high fidelities (or equivalently short times
t), the total fidelity of the gate is thus approximately

Ftot =
N∏
i=1

F (ti). (38)

Now, The main component of this analysis is that for the SWAP gate, we can think of
the excitation being swapped between qubit and phonon, thus the effective decay time is
something in between the qubit and phonon decay time. For the full swap the occupation
time is 1/2, 1/2 and therefore the system decay time can be estimated as

Γavg
1 =

1

2

(
1

T qubit
1

+
1

T phonon
1

)
. (39)
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I applied these calculations to the generation sequence and compared it to the obtained
results from simulation, as shown in Figure 33. Although the obtained values somewhat
match the simulation results, the analytical expression lacks a solid foundation. At this
point it is still more of a heuristic approach. One way to improve it is to account for the fact
that during the generation sequence, the phonon-qubit occupation is not 50/50, but more
leaning towards the qubit. Thus the fidelities of the estimation would slightly decrease.
This could be modelled by taking a weighted sum of the decay rates: Γavg

1 = w1

T qubit
1

+ w2

T phonon
1

,

where w1, w2 are the weights.

Figure 33: Analytical fidelity estimation for the W-state generation sequence. d here
indicates the phonon Hilbert space dimension used for the simulation. ”opt” indicates
that the SWAP parameters are optimized. ”idPi” indicates that an ideal π-pulse was used,
i.e. the qubit initialized in the excited state.

8.3 Phonon-Decay

An interesting topic I was not able to look into enough is the decay properties of entangled
systems. If more time would have been present, I would have solved the master equation
analytically for a system containing two phonon modes. Of special interest is the impact
of the initial state on the ground state population rate, i.e. how fast the total system
state decays to the ground state. For W-states, there are published calculations [19] which
indicate that the ground state decay rate does not increase with the entanglement size.
This calculation would also give more insight into which weights to use for the analytical
fidelity estimation from above.
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8.4 Alternative Tomography Methods

The topic of quantum state tomography and density matrix reconstruction has become
increasingly important for the field of quantum information processing. A variety of re-
search has been conducted on this topic and different tomography methods were developed
[11]. In this work, I used the method of Direct Inversion, which assumes that for some
measurement operator A the sample mean ⟨⟨A⟩⟩ is a good estimator for the population
mean ⟨A⟩. Although this method has been used extensively in the field [20, 21], it also
comes with some drawbacks: The Direct Inversion method does not limit the reconstructed
density matrices to a subspace of physical results, specifically in the reconstruction process
the condition Tr[ρ] = 1 is not enforced, leading to possible unphysical results.

Note that in the simulations conducted in this semester thesis, this was not a problem since
through the simulation the population mean ⟨A⟩ could directly be obtained, preventing this
issue. However, for an actual experiment it could be beneficial to limit the reconstructed
states to the space of physical density matrices by implementing a different tomography
method based on Likelihood-Estimation, e.g. Maximum-Likelihood estimation (MLE) or
Bayesian-Mean estimation (BME). Specifically MLE has been successfully used in quantum
state tomography and has shown to be a robust alternative to Direct Inversion that ensures
the trace condition [22].

8.5 Entanglement Measure

In order to make the certification of the entanglement of the measured states more solid, it
could be beneficial to implement a scheme based on entanglement witnesses similar to the
one used in [9]. In our setup, the implementation can directly be done in the discrete basis.
Some possible witnesses for the three phonon W-state are already treated as an example
in the article.

8.6 Two-Phonon Gate

Of course a big open task is to find out how to realize a two-mode gate between two phonon
modes. A next step would be to simulate the proposed gates in 7.6 and see which of them
could be realized in an actual experiment.
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A Entanglement Generation Time Estimation

The total sequence length of the state generation for N Phonon Entanglement is given by
the π-pulse length plus the sum of the swap times tk

Tgen = Tπ +
N∑
k=1

tk =
4

Ω
+

N∑
k=1

1

gk
arcsin

(
1√

N + 1− k

)
(40)

In order to find the dependence of the sequence time on the phonon number Tgen ≡ Tgen(N)
we use an upper bound for arcsin(x) on x ∈ (0, 1) [23]:

arcsinx

x
<

1√
1− x2

x ∈ (0, 1) (41)

By plugging in x = 1/
√
N + 1− k we find

1

gk
arcsin

(
1√

N + 1− k

)
<

1

gk

1√
N + 1− k

1
√
1− 1

N+1−k

=
1√

N + 1− k

√
N + 1− k√
N − k

=
1√

N − k

If we treat the k = N term separately (arcsin(1) = π/2) and assume that the coupling
constants for all phonon modes are similar ∀k : gk ≈ g we can write

Tgen <
4

Ω
+

π

2g︸︷︷︸
k=N Term

+
1

g

(
1√
1
+ ...+

1√
N − 1

)

=
4

Ω
+

1

g

(
π

2
+

N−1∑
n=1

1√
n

)
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We can now use the relation m ≥ 2: 2
√
m− 2 <

∑m
n=1

1√
n
< 2

√
m− 1 and plug this in for

m = N − 1 to obtain

Tges <
4

Ω
+

1

g

(π
2
+ 2

√
N − 1− 1

)
=

(
4

Ω
+

1

g

(π
2
− 1
))

+
2

g

√
N − 1

≈ (0.5 + 1.2
√
N − 1) µs

Thus we have found that the generation sequence is O(
√
N).

In a different approach we can also replace the sum with an integral
∑N

k=1 ≈
∫ N

1
dÑ and

find

Tgen = Tπ +
N∑
k=1

tk =
4

Ω
+

N∑
k=1

1

gk
arcsin

(
1√

N + 1− k

)

≈ 4

Ω
+

∫ N

1

dÑ
1

g
arcsin

(
1√
Ñ

)

=
4

Ω
+

1

g

(√
N − 1 +N arcsin

(
1√
N

))
.

This again leads to the generation time being of order O(
√
N), but is a better estimate to

the total generation time Tgen.

B Insufficiency of using Ugswap, U
q
phase and U p

phase for a

CPHASE gate

We can write the Unitaries of these operations in the qubit and phonon system with basis
{|00⟩, |01⟩, |10⟩, |11⟩} where the first entry denotes the qubit:
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Ugswap(α) =


1 0 0 0
0 cos(α) −i sin(α) 0
0 −i sin(α) cos(α) 0
0 0 0 1



U q
phase(q) =


1 0 0 0
0 1 0 0
0 0 eiq 0
0 0 0 eiq



Up
phase(p) =


1 0 0 0
0 eip 0 0
0 0 1 0
0 0 0 eip



In order to have a universal set of gates for our system, we need to show that we can
realize a Control-Phase Gate (CPhase-Gate), since all single-qubit gates are achievable
using a SWAP and the qubit-control.

CPhase =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

 (42)

for some φ ̸= 0. We will now show, that the three operations Ugswap, U
q
phase and U

p
phase are

not sufficient to realize a CPhase-Gate.

Proof

Let us assume that a decomposition of the CPhase-gate into Ugswap, U
q
phase and U

p
phase exists.

Write this decomposition as

CPhase =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

 =
∏
k

Uk Uk ∈ {Ugswap, U
q
phase, U

p
phase} (43)

We now introduce indices m and n that count the occurrences of U q
phase and U

p
phase respec-

tively. For each occurrence, denote the corresponding phase parameter as qm and pn, such
that for the m-th occurrence of U q

phase the unitary is U q
phase(qm).
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We know notice that for arbitrary rotation angle α we have det(Ugswap(α)) = 1. For the
Qubit- and Phonon-Phase Gate we have

det(U q
phase(qm)) = eiqmeiqm = e2iqm det(Up

phase(pn)) = · · · = e2ipn (44)

Thus for the total decomposition

det(CPhase) = eiφ
decomp.
= det

(∏
k

Uk

)
=
∏
k

det(Uk)

=
∏
m

det(U q
phase(qm))

∏
n

det(Up
phase(pn))

=
∏
m

e2iqm
∏
n

e2ipn

= exp

(
2i

(∑
m

qm +
∑
n

qn

))

From this follows a necessary condition for the sum of all qm and pn:

φ
!
= 2

(∑
m

qm +
∑
n

qn

)
mod 2π (45)

.

Next, we observe that the {|11⟩} subspace is left unchanged by the Ugswap operation. Thus
only the Qubit- and Phonon-Phase gate can contribute to the entry eiφ of the CPhase gate.
This leads to a second condition

eiφ =
∏
k

(Uk)22 =
∏
m

(U q
phase(qm))22

∏
n

(Up
phase(pn))22

=
∏
m

eiqm
∏
n

eipn

= exp

(
i

(∑
m

qm +
∑
n

pn

))

This leads to another necessary condition for the sum of the qm and pn
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φ
!
=

(∑
m

qm +
∑
n

qn

)
mod 2π (46)

From these two condition it directly follows that φ = 0 mod 2π. Therefore the only CPhase
gate that can be achieved is the trivial Identity gate (φ = 0). □
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