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Abstract

Nonlocality in quantum mechanics can be categorized into three types: quantum
entanglement, Einstein-Podolsky-Rosen steering, and Bell’s nonlocality. Understanding
these types of correlations is crucial for both fundamental research and future quantum
technologies. In 1935, Erwin Schrödinger introduced the concept of steering in reply
to the Einstein-Podolsky-Rosen (EPR) paradox. Surprisingly, it was only recently that
EPR-steering was defined as a quantum information task for arbitrary bipartite states
and measurements [1, 2]. In this project, we sought to investigate the demonstration
of EPR steering between two mechanical resonators, for displacement-based and parity-
based phonon number detection. First, we were able to observe how different variables
such as the minimum required state purity η˚ depend on the type of measurement, the
number of measurement settings as well as on the measurement displacement amplitude
r. We discovered that when considering parity-based measurements, a periodic pattern
with respect to r occurred. This could be seen for the detection efficiency η˚ as well as
for the bound value S1

max of the corresponding steering inequality. In addition, we tested
our numerical approach to detect steering on a simulated density matrix with realistic
experimental parameters and imperfections. We were able to show for which r it turned
out to be steerable respectively unsteerable considering parity and displacement-based
measurements for a 2 level system.

1

mailto: mamoes@student.ethz.ch


CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Definition of quantum steering . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Semidefinite program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Detection of quantum steering 10
2.1 Displacement-based measurements . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Parity-based measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Testing simulated density matrix . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Steering inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Results & Discussion 15
3.1 Displacement-based measurements . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Parity-based measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Testing simulated density matrix . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Steering inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Dual SDP result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Steering inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Conclusion 29

A Definitions and calculation steps 34

B SDP 37

C Dual SDP 43
C.1 Duality theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
C.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C.2.1 Primal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
C.2.2 Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
C.3.1 Primal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
C.3.2 Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
C.3.3 MATLAB code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

D Wigner function 58
D.1 Definition of Wigner function . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
D.2 Analytical computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
D.3 Bell’s Inequality and Wigner Function . . . . . . . . . . . . . . . . . . . . . . 60

2 of 64



1 INTRODUCTION

1 Introduction

1.1 Overview

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) presented their ar-

gument that the description of the physical reality provided by quantum mechanics was

incomplete and in conflict with the notion of locality and reality. Indeed, if local realism is

valid, then quantum mechanics cannot be regarded as a complete theory to describe physical

reality. Apart from its fundamental importance, this study had profound consequences: It

was the first time that physicists recognized the unusual events associated with entanglement,

which later on confirmed to be the one of the core concepts of current quantum information

science. In their thought experiment they consider a pair of particles prepared in a so-called

entangled state, and the local measurement of their position or momentum. The correlations

in the state allow one then to predict the results of these measurements on the other party,

under the condition that the same measurement is performed. They claimed that no action

made on the first particle could have an immediate effect on the second, as that would require

information to be transferred faster than light, which is prohibited by the theory of relativity.

By introducing a principle known as the EPR criterion of reality, they deduced that the

second particle must have a specific location respectively momentum value before either can

be measured.

This stood in contrast to the views of Niels Bohr and Werner Heisenberg, who claimed that

a quantum particle does not have a definite value for an attribute like momentum until

it is measured. In order to interpret this ”spooky action at distance”, Erwin Schrödinger

introduced the concept of quantum entanglement and quantum steering, referring to the idea

that in a 2-particle scenario, one of the parties can alter the state of the other distant party by

performing local measurements. Quantum entanglement, according to Schrödinger, is ”the

characteristic trait of quantum mechanics” that distinguishes quantum theory from classical

theory. In 1964, John Stewart Bell suggested an inequality for local hidden variable (LHV)

models. With the violation of the so-called Bell’s inequality by quantum entangled states

one could deduce the presence of Bell correlations, that are associated to the impossibility of

describing nature with a local realistic theory.

Another breakthrough was the introduction of a new categorization of quantum nonlocality

by Wiseman, Jones, and Doherty [3], which formalised the idea of steering proposed by

Schrödinger in 1935. They stated that every demonstration of the EPR paradox1, as proposed

1The EPR paradox is a term used to describe the scenario presented by EPR. Nevertheless, the authors did
not seek to bring out an actual paradox. Rather, they contended that quantum mechanics was an incomplete
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1.2 Definition of quantum steering 1 INTRODUCTION

by Reid [5], is likewise a demonstration of steering. While that statement was generally

valid, their proof was however inadequate. Cavalcanti et al. [3] not only provided the needed

proof, but they were also able to demonstrate the converse: Any demonstration of steering

is also a demonstration of the EPR paradox. In other words, the EPR paradox and steering

are nonlocality concepts that are interchangeable. Finally, Wiseman, Jones, and Doherty

established in Ref.[3] that EPR-steering represents a new kind of nonlocality intermediate

between entanglement and Bell-nonlocality. The difference between them could be explained

with the matter of trust shared between the different parties. Apart from its theoretical

significance, this categorization showed to be important in the following decades in the context

of quantum communication and information [1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

1.2 Definition of quantum steering

Quantum steering is a form of bipartite quantum correlation, intermediate to the concepts of

entanglement and Bell non-locality. Indeed, quantum entanglement is a superset of steering,

and Bell’s nonlocality is a subset of steering. These notions are illustrated in Figure 1

and 2. Nonetheless, only steering, out of the three forms of quantum nonlocality, can show

asymmetry in the correlations. In fact, in the case of entanglement and Bell nonlocality, Alice

and Bob can be freely interchanged. However, this symmetric situation changes radically for

the EPR steering scenario. For some asymmetric bipartite quantum states, Alice may be

able to steer Bob, but Bob will never be able to steer Alice, or vice-versa. Some one-way

quantum information tasks, such as quantum cryptography, might benefit from this very

peculiar property [6].

In the following paragraph, we will explain how one party, let us say Alice, is able to remotely

steer the state of another party’s system by performing a local measurement on a shared

quantum state. This effect enables the second party, which we will refer to as Bob from here

on, to verify that the shared state in indeed entangled without having any knowledge about

the measurements executed by Alice. It is often said that Alice represents an untrusted party,

since Alice measures her system with an uncharacterized measurement, leaving Bob with an

ensemble of unnormalized states, a so-called assemblage.

Let us now consider a bipartite situation in which Alice and Bob share an unknown quantum

state ρAB. Alice can conduct nA measurements on her subsystem, each having mA possible

theory, in that it did not completely describe reality. Schrödinger appears to be the first to call the situation
a paradox, because he could not accept that quantum mechanics was actually incomplete with EPR, but he
could not identify a problem in their reasoning either. In retrospect, we now know that, while the argument
is valid, one of the premises, in fact local causality, is wrong, which was proven by Bell [4].
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1.2 Definition of quantum steering 1 INTRODUCTION

Figure 1: Schematic scenarios where entanglement can be verified. a. Entanglement case:
Alice (left) and Bob (right) can apply a tomographically complete set of measurements in
order to retrieve ρAB. b. Quantum steering case: Alice treats her measurements as a
black box with inputs x and outputs a. Bob can then conduct tomography to reconstruct the
set of states σa|x which are conditioned to Alice’s measurements. c. Quantum non-locality
case: Alice as well as Bob treat their measurements as black boxes [6].

outcomes a “ 1, . . . ,mA. The state of Bob’s system will then be changed into the condi-

tional state ρa|x with probability ppa|xq after Alice having selected the measurement x and

obtaining the outcome a. The steering scenario thus describes the situation in which Alice’s

measurements are not assumed to follow the rules of quantum mechanics, while Bob has

complete trust over his quantum system, allowing him to access his conditional states by full

tomography. In this case, the accessible information is a collection of post-measured states

and their conditional probabilities, which are given by tρa|x, ppa|xqua,x. This information can

be summarized by a set of unnormalized quantum states, often referred to as an assemblage.
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Figure 2: The strongest sort of quantum nonlocality is Bell’s nonlocality. If a state has EPR
steerability or Bell’s nonlocality, it is certain to be entangled. EPR steering is a nonlocality
that falls in between entanglement and Bell nonlocality [1].

Based on quantum theory, the terms of such an assemblage can then be acquired by

σa|x “ tr
“

ρABpMa|x b 1q
‰

. (1)

σa|x represents Bob’s (unnormalized) state when Alice measures x and receives the outcome

a, which can be expressed by the measurement operator Ma|x. In addition, we have the

condition that
ř

aMa|x “ 1 and that Ma|x ě 0 @a, x. It is critical to emphasize that in the

steering case, both the state ρAB and the measurement operators tMa|xua,x are completely

arbitrary.

In 2007, Wiseman, Jones and Doherty rigorously defined the concept of quantum steering

as the possibility of generating remotely ensembles that could not be produced by a local

hidden state (LHS) model. A LHS model describes a situation in which a source provides a

classical message λ to one of the parties, Alice, and a quantum state σλ to the other party,

Bob. The variable λ informs Alice’s measuring device to output the result a with probability

ppa|x, λq, if she selects to consider the measurement x. Furthermore, it is assumed that the

classical message λ can be chosen based on a distribution based on a density πpλq. Since Bob

does not have access to the classical variable λ, the final assemblage he sees is made up of

the elements:
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1.3 Semidefinite program 1 INTRODUCTION

σa|x “

ż

dλ πpλqppa|x, λqσλ @a, x, (2)

where σλ denotes the LHS, i.e. some quantum states, and ppa|x, λq Alice’s response function.

Thus, the dependence of Bob’s state on Alice’s measurement results does not indicate spooky

action at a distance, if there exits a set of normalized states σλ with probability distribution

πpλq and ppa|x, λq such that (2) holds. In that situation, we may be assured that Bob’s

system was always in a fixed state, and Alice’s measurement result just provided us the

classical information about λ. An assemblage that admits a decomposition of the form (2)

can thus be reproduced by a LHS model, and is termed unsteerable as steering cannot be

demonstrated. On the contrary, if Bob’s observed assemblage cannot be brought in the form

(2) for all a, x, then steering has been demonstrated, as no LHS model could reproduce the

observed correlations. The assemblage is then said to be steerable.

To conclude, to verify steering, Bob must examine whether there exists a collection of quan-

tum states σλ, a distribution πpλq and ppa|x, λq such that (2) holds. Analogous to Bell

nonlocality and Bell inequalities, steering can be detected via violation of so-called steering

inequalities [6, 11, 16, 17, 18, 19, 20, 21].

In essence, this is a complex challenge since the variable λ can take on an endless number

of values. We will illustrate in the following subsection how this issue becomes significantly

easier if the number of measurements and outputs is finite and how it then can be solved

using semidefinite programming (SDP) [6].

1.3 Semidefinite program

In this subsection, we recap as outlined in Ref.[17] a numerical procedure to obtain the

minimum purity required to observe steering with an entangled state. Assume that x “

1, . . . , nA and a “ 1, . . . ,mA, i.e. Alice performs nA measurements withmA possible outcomes

each on the state

ρABpηq “ η |Ψy xΨ| ` p1 ´ ηq |0, 0y x0, 0| , (3)

where η parameterises the purity and

|Ψy “
1

?
2

p|0, 1y ` |1, 0yq (4)
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1.3 Semidefinite program 1 INTRODUCTION

denotes a single-phonon entangled state. For given positive operator-valued measure (POVM)

elements Πa|x, Alice will steer Bob’s state into the assemblage tσa|xua,x after completing

measurement x on the state (3) and acquiring the outcome a. This assemblage can be

computed in the following way according to [17]:

σa|xpηq “ TrA
`

ρABpηqΠa|x b 1
˘

(5)

“ ησS
a|x ` p1 ´ ηqσUS

a|x , (6)

where we inserted (3) into (5) and the set of steerable respective unsteerable assemblages are

given by the following expressions2:

σS
a|x “ TrA

`

|Ψy xΨ|Πa|x b 1
˘

, (7)

σUS
a|x “ TrA

`

|0, 0y x0, 0|Πa|x b 1
˘

. (8)

Now, one can notice that the ppa|x, λq in (2) can be decomposed as a convex combination of a

finite amount of deterministic probability distributions given a finite number of measurement

choices and outcomes. Particularly, a deterministic probability distributionDλ1pa|xq produces

a fixed outcome a for each measurement x. This can be seen as Dλ1pa|xq “ δa,λ1pxq, such

that a “ λ1pxq. Here, λ1p¨q denotes a function from t1, . . . , nAu to t1, . . . ,mAu and can be

considered as a string of outcomes λ1 “ pax“1, . . . , ax“nAq, such that λ1px1q “ ax“x1 . Since

there exist d “ mnA
A such strings, i.e. d distinctive deterministic probability distributions, we

can write:

ppa|x, λq “

d
ÿ

λ1“1

ppλ1|λqDλ1pa|xq, (9)

where ppλ1|λq represents the weight of the deterministic distribution given by λ1 in the case

where the hidden variable is denoted by λ [6]. Recall that a LHS model describes the sce-

nario in which a source sends a classical message λ to one of the parties, say Alice, and a

corresponding quantum state ρλ to the other party, Bob.

Defining

σλ1 :“

ż

dλ πpλqppλ1|λqρλ, (10)

2Note that (6), (7) and (8) only hold for this particular setup, which will enable us to acquire the minimum
purity needed to observe steering with an entangled state. Later on in section 2.3, we will consider a more
general case, where we cannot assume anymore that our density matrix can be decomposed into a set of
steerable and unsteerable assemblages.
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we can then write a LHS assemblage as

σa|x “

d
ÿ

λ1“1

Dλ1pa|xqσλ1 . (11)

One might notice that (11) has a very similar form to (2). In the case of (11), we now have

a finite sum instead of an integral and for each λ1, the deterministic probability distribution

Dλ1pa|xq is fixed while for (2), the probabilities ppa|x, λq were unknown. The case where we

consider the number of measurements and outputs to be finite thus reduces the complexity

of the construction of LHS assemblages.

In addition, one can note that

Tr
ÿ

λ1

σλ1 “
ÿ

λ1

ż

dλ πpλqppλ1|λq “ 1. (12)

As a result, we can now formulate a semidefinite programme (SDP)[22] with the optimization

variables σλ to determine if a given assembly σa|x with x “ 1, . . . , nA and a “ 1, . . . ,mA is

LHS. The SDP for this particular setup has the following form according to Ref.[17]:

η˚ ” max η 0 ď η ď 1

s.t.
ÿ

λ

Dλpa|xqσλ “ ησS
a|x ` p1 ´ ηqσUS

a|x @a, x

Tr
ÿ

λ

σλ “ 1, σλ ě 0 @λ. (13)

For a given set of POVM elements Πa|x, which are needed to compute σS
a|x in (7) and σUS

a|x in

(8), we can then solve the above SDP numerically, which returns the critical value η˚ above

which the state ρABpηq is steerable. In other words, (13) enables us to efficiently detect

steering for the state (3) for all η down to the critical value

η ě η˚. (14)

We can now employ the duality theory to the previous problem (13) to obtain the dual

problem. As shown in Appendix A in Ref.[6], by introducing dual Lagrangian variables, and

moving to the Lagrangian, we acquire the following dual program:
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2 DETECTION OF QUANTUM STEERING

S1
max “ min Tr

ÿ

a,x

Fa|xσ
1
a|x

s.t.
ÿ

a,x

Fa|xDλpa|xq ě 0 @λ

Tr
ÿ

λ,a,x

Fa|xDλpa|xq “ 1. (15)

From the dual solution of the SDP, it is thus possible to extract the steering functionals Fa|x

and the scalar S1
max [17]. These allows us to define the linear steering inequality, which is

satisfied by all LHS assemblages3:

Tr
ÿ

a,x

Fa|xσ
1
a|x ď S1

max. (16)

Any assemblage {σ1
a|x}a,x providing a larger value than S1

max is steerable, and hence confirms

that the shared state from which it was obtained is steerable [2, 6, 9, 17, 23, 24].

In Figure 3, we illustrate geometrically how the SDP and the steering inequality approach to

detect steering. Let us consider two different sets, designated by US (the set of unsteerable

assemblages) and S (the set of the steerable assemblages). For given POVM elements we have

the two assemblages {σUS
a|x} and {σS

a|x} in the corresponding sets. With (13), the obtained

value η˚ informs us about the ”position of the boundary assemblage” separating the sets

US and S. This is illustrated by {σa|xpη˚q} in Figure 3. The steering inequality (16), which

is characterized by an assemblage tσ1
a|xua,x, represents a hyperplane and thus allows us to

separate the set US from S. This is illustrated by the red line in 3. Thus, with this procedure,

we can deduce that any assemblage tσ
1

a|xua,x violating the steering inequality, i.e. being on

the right side of the red line in Figure 3, is steerable, certifying that the shared state from

which it was acquired was indeed entangled [17].

2 Detection of quantum steering

The first task of this project is to investigate the behaviour of the variable η˚ for displacement-

based as well as for parity-based measurements by means of the SDP (13) for different values

3For more details, we will refer to the papers [6] and [17].
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2.1 Displacement-based measurements 2 DETECTION OF QUANTUM STEERING

Figure 3: Geometric representation the unsteerable and steerable set of assemblages, desig-
nated by US and S respectively. The red line represents the hyperplane that corresponds to
a steering inequality which is characterized by an assemblage tσ1

a|xua,x. Any such assemblage

tσ1
a|xua,x identified on the right side of the red line comes out to be steerable [17].

of the measurement displacement amplitude r. We will consider a two-output (a “ ˘1)

steering scenario with both 2, 3 and 4 measurement settings x and multiple level systems.

2.1 Displacement-based measurements

We will first consider displacement-based measurements, which involve a displacement fol-

lowed by single-phonon detection. Here, we will neglect phonon-number resolution.

Let us consider the projector

Πpαq “ |αy xα| , (17)

where |αy denotes the coherent state corresponding to the displacement α “ reiθ with r ě 0

being the measurement displacement amplitude and θ P r0, 2πs the phase. We suppose that a

no-click outcome corresponds to this projector. A general expression for (17), restricting the

Hilbert space to two levels, is given by (60) in Appendix A. By assigning the outcomes +1 (to

the click event) and -1 (to the no-click event), a displacement measurement then corresponds
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to the observable

Mpαq “ 2 |αy xα| ´ 1. (18)

The according POVM elements in the case where Alice performs the measurement setting

x on the state (3) and obtains the result a P t´1, 1u can then described by the following

expression:

Πa|x “
1 ` aMpr, θxq

2
, (19)

where θx represents the phase belonging to the measurement x [17]. For a two level system,

the general expression for (19) is given by:

Πa|x “
1

2

˜

1 ` ap2e´r2 ´ 1q 2are´r2´iθx

2are´r2`iθx 1 ` ap2r2e´r2 ´ 1q

¸

. (20)

Table 1 displays the individual phases we will consider for the different measurement settings.

Measurement settings x θx [rad.]

2
θ1=0
θ2=π

3
θ1=0
θ2=2π{3
θ3=4π{3

4

θ1=0
θ2=π{2
θ3=π
θ4=3π{2

Table 1: Phases θx for the different measurement settings.

2.2 Parity-based measurements

We will now consider the scenario where the detectors are able to resolve the number of

phonons. We assign +1 to the event where an even number of phonons have been counted

and -1 to the opposite event, where an odd number has been registered. This measurement

is described similar to the subsection above by a pair of projection operators given by the
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2.3 Testing simulated density matrix 2 DETECTION OF QUANTUM STEERING

following expressions:

Πp`qpαq “ Dpαq

8
ÿ

k“0

|2ky x2k|D:pαq, (21)

Πp´qpαq “ Dpαq

8
ÿ

k“0

|2k ` 1y x2k ` 1|D:pαq. (22)

In (21) and (22), Dpαq describes the displacement operator

Dpαq “ exp
`

αâ: ´ α˚â
˘

, (23)

with â: and â denoting the creation respectively annihilation operator, which can be repre-

sented by the matrices (63) and (64). Again, the phases in Table 1 for the different measure-

ment settings x are considered.

The corresponding measurement can then be written as

M 1pαq “ Πp`q ´ Πp´q, (24)

which then allows us to acquire the expression of the appropriate POVM elements using (19):

Π1
a|x “

1 ` aM 1pr, θxq

2
. (25)

2.3 Testing simulated density matrix

Next, we analyse a simulated density matrix for two entangled mechanical resonators from

Michael Eichenberger, which takes realistic experimental parameters and imperfections. With

a modification of the SDP from (13), we can check whether it can be described by a LHS

model or not, thus being unsteerable or not. Only displacement-based and parity-based

measurements for a two-level system will be considered here. In order to compute this, we

need to adapt some steps, which will be explained in the following lines.

First, we cannot assume that our density matrix can be splitted into a set of steerable and

unsteerable assemblages anymore, as contrary to the analytical state considered before we

do not have any a priori knowledge for the simulated state. Thus, we will operate with (5),

where ρAB will represent our simulated density matrix. Next, since we are now interested

whether the conditional state can be described by a LHS model, the SDP (13) will change
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2.4 Steering inequality 2 DETECTION OF QUANTUM STEERING

to:

ÿ

λ

Dλpa|xqσλ “ σa|x “ TrA
`

ρABΠa|x b 1
˘

@a, x

Tr
ÿ

λ

σλ “ 1, σλ ě 0 @λ, (26)

where one notes that the maximization/minimization statement becomes unnecessary4. This

SDP will then output whether for the specific density condition, a LHS model can be found

or not, according to the possible statuses (feasible/unfeasible) given by CVX [25].

2.4 Steering inequality

Finally, we seek to investigate the behaviour of the steering inequalities with (16) for different

cases. According to Ref.[17], the steering functionals Fa|x should be positive semidefinite and

match the following steering matrices:

G1
R “

˜

s 0

0 0

¸

s ą 0, (27)

G1
x “

¨

˝

0 te
ipx´1qπ

4

te
´ipx´1qπ

4
1
4

˛

‚ for x “ 1, 2, 3, 4 t ą 0, (28)

where G1
R “

ř4
x“1 F´|x and G1

x “ F`|x ´ F´|x.

4However, since CVX, a Matlab-based modeling system for convex optimization [25], requires a maxi-
mization/minimization condition, we will simply employ a ”trivial” statement in the code, i.e. maximise(0).
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3 RESULTS & DISCUSSION

3 Results & Discussion

In this section we report and discuss the results of our investigations of steering detection

using different measurement types and system dimensions.

3.1 Displacement-based measurements

For the displacement-based measurements, we will only consider a two-level system. Re-

garding the POVM elements (19), we can obtain the value η˚ using the SDP from (13).

Computing this SDP for different r yields the following Figure 4.

Figure 4: Plot of η˚ against r for the two-level system for 2, 3 and 4 displacement-based
measurement settings. The measurement setting phases are given in Table 1.

Looking at Figure 4, one can see that the value of η˚ increases differently for the individual

number of measurement settings and starts at different values for r “ 0. In fact, one notices

that for a higher number of measurement settings, η˚ reaches value 1 for larger r, which

can be interpreted in a way that now σa|x only consists of a set of steerable assemblages.

Furthermore, one observes that at a certain value of r, η˚ will not noticeable change anymore.

This makes sense since the POVM elements (19) are of the form:

Πa|x “
1

2

˜

1 ` 2ae´r2 ´ a 2are´r2´iθ

2are´r2`iθ 1 ` 2ar2e´r2 ´ a

¸

, (29)
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3.2 Parity-based measurements 3 RESULTS & DISCUSSION

where we used the interim result (60). Thus, for r Ñ 8, (29) will converge to

Πa|x “
1

2

˜

1 ´ a 0

0 1 ´ a

¸

, (30)

being independent of r. This therefore depicts why for large r, η˚ converges to a constant,

in this case to the value 1. Finally, the curve for 3 measurements matches the one for

4 measurements in the approximate range from 0.6 to 0.8. However, I could not find a

mathematical or physical explanation for this behaviour.

3.2 Parity-based measurements

In this subsection, we consider the parity-based measurements for 2, 3 and 4 level systems.

Therefore, we proceed similarly as for the displacement-based measurements, but now we

employ the parity-based POVM elements (25), yielding Figures 5, 6 and 7.

Figure 5: Plotting η˚ against r for the 2 level system for 2, 3 and 4 parity-based measurement
settings. The measurement setting phases are given in Table 1.

Ż First, we will discuss the 2 level system case. Regarding Figure 5, one notices an oscillating

behaviour with respect to r. In the following, we seek to understand the origin of this periodic

pattern.
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The displacement operator for the 2 level system is specified by (23):

Dpαq “ exp

˜

0 ´α˚

α 0

¸

. (31)

Defining X :“
`

0 ´α˚

α 0

˘

, we observe that:

X2 “

˜

´α˚α 0

0 ´α˚α

¸

,

X3 “

˜

0 pα˚q2α

´α˚α2 0

¸

,

X4 “

˜

pα˚q2α2 0

0 pα˚q2α2

¸

.

Thus, one can write

X2k “p´1qkp
?
α˚αq2k1, (32)

X2k`1 “p´1qk`1p
?
α˚αq2kX, (33)

yielding5:

Dpαq “ exppXq “

˜

cosprq sinprqeiθ

´ sinprqe´iθ cosprq

¸

. (34)

5The detailed derivation for this can be found in Appendix A.
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Now, this enables us to compute the projection operators (21) and (22):

Πp`q “Dpαq |0y x0|Dpαq:

“

˜

cos2prq ´ cosprq sinprqeiθ

´ cosprq sinprqe´iθ sin2prq

¸

, (35)

Πp´q “Dpαq |1y x1|Dpαq:

“

˜

sin2prq cosprq sinprqeiθ

cosprq sinprqe´iθ cos2prq

¸

. (36)

Remembering the trigonometric identities

2 sin2prq “ 1 ´ cosp2rq, (37)

2 sinprq cosprq “ sinp2rq, (38)

cos2prq ` sin2prq “ 1, (39)

and that cosp2rq respectively sinp2rq have a periodicity of π, we can conclude that both

projection operators Πp`q and Πp´q are π-periodic, i.e. share the same periodicity. The

POVM elements (25) are given by:

Π1
a|x “

1

2

˜

1 ` apcos2prq ´ sin2prqq ´2a cosprq sinprqeiθ

´2a cosprq sinprqe´iθ 1 ` apsin2prq ´ cos2prqq

¸

. (40)

Accordingly, this explains why Figure 5 depicts a periodic behaviour. The periodicity in

r can be interpreted in a way that the ”steerability” of the considered state oscillates with

respect to r.

Ż Next, we consider the 3 level system. Similar to the former case, Figure 6 displays a

periodic pattern.

In this case, the displacement operator is given by:

Dpαq “ exp

¨

˚

˝

0 ´α˚ 0

α 0 ´
?
2α˚

0
?
2α 0

˛

‹

‚

l jh n

:“X

. (41)
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Figure 6: Plotting η˚ against r for the 3 level system for 2, 3 and 4 parity-based measurement
settings. The measurement setting phases are given in Table 1.

Now, we seek to diagonalize the matrix X “ PJP´1, where P is a matrix composed of the

eigenvectors of X, J is the diagonal matrix constructed from the corresponding eigenvalues,

and P´1 is the matrix inverse of P .

We find:

P “

¨

˚

˚

˚

˚

˝

?
2α˚

α
´α˚
?
2α

´α˚
?
2α

0 ´
i
b

3
2

?
α˚

?
α

i
b

3
2

?
α˚

?
α

1 1 1

˛

‹

‹

‹

‹

‚

, (42)

J “

¨

˚

˚

˝

1 0 0

0 e´i
?
3αα˚

0

0 0 ei
?
3αα˚

˛

‹

‹

‚

, (43)
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P´1 “

¨

˚

˚

˚

˝

?
2α

3α˚ 0 1
3

´ α
3

?
2α˚

i
?
α

?
6

?
α˚

1
3

´ α
3

?
2α˚

´
i
?
α

?
6

?
α˚

1
3

˛

‹

‹

‹

‚

. (44)

With those, we can then compute Dpαq, yielding:

Dpαq “

¨

˚

˚

˚

˝

1
3 cos

`?
3r

˘

` 2
3 ´ 1?

3
e´iθ sin

`?
3r

˘

´ 2
3

?
2
e´2iθ cos

`?
3r

˘

`
?
2
3 e´2iθ

1?
3
eiθ sin

`?
3r

˘

cos
`?

3r
˘

´ 2?
6
e´iθ sin

`?
3r

˘

´ 2
3

?
2
e2iθ cos

`?
3r

˘

`
?
2
3 e2iθ 2?

6
eiθ sin

`?
3r

˘

2
3 cos

`?
3r

˘

` 1
3

˛

‹

‹

‹

‚

.

This enables us now to calculate the parity projection operators (21) and (22) accordingly:

Πp`q “Dpαq
“

|0y x0|Dpαq: ` |2y x2|Dpαq:
‰

, (45)

Πp´q “Dpαq
“

|1y x1|Dpαq:
‰

. (46)

Those yield the following matrices:

Πp`q “

¨

˚

˚

˚

˚

˝

cosp2
?
3rq

6 ` 5
6

?
3 sinp2

?
3rqpcospθq´sinpθqiq

6 ´

?
2e´2iθpcosp2

?
3rq´1q

6
?
3 sinp2

?
3rqpcospθq`sinpθqiq

6 sin2
`?

3r
˘

´

?
6 sinp2

?
3rqpcospθq´sinpθqiq

6

´

?
2e2iθpcosp2

?
3rq´1q

6 ´

?
6 sinp2

?
3rqpcospθq`sinpθqiq

6

cosp2
?
3rq

3 ` 2
3

˛

‹

‹

‹

‹

‚

,

(47)

Πp´q “

¨

˚

˚

˚

˚

˝

sinp
?
3 rq

2

3 ´

?
3 sinp2

?
3 rq pcospθq´sinpθq 1iq

6 ´

?
2 e´θ 2i sinp

?
3 rq

2

3

´

?
3 sinp2

?
3 rq pcospθq`sinpθq iq

6 cos2
`?

3 r
˘

?
6 sinp2

?
3 rq pcospθq´sinpθq iq

6

´

?
2 eθ 2i sinp

?
3 rq

2

3

?
6 sinp2

?
3 rq pcospθq`sinpθq iq

6

2 sinp
?
3 rq

2

3

˛

‹

‹

‹

‹

‚

.

(48)

Here, one realizes that the two operators again share the same periodicity, which is given by
π?
3
. Thus we acquire periodic POVM elements using (25). This explains therefore the origin

of the periodic pattern in Figure 6.

Ż We will not consider the last case for 4 levels as in detail, since the calculations become

too complicated.
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Figure 7: Plotting η˚ against r for the 4 level system for 2, 3 and 4 parity-based measurement
settings. The measurement setting phases are given in Table 1. The same plot with a larger
range is depicted in 8 in order to see the periodicity of η˚ with respect to r more clearly.

At first, one is not able to observe a periodic behaviour as can be seen in Figure 7. However,

when considering a larger range, we obtain Figure 8, enabling us to notice a periodic pattern

in r.

The displacement operator in this case is given by:

Dpαq “ exp

¨

˚

˚

˚

˚

˝

0 ´
?
1α˚ 0 0

?
1α 0 ´

?
2α˚ 0

0
?
2α 0 ´

?
3α˚

0 0
?
3α 0

˛

‹

‹

‹

‹

‚

. (49)

The corresponding projection operators (21) and (22) are then specified by:

Πp`q “Dpαq
“

|0y x0|Dpαq: ` |2y x2|Dpαq:
‰

, (50)

Πp´q “Dpαq
“

|1y x1|Dpαq: ` |3y x3|Dpαq:
‰

, (51)

which we will not compute explicitly. We can however assume that the two projection oper-
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Figure 8: Figure 7 for a larger range. Here, one can see the periodic behaviour more clearly.

ators (21) and (22) also share the same periodicity as was shown for the 2 and 3 level system

cases, demonstrating and manifesting the periodic pattern as depicted in Figure 8.

To summarize, the 2, 3 and 4 level systems for parity-based measurements display a periodic

behaviour of η˚, which can be interpreted as an oscillation of the steerability of the considered

state. These oscillations, however, can be seen as originating from the truncation of the

Hilbert space, and are not expected to occur in a continuous-variable system.

Finally, Figure 9 allows us to see the different data in the same graph and thus to compare

the different curves.

One notices that the different curves for the corresponding number of measurement settings

x converge to the same value of η˚ for r “ 0. We will investigate this in further detail.

From (29) and (40), we obtain the following POVM elements for 2 levels and displacement

and parity-based measurements:

Πa|x “
1

2

˜

1 ` 2ae´r2 ´ a 2are´r2´iθ

2are´r2`iθ 1 ` 2ar2e´r2 ´ a

¸

r“0
ÝÝÑ

1

2

˜

1 ` a 0

0 1 ´ a

¸

, (52)
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Figure 9: Combined curves from Figures 4, 5, 6, 7 in the range r P r0, 3s. Here, nA,d,i

describes the number of measurement settings for the displacement-based measurement and
the i level system, while nA,p,i represents the number of measurement settings for the parity-
based measurement and the i level system.

Π1
a|x “ 1

2

˜

1 ` apcos2prq ´ sin2prqq ´2a cosprq sinprqeiθ

´2a cosprq sinprqe´iθ 1 ` apsin2prq ´ cos2prqq

¸

r“0
ÝÝÑ 1

2

˜

1 ` a 0

0 1 ´ a

¸

. (53)

Next, we can compute the POVM elements for r=0 for the 3 level system and parity-based

measurements with (47) and (48), yielding:

Πp`q “

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

, Πp´q “

¨

˚

˝

0 0 0

0 1 0

0 0 0

˛

‹

‚

(54)
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Then, using (24) and (25), we get:

Π1
a|x “

1

2

¨

˚

˝

1 ` a 0 0

0 0 0

0 0 1 ´ a

˛

‹

‚

. (55)

We can further assume that we obtain a similar matrix for the 4 level case, which we will

however not calculate here.

From the similar matrix entries, one could deduce the corresponding convergence for the

different curves at r “ 0.

3.3 Testing simulated density matrix

In parallel with this project, another master student simulated the preparation of multipartite

entangled states in the high-overtone bulk acoustic wave resonators investigated by the group

of Prof. Y. Chu. In particular, he simulated the preparation of |01y ` |10y entangled states,

which resulted in the density matrix:

ρAB “

¨

˚

˚

˚

˚

˝

0.1755 ` 0.0000i ´0.0315 ` 0.0250i ´0.0039 ` 0.0480i ´0.0011 ` 0.0031i

´0.0315 ´ 0.0250i 0.3369 ` 0.0000i 0.2709 ´ 0.2559i 0.0279 ´ 0.0128i

´0.0039 ´ 0.0480i 0.2709 ` 0.2559i 0.4797 ` 0.0000i 0.0339 ´ 0.0049i

´0.0011 ´ 0.0031i 0.0279 ` 0.0128i 0.0339 ` 0.0049i 0.0079 ` 0.0000i

˛

‹

‹

‹

‹

‚

(56)

This state takes into account the effect of experimental imperfections in the state preparation,

such as decoherence channels, pulse shapes, and measurement errors.

With SDP (26) we compute for the 2 level displacement-based measurement the data shown

in Figure 10, and for the 2 level parity-based measurement the data in Figure 11, both for

2,3 and 4 measurement settings.

Here, a cvx status of 0 denotes the case where the SDP failed to find a corresponding LHS

model whereas 2{3 represents an Inaccurate/Solved result. The latter result can be inter-

preted according to CVX User’s Guide in a way that “ [. . . ] the solver was unable to make

a determination within the default numerical tolerance. However, it determined that the re-

sults obtained satisfied a “relaxed tolerance leve”. Furthermore, 1{3 illustrates the Infeasible

case, where ” [. . . ] the problem has been proven to be infeasible through the discovery of an

unbounded direction”. For a cvx-status equal to 1, a solution to the SDP has been found.
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Figure 10: Plotting the cvx-status against r for the 2 level displacement-based measurement
for 2, 3 and 4 measurement settings and the simulated density matrix ρAB. The measurement
setting phases are given in Table 1. A value of 0 denotes the ”Failed” case, 1/3 illustrates the
status ”Infeasible” wheras 2/3 stands for ”Inaccurate/Solved” and 1 represents the ”Solved”
scenario.

Remember that if the SDP fails to find a LHS model, the considered density matrix is con-

sidered to be steerable, while in the opposite case, it will be unsteerable. Thus, one can

conclude that only if cvx status takes the value 1, a LHS model has truly been found and

ρAB is unsteerable. For the outcome 2/3, a LHS model can be found when we accept a

greater numerical tolerance leve, so in this case, it is a bit unclear if ρAB is steerable or not.

Finally, for the outcome 1/3, we can be sure that no LHS model can be created, thus the

density matrix has been determined to be steerable.

From Figures 10 and 11, we can clearly see that the cvx status depends on r in both scenarios.

Indeed, let us first discuss Figure 10 in greater detail. For nA,d,2 “ 2, no true LHS model can

be found until r reaches approximately 6. Upon there, it jumps from the Inaccurate/Solved

status to the Solved status. Only from r greater than approximately 6.6, one can deduce

that (56) is and stays unsteerable. Next, in the case of nA,d,2 “ 3 and nA,d,2 “ 4, one notices
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Figure 11: Plotting the cvx-status against r for the 2 level parity-based measurement for
2, 3 and 4 measurement settings and the simulated density matrix ρAB. The measurement
setting phases are given in Table 1. A value of 0 denotes the ”Failed” case, 1/3 illustrates the
status ”Infeasible” wheras 2/3 stands for ”Inaccurate/Solved” and 1 represents the ”Solved”
scenario.

that the SDP (26) is able to find a LHS model for (56) at r being close to 0. Then, the SDP

fails to find again a LHS model until r « 4, after which it keeps outputting the status Solved.

Thus, a similar behaviour of the different curves can be observed. First, (56) comes out to

be steerable (except for an r close to 0 for nA,d,2 “ 3 and nA,d,2 “ 4) up to a point, where it

then switches to a permanent unsteerable setting.

Secondly, we will have a closer look at Figure 11. What stands out is that for nA,p,2 “ 2,

the SDP outputs the status ”Failed” for every r, i.e. no LHS model can be found. Thus,

(56) will be steerable for all r in that case. This notion is similar for nA,p,2 “ 3. However,

for nA,p,2 “ 4, one realizes that the ”steerability setting” of (56) has a periodic behaviour.

Indeed, (56) becomes unsteerable with a periodic interval of about 3 units.

Thus, it can be deduced that for the density matrix (56), finding a LHS model and determining

whether it is steerable respectively unsteerable is particularly dependent on r.
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3.4 Steering inequality

3.4.1 Dual SDP result

In order to obtain the steering inequalities, we will make use of the dual solution of the

SDP (13). According to Ref.[17] it should be possible to obtain from this the positive

semidefinite matrices Fa|x. Those Fa|x matrices will then allow us to define the steering

inequality (16) as explained previously. Any assemblage {σ1
a|x}a,x providing a larger value

than S1
max is then steerable, and hence confirms that the shared state from which it was

obtained is entangled.

Nevertheless, when implementing the SDP program (13) in Matlab and trying to reproduce

the results of Ref.[17], we run into the issue that the output matrices were neither positive

semidefinite, nor matching the steering matrices GR in (27) and G1
x for x “ 1, 2, 3, 4 in (28).

Our results can be seen in section B.

To make sure that there was no potential bug or logical error in our code, we decided to

rewrite it from scratch. Nevertheless, we found exactly the same results. In addition, a

GitHub link was found in Ref.[26], containing code snippets about quantum steering and

SDP’s, which only had to be slightly adapted to match our SDP from (13). The modified

code snippet depicts an additional approach computing the SDP (13) and can be found in

section B. By comparing the matrices from the different procedures, so from the initial SDP

and the SDP from Ref.[26], one could notice that they are very alike. Now, this was confusing,

since we were still not able to reproduce (27) and (28).

In addition, we even compute analytically the dual SDP (13), which also gave us the same

results. The derivation of the dual SDP as well as the corresponding results can be seen in

section C.

Since we have obtained very similar results for the dual SDP by means of three independent

tests and approaches, we will assume that they are correct. In fact a possibility remains, that

the F positive semidefinite matrices entering a steering inequality have to be constructed

from the dual SDP outputs in some nontrivial way. We did not have the time to progress

along this direction during this project, but we are in touch with the authors of Ref.[17] and

will look for an answer to this issue.
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3.4.2 Steering inequalities

Assuming that our results are valid, we can now compute the SDP (16) for the different

scenarios, i.e. for displacement-based measurements for a 2 level system for x P t2, 3, 4u as

well as for parity-based measurements for 2,3 and 4 level systems for x P t2, 3, 4u. In Figures

12, 13, 14 and 15, S1
max is plotted against r, i.e. the ”steering bound” in relation to r.

Figure 12: Plotting S1
max against r for the 2 level system for 2, 3 and 4 displacement-based

measurement settings.

In addition, Figure 16 displays all the previous curves in order to see the individual behaviours

of S1
max with respect to r.

As a reminder, the steering inequalities we are considering are of the form:

Tr
ÿ

a,x

Fa|xσ
1
a|x ď S1

max. (57)

Any assemblage {σ1
a|x}a,x that is providing a larger value than S1

max, i.e. leads to a violation of

the above equation, is steerable, and hence confirms that the shared state is indeed entangled.

Taking a closer look at Figures 12, 13, 14 and 15, one notices how the steerability bound S1
max

depends on r. Indeed, from Figure 12, S1
max seems to be declining exponentially with r for the
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Figure 13: Plotting S1
max against r for the 2 level system for 2, 3 and 4 parity-based mea-

surement settings.

2 level displacement measurements and tends to go to 0. However, we cannot find a physical

interpretation for this, since we have lost the positive semidefinite constraint regarding the

Fa|x matrices. Furthermore, for the parity measurements, one can also recognize in Figures

13, 14 and 15 how S1
max oscillates with respect to r and illustrate the same periodic pattern

we initially found when investigating the behaviour of η˚.

In the future, it would be interesting to find a steering inequality based on Wigner functions,

similarly to the Bell-type inequality found in Ref.[27],[28]. These ideas are sketched in section

D.

4 Conclusion

During this project, we looked at the EPR steering phenomenon for displacement and parity-

based detection in multiple levels systems. In a first part, we searched for the critical value of

the detection efficiency and discovered that the value of η˚ increases differently with respect to

r for different number of measurement settings. We came across the notion that when looking

at parity-based measurements, we were able to observe some periodic behaviours. This was
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Figure 14: Plotting S1
max against r for the 3 level system for 2, 3 and 4 parity-based mea-

surement settings.

in accordance with the results we acquired with the inspection of S1
max. Unfortunately, we

need to make the remark that we encountered an issue during the analysis of this project.

Indeed, we were unable to reproduce the correct form of the steering functionals as given

in Ref.[17]. In order to check for this, we employed different techniques and procedures in

order to find possible mistakes or logical errors in our analysis. However, this seemed not

to be the case, as we found very similar results from independent method. Therefore, we

assumed that our initial approach was valid. Finally, we obtained a simulated density matrix

for 2 entangled qubits with realistic experimental parameters and imperfections. Here, we

came upon the idea that when considering displacement-based measurements, the simulated
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Figure 15: Plotting S1
max against r for the 4 level system for 2, 3 and 4 parity-based mea-

surement settings.

density matrix can be seen to be steerable for small r, up to a critical value of r that does not

allow to detect steering anymore. This was unlike the case where we looked at parity-based

measurements. Indeed, for 2 and 3 measurement settings, the simulated density matrix came

out to be steerable for all r.

In the future, our result could be useful to detect EPR steering between pairs of systems based

on parity measurements. Examples include Wigner-function measurements on entangled

mechanical oscillators, such as in the experiment performed by the group of Prof. Y. Chu.
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Figure 16: Combined curves from Figures 12, 13, 14, 15 in the range r P r0, 6s and S1
max P

r0, 500s. Here, nA,d,i describes the number of measurement settings for the displacement-based
measurement and the i level, while nA,p,i represents the number of measurement settings for
the parity-based measurement and the i level.
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A Definitions and calculation steps

This section revisits various definitions and derivations, some of which may be important for

understanding the individual calculation steps.

Ż The representation of the coherent state |αy in the Fock basis [29] is given by

|αy “ e
´|α|2

2

8
ÿ

n“0

αn

?
n!

|ny . (58)

So computing the projector in (17) gives:

Πpαq “ e´|α|2
8
ÿ

n,m“0

αnpα˚qm
?
n!m!

|ny xm| . (59)

Hence, restricting the Hilbert space to two levels we have

Πpαq “

˜

e´r2 re´r2´iθ

re´r2`iθ r2e´r2

¸

. (60)

Ż We seek to find the matrix representation of the creation operator â: for the 1-dimensional

harmonic oscillator. Remember that for an energy eigenstate |ny, we have:

â: |ny “
?
n ` 1 |n ` 1y . (61)

Computing the matrix elements gives

â:

ij “ xi| â: |jy “
a

j ` 1δipj`1q , (62)

and therefore

â: “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 ¨ ¨ ¨
?
1 0 0 0 ¨ ¨ ¨

0
?
2 0 0 ¨ ¨ ¨

0 0
?
3 0 ¨ ¨ ¨

0 0 0
?
4 ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (63)
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as well as

â “

¨

˚

˚

˚

˚

˚

˚

˝

0
?
1 0 0 0 ¨ ¨ ¨

0 0
?
2 0 0 ¨ ¨ ¨

0 0 0
?
3 0 ¨ ¨ ¨

0 0 0 0
?
4 ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

˛

‹

‹

‹

‹

‹

‹

‚

. (64)

Ż We can split the exponential series from (31) into terms of even and odd powers in X:

exppXq “

8
ÿ

k“0

X2k

p2kq!
`

8
ÿ

k“0

X2k`1

p2k ` 1q!
. (65)

Substituting (32) and (33) into (65) then states:

exppXq “

8
ÿ

k“0

p´1qkp
?
α˚αq2k

p2kq!
1 ´

8
ÿ

k“0

p´1qkp
?
α˚αq2k

p2k ` 1q!
X

“ cos
´?

α˚α
¯

1 ´

8
ÿ

k“0

p´1qkp
?
α˚αq2k`1

p2k ` 1q!
?
α˚α

X

“ cos
´?

α˚α
¯

1 ´
1

?
α˚α

sin
´?

α˚α
¯

X.

With α “ exp
`

reiθ
˘

, we note that
?
α˚α “

?
r2 “ r, since r ě 0 in our case. With this, we

finally obtain (34).

Ż The state (4) for 2, 3 and 4 levels is explicitly given by the following matrices:

|Ψy 2 “
1

?
2

´

0 1 1 0
¯⊺

,

|Ψy 3 “
1

?
2

´

0 1 0 1 0 0 0 0 0
¯⊺

,

|Ψy 4 “
1

?
2

´

0 1 0 0 1 0 0 0 0 0 0 0 0 0
¯⊺

.

Ż Let A and B represent the two subsystems that make up the composite system defined

by the density operator ρAB. A generic two-qubit state ρAB can be expanded with respect

35 of 64



A DEFINITIONS AND CALCULATION STEPS

to the orthonormal basis {|0, 0y , |0, 1y , |1, 0y , |1, 1y} as:

ρAB “ ρ11 |0, 0y x0, 0| ` ρ12 |0, 0y x0, 1| ` ¨ ¨ ¨ ` ρ44 |1, 1y x1, 1| . (66)

Then, the partial trace over the subsystem A, given by TrA, is specified by the expression:

TrArρABs :“
ÿ

i

pxi|A b 1Bq ρAB p|iyA b 1Bq , (67)

where |iy represents any orthonormal basis for the Hilbert space HA of the subsystem A [30].

For convenience we state the formula for two qubits [31]:

TrArρABs “

¨

˚

˚

˚

˚

˝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

˛

‹

‹

‹

‹

‚

(68)

“

˜

ρ11 ` ρ33 ρ12 ` ρ34

ρ21 ` ρ43 ρ22 ` ρ44

¸

. (69)
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In this section, we present the results for the F and Gmatrices for the different methods of the

SDP, so for our initial SDP program and the modified SDP code from Ref.[26]. Consequently,

we can get a sense whether we have a bug in our initial code or if we can assume that it outputs

valid results. In addition, we consider another approach for this, which will be explained in

section C.

The following outputs are for r “ 0.2 and the 4 measurement settings θ1 “ 0, θ2 “ π{2,

θ3 “ π and θ4 “ 3π{2 considering displacement measurements for a 2 level system.

1

2 % First Draft of SDP

3

4 % results of F_{a|x}: + is given by p, - is given my m, x=1,2,3 or 4

5

6 Fp1 =

7

8 -0.4196 + 0.0000i 2.0562 - 0.0000i

9 2.0562 + 0.0000i -30.2315 + 0.0000i

10

11 Fm1 =

12

13 -0.4196 + 0.0000i -0.0000 - 0.0000i

14 -0.0000 + 0.0000i -40.3082 + 0.0000i

15

16 Fp2 =

17

18 0.0000 + 0.0000i 0.0000 - 2.0562i

19 0.0000 + 2.0562i 10.0772 + 0.0000i

20

21 Fm2 =

22

23 1.0e-03 *

24

25 -0.0000 + 0.0000i 0.0000 - 0.0000i

26 0.0000 + 0.0000i 0.4885 + 0.0000i

27

28 Fp3 =

29

30 -0.0000 + 0.0000i -2.0562 + 0.0000i

31 -2.0562 - 0.0000i 10.0772 + 0.0000i

32

33 Fm3 =
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34

35 1.0e-03 *

36

37 -0.0000 + 0.0000i -0.0000 + 0.0000i

38 -0.0000 - 0.0000i 0.4885 + 0.0000i

39

40 Fp4 =

41

42 -0.0000 + 0.0000i 0.0000 + 2.0562i

43 0.0000 - 2.0562i 10.0772 + 0.0000i

44

45 Fm4 =

46

47 1.0e-03 *

48

49 -0.0000 + 0.0000i 0.0000 + 0.0000i

50 0.0000 - 0.0000i 0.4885 + 0.0000i

51

52

53 % results of the steering matrices GRprime and Gxprime

54

55 GRprime =

56

57 -0.4196 + 0.0000i -0.0000 - 0.0000i

58 -0.0000 + 0.0000i -40.3067 + 0.0000i

59

60 Gxprime1 =

61

62 0.0000 + 0.0000i 2.0562 + 0.0000i

63 2.0562 - 0.0000i 10.0767 + 0.0000i

64

65 Gxprime2 =

66

67 0.0000 + 0.0000i 0.0000 - 2.0562i

68 0.0000 + 2.0562i 10.0767 + 0.0000i

69

70 Gxprime3 =

71

72 0.0000 + 0.0000i -2.0562 + 0.0000i

73 -2.0562 - 0.0000i 10.0767 + 0.0000i

74

75 Gxprime4 =

76

77 0.0000 + 0.0000i 0.0000 + 2.0562i
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78 0.0000 - 2.0562i 10.0767 + 0.0000i

1

2 % Second Draft of SDP

3

4 % results of F_{a|x}: + is given by p, - is given my m, x=1,2,3 or 4

5

6 Fp1 =

7

8 -0.4196 + 0.0000i 2.0566 - 0.0000i

9 2.0566 + 0.0000i -30.2432 + 0.0000i

10

11 Fm1 =

12

13 -0.4196 + 0.0000i -0.0000 - 0.0000i

14 -0.0000 + 0.0000i -40.3242 + 0.0000i

15

16 Fp2 =

17

18 0.0000 + 0.0000i -0.0000 - 2.0566i

19 -0.0000 + 2.0566i 10.0811 + 0.0000i

20

21 Fm2 =

22

23 1.0e-10 *

24

25 -0.1114 + 0.0000i 0.0007 - 0.0033i

26 0.0007 + 0.0033i -0.0153 + 0.0000i

27

28 Fp3 =

29

30 0.0000 + 0.0000i -2.0566 - 0.0000i

31 -2.0566 + 0.0000i 10.0811 + 0.0000i

32

33 Fm3 =

34

35 1.0e-10 *

36

37 -0.3022 + 0.0000i 0.0043 - 0.0003i

38 0.0043 + 0.0003i -0.0386 + 0.0000i

39

40 Fp4 =

41

42 0.0000 + 0.0000i 0.0000 + 2.0566i
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43 0.0000 - 2.0566i 10.0811 + 0.0000i

44

45 Fm4 =

46

47 1.0e-10 *

48

49 -0.2203 + 0.0000i 0.0048 + 0.0045i

50 0.0048 - 0.0045i -0.0597 + 0.0000i

51

52 % results of the steering matrices GRprime and Gxprime

53

54 GRprime =

55

56 -0.4196 + 0.0000i -0.0000 - 0.0000i

57 -0.0000 + 0.0000i -40.3242 + 0.0000i

58

59 Gxprime1 =

60

61 0.0000 + 0.0000i 2.0566 - 0.0000i

62 2.0566 + 0.0000i 10.0811 + 0.0000i

63

64 Gxprime2 =

65

66 0.0000 + 0.0000i -0.0000 - 2.0566i

67 -0.0000 + 2.0566i 10.0811 + 0.0000i

68

69 Gxprime3 =

70

71 0.0000 + 0.0000i -2.0566 - 0.0000i

72 -2.0566 + 0.0000i 10.0811 + 0.0000i

73

74 Gxprime4 =

75

76 0.0000 + 0.0000i -0.0000 + 2.0566i

77 -0.0000 - 2.0566i 10.0811 + 0.0000i

One can notice that the matrices for the 2 strategies are very similar, are not positive semidef-

inite and do not match with (27) and (28).

The code snippets for the different SDP methods are presented in the following.

1

2 % First SDP approach

3
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4 cvx_begin SDP quiet

5 cvx_solver SeDuMi %mosek

6 cvx_precision best

7

8 variables p % defines eta

9 variable sigmaL(dB*Ndet ,dB) complex % vector containing the sigma_B(a|x

)

10 dual variables F{Ndet ,dB}

11 dual variable K{1,1}

12

13 maximise( p )

14

15 % the following computes the sum of D_lambda(a,x)*sigma_lambda over all

lambda , and asks it to be equal to the assemblage

16 % further we solve the dual problem where F is a 2x2 matrix

17 subject to

18

19 p >= 0;

20 p <= 1;

21

22 % sig_a|x == \sum_lam D(a|x,lam) sigmaL

23 for i = 1:mA*nA

24 F{i} : Tensor(SingleParty(i,:),IddB)*sigmaL == p * assemblageS (1+(i

-1)*dB:i*dB ,:) + (1-p) * assemblageUS (1+(i-1)*dB:i*dB ,:);

25 end

26

27 % ask every sigmaL to be positive semidefinite

28 for i = 1:Ndet

29 sigmaL (1+(i-1)*dB:i*dB ,:) == hermitian_semidefinite(dB);

30 end

31

32 % sum_lam tr(sigmaL) == 1

33 sum = zeros(dB ,dB);

34 for i = 1:Ndet

35 sum = (sum + sigmaL (1+(i-1)*dB:i*dB ,:));

36 end

37 K{1} : trace(sum) == 1;

38

39 cvx_end

40

41

42

43 % Second SDP approach (modified version from GitHub)

44
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45 cvx_begin sdp quiet

46 cvx_solver SeDuMi

47

48 variable p % defines eta

49 variable siglam(dB,dB,Ndet) hermitian semidefinite % siglam are the

members of the LHS model

50 dual variable F

51

52 maximise( p )

53

54 subject to

55

56 p >= 0;

57 p <= 1;

58

59 % sig_a|x == \sum_lam D(a|x,lam) sig_lam

60 F : p*sigmaS + (1-p)*sigmaUS == squeeze(sum(repmat(siglam ,[1,1,1,mA ,nA])

...

61 .* permute(repmat(SingleParty ,[1,1,1,dB,dB]) ,[4,5,3,1,2]) ,3));

62

63 % ensures normalisation

64 trace(sum(siglam ,3)) == 1;

65

66 cvx_end
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C Dual SDP

In this section, we will present our procedure to analytically derive the dual SDP problem to

the SDP (13) in the case of 4 measurement settings.

C.1 Duality theory

Analogously to linear programming, given a general SDP of the form6

min
XPSn

xC,XySn (70)

subject to xAi, XySn “ bi i “ 1, . . . ,m (71)

X ľ 0, (72)

(the primal problem or P-SDP), we define the dual semidefinite program (D-SDP) as

max
yPRm

xb, yyRm (73)

subject to
řm

i“1 yiAi ĺ C, (74)

where for any two matrices P and Q, P ĺ Q means P ´ Q ĺ 0 [22].

C.2 Derivation

Our goal now is to solve the P-SDP and D-SDP on the following problem:

η˚ ” max η 0 ď η ď 1 (75)

subject to
ÿ

λ

Dλpa|xqσλ “ ησS
a|xpηq ` p1 ´ ηqσUS

a|x pηq @a, x (76)

Tr
ÿ

λ

σλ “ 1, σλ ě 0. (77)

C.2.1 Primal

For the P-SDP, we first define the corresponding matrices for our problem7.

We have:

6Remark: remember that xA,Xy “ Tr(A ¨ X:).
7Note: X, A0, Atr, Aa|x and C are 34x34 matrices in this specific case of 4 measurement settings.
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X “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

σ0000

σ0001
. . .

σ1111

x

y

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (78)

where σλ represent hermitian 2x2 matrices with λ = (0000,0001, . . . ,1111), x = η and y “

p1 ´ ηq. One immediately sees that X ľ 0.

Next,

C “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0
. . .

0

´1

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (79)

Those definitions of the matrices make sense since max f “ ´minp´fq for a function f .

Then, minxC,Xy “ ´maxx “ ´max η, which in fact describes the maximisation problem

in equation (75).

Now, we consider the constraints that 0 ď η ď 1 and that Tr
ř

λ σλ=1.

• 0 ď η ď 1:

We define:

A0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0
. . .

0

1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (80)

such that xA0, Xy “ x ` y “ η ` 1 ´ η “ 1 ” b0.
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• Tr
ř

λ σλ=1:

In addition:

Atr “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

1
. . .

1

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (81)

such that xAtr, Xy = Tr
ř

λ σλ “ 1 ” btr.

Next, equation (76) can be rewritten as:

˜

ÿ

λ

Dλpa|xqσλ ´ ησS
a|xpηq ´ p1 ´ ηqσUS

a|x pηq

¸i,j

“ 0 @a, x i, j P t1, 2u. (82)

This can then be expressed as:

xpAa|xqi,j , Xy “ pba|xqi,j @a, x i, j P t1, 2u, (83)

where @a, x, we have:

pAa|xqi,j “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

D0000pa|xq

˜

δij δipj´1q

δpi´1qj δpi´1qpj´1q

¸

D0001pa|xq

˜

δij δipj´1q

δpi´1qj δpi´1qpj´1q

¸

. . .

D1111pa|xq

˜

δij δipj´1q

δpi´1qj δpi´1qpj´1q

¸

´pσS
a|xqi,j

´pσUS
a|x qi,j

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and

pba|xqi,j “ 0.

The D0000pa|xq
` δij δipj´1q

δpi´1qj δpi´1qpj´1q

˘

, . . . , D1111pa|xq
` δij δipj´1q

δpi´1qj δpi´1qpj´1q

˘

, σS
a|x and σUS

a|x are 2x2 ma-

trices, where δ11=1 and 0 otherwise. In the following, we will in some calculation steps just

write Dλpa|xq for Dλpa|xq¨
` δij δipj´1q

δpi´1qj δpi´1qpj´1q

˘

due to spacing reasons.
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TheD0000pa|xq, . . . ,D1111pa|xq denote the deterministic response function defined byDλpa|xq “

δa,λpxq, where λpxq denotes the value of the outcome at position x. This means that Dλpa|xq

equals one for strings λ which predict the outcome a for the measurement x and zero otherwise

[8].

With the definition of pAa|xqi,j , we thus have:

xpAa|xqi,j , Xy “D0000pa|xq ¨ pσij
0000δij ` σ

ipj´1q

0000 δipj´1qq ` D0000pa|xq ¨ pσ
pi´1qj
0000 δpi´1qj

`σ
pi´1qpj´1q

0000 δpi´1qpj´1qq ` D1111pa|xq ¨ pσij
1111δij ` σ

ipj´1q

1111 δipj´1qq

`D1111pa|xq ¨ pσ
pi´1qj
1111 δpi´1qj ` σ

pi´1qpj´1q

1111 δpi´1qpj´1qq ´ xpσS
a|xqi,j ´ ypσUS

a|x qi,j .

This matches with the expression (82).

To sum up, we now have the following P-SDP, expressed in the form of (70):

min xC,Xy (84)

subject to xA0, Xy “ b0 (85)

xAtr, Xy “ btr (86)

xpAa|xqi,j , Xy “ pba|xqi,j @a, x i, j P t1, 2u. (87)

C.2.2 Dual

To solve the dual problem, we introduce the 34-dimensional vectors:

b “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

pb`1|1q1,1

pb`1|1q1,2

pb`1|1q2,1

pb`1|1q2,2

...

pb´1|4q2,2

b0

btr

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, y “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

py`1|1q1,1

py`1|1q1,2

py`1|1q2,1

py`1|1q2,2

...

py´1|4q2,2

y0

ytr

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where each entry of the y vector illustrates a specific dual variable. In our case, the dual

variables ya|x for a P t`1,´1u, x P t1, 2, 3, 4u will represent the 2x2 Fa|x matrices from
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Ref.[17] and y0 and ytr are the corresponding dual scalars of b0 and btr.

From equation (73), we notice that we seek to maximise xb, yy “ y0 ` ytr.

Similar to the subsection above, we will now consider the constraint from equation (74):

34
ÿ

k“1

ykAk ´ C ĺ 0. (88)

We will separate some individual steps for a better overview.

For k “ 1, . . . , 8:
¨

˚

˚

˚

˚

˚

˚

˚

˝

D0000pa|xq ¨
ř

a,x ya|x

. . .

D1111pa|xq ¨
ř

a,x ya|x

´
ř

a,x,i,jpσ
S
a|xqi,j ¨ yi,ja|x

´
ř

a,x,i,jpσ
US
a|x qi,j ¨ yi,ja|x

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

For k “ 9, . . . , 10:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ytr

ytr
. . .

ytr

y0

y0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Thus we get the constraint:
¨

˚

˚

˚

˚

˚

˚

˚

˝

D0000pa|xq ¨
ř

a,x ya|x ` ytr ¨ I2
. . .

D1111pa|xq ¨
ř

a,x ya|x ` ytr ¨ I2
y0 ` 1 ´

ř

a,x,i,jpσ
S
a|xqi,j ¨ pya|xqi,j

y0 ´
ř

a,x,i,jpσ
US
a|x qi,j ¨ pya|xqi,j

˛

‹

‹

‹

‹

‹

‹

‹

‚

ĺ 0,

where
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ya|x :“

˜

y1,1a|x y1,2a|x

y2,1a|x y2,2a|x

¸

.

To sum up, we now have the following D-SDP:

maxyPRmxb, yyRm (89)

subject to ytr ¨ I2 `
ř

a,xDλpa|xq ¨ ya|x ĺ 0 @λ (90)

y0 ` 1 ´
ř

a,xTrrσ
S
a|x ¨ ya|xs ď 0 (91)

y0 ´
ř

a,xTrrσ
US
a|x ¨ ya|xs ď 0 (92)

Respectively:

maxyPRmxb, yyRm (93)

subject to ´ytr ¨ I2 ´
ř

a,xDλpa|xq ¨ ya|x ľ 0 @λ (94)

´y0 ´ 1 `
ř

a,xTrrσ
S
a|x ¨ ya|xs ě 0 (95)

´y0 `
ř

a,xTrrσ
US
a|x ¨ ya|xs ě 0 (96)

C.3 Calculation

C.3.1 Primal

For the primal part, I am quite confident that the acquired values seem fine, so we will jump

straight to the dual problem. Matlab gives us the following values for x and y for r “ 0.2

and 4 measurement settings for the 2 level case and displacement-based measurements:

x “ η “ 0.4196,

y “ 1 ´ η “ 0.5804.

C.3.2 Dual

We seek to maximize xb, yy = y0 ` ytr.

We will go over the constraints in detail. Remembering that Dλpa|xq “ δa,λpxq, we get for
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example:

ÿ

a,x

D0000pa|xqya|x “ 0 ¨ y1|1 ` 0 ¨ y1|2 ` 0 ¨ y1|3 ` 0 ¨ y1|4 ` 1 ¨ y´1|1 ` 1 ¨ y´1|2

` 1 ¨ y´1|3 ` 1 ¨ y´1|4

Thus, we obtain:

´ ytr ¨ I2 ´
ÿ

a,x

D0000pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y´1|1 ` 1 ¨ y´1|2 ` 1 ¨ y´1|3 ` 1 ¨ y´1|4q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D0001pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|4 ` 1 ¨ y´1|1 ` 1 ¨ y´1|2 ` 1 ¨ y´1|3q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D0010pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|3 ` 1 ¨ y´1|1 ` 1 ¨ y´1|2 ` 1 ¨ y´1|4q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D0011pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|3 ` 1 ¨ y1|4 ` 1 ¨ y´1|1 ` 1 ¨ y´1|2q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D0100pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|2 ` 1 ¨ y´1|1 ` 1 ¨ y´1|3 ` 1 ¨ y´1|4q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D0101pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|2 ` 1 ¨ y1|4 ` 1 ¨ y´1|1 ` 1 ¨ y´1|3q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D0110pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|2 ` 1 ¨ y1|3 ` 1 ¨ y´1|1 ` 1 ¨ y´1|4q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D0111pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|2 ` 1 ¨ y1|3 ` 1 ¨ y1|4 ` 1 ¨ y´1|1q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D1000pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|1 ` 1 ¨ y´1|2 ` 1 ¨ y´1|3 ` 1 ¨ y´1|4q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D1001pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|1 ` 1 ¨ y1|4 ` 1 ¨ y´1|2 ` 1 ¨ y´1|3q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D1010pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|1 ` 1 ¨ y1|3 ` 1 ¨ y´1|2 ` 1 ¨ y´1|4q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D1011pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|1 ` 1 ¨ y1|3 ` 1 ¨ y1|4 ` 1 ¨ y´1|2q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D1100pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|1 ` 1 ¨ y1|2 ` 1 ¨ y´1|3 ` 1 ¨ y´1|4q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D1101pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|1 ` 1 ¨ y1|2 ` 1 ¨ y1|4 ` 1 ¨ y´1|3q ľ 0

´ ytr ¨ I2 ´
ÿ

a,x

D1110pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|1 ` 1 ¨ y1|2 ` 1 ¨ y1|3 ` 1 ¨ y´1|4q ľ 0
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´ ytr ¨ I2 ´
ÿ

a,x

D1111pa|xqya|x “ ´ytr ¨ I2 ´ p1 ¨ y1|1 ` 1 ¨ y1|2 ` 1 ¨ y1|3 ` 1 ¨ y1|4q ľ 0.

For the second constraint, we will first present the values of the matrices8 σS and σUS :

σS “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.0192 ` 0.0000i 0.0961 ` 0.0000i

0.0961 ` 0.0000i 0.4804 ` 0.0000i

0.4808 ` 0.0000i ´0.0961 ` 0.0000i

´0.0961 ` 0.0000i 0.0196 ` 0.0000i

0.0192 ` 0.0000i 0.0000 ´ 0.0961i

0.0000 ` 0.0961i 0.4804 ` 0.0000i

0.4808 ` 0.0000i ´0.0000 ` 0.0961i

´0.0000 ´ 0.0961i 0.0196 ` 0.0000i

0.0192 ` 0.0000i ´0.0961 ´ 0.0000i

´0.0961 ` 0.0000i 0.4804 ` 0.0000i

0.4808 ` 0.0000i 0.0961 ` 0.0000i

0.0961 ´ 0.0000i 0.0196 ` 0.0000i

0.0192 ` 0.0000i ´0.0000 ` 0.0961i

´0.0000 ´ 0.0961i 0.4804 ` 0.0000i

0.4808 ` 0.0000i 0.0000 ´ 0.0961i

0.0000 ` 0.0961i 0.0196 ` 0.0000i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

8The following statement applies to σS and σUS . The first 2x2 matrix represents the p`1|1q, the second
2x2 matrix p´1|1q, etc.
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σUS “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.9608 0

0 0

0.0392 0

0 0

0.9608 0

0 0

0.0392 0

0 0

0.9608 0

0 0

0.0392 0

0 0

0.9608 0

0 0

0.0392 0

0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

As a calculation step, let us say σ is the 2x2 matrix

˜

a b

c d

¸

, with a, b, c, d P C. Then:

Trpσ ¨ ya|xq “ a ¨ pya|xq1,1 ` b ¨ pya|xq2,1 ` c ¨ pya|xq1,2 ` d ¨ pya|xq2,2.

We obtain:

´ y0 ´ 1 ` 0.0192 ¨ py1|1q1,1 ` 0.0961 ¨ py1|1q2,1 ` 0.0961 ¨ py1|1q1,2 ` 0.4804 ¨ py1|1q2,2`

0.4808 ¨ py´1|1q1,1 ´ 0.0961 ¨ py´1|1q2,1 ´ 0.0961 ¨ py´1|1q1,2 ` 0.0196 ¨ py´1|1q2,2`

0.0192 ¨ py1|2q1,1 ´ 0.0961i ¨ py1|2q2,1 ` 0.0961i ¨ py1|2q1,2 ` 0.4804 ¨ py1|2q2,2`

0.4808 ¨ py´1|2q1,1 ` 0.0961i ¨ py´1|2q2,1 ´ 0.0961i ¨ py´1|2q1,2 ` 0.0196 ¨ py´1|2q2,2`

0.0192 ¨ py1|3q1,1 ´ 0.0961 ¨ py1|3q2,1 ´ 0.0961 ¨ py1|3q1,2 ` 0.4804 ¨ py1|3q2,2`

0.4808 ¨ py´1|3q1,1 ` 0.0961 ¨ py´1|3q2,1 ` 0.0961 ¨ py´1|3q1,2 ` 0.0196 ¨ py´1|3q2,2`

0.0192 ¨ py1|4q1,1 ` 0.0961i ¨ py1|4q2,1 ´ 0.0961i ¨ py1|4q1,2 ` 0.4804 ¨ py1|4q2,2`

0.4808 ¨ py´1|4q1,1 ´ 0.0961i ¨ py´1|4q2,1 ` 0.0961i ¨ py´1|4q1,2 ` 0.0196 ¨ py´1|4q2,2 ě 0.

51 of 64



C.3 Calculation C DUAL SDP

As well as:

´ y0 ` 0.9608 ¨ py1|1q1,1 ` 0.0392 ¨ py´1|1q1,1 ` 0.9608 ¨ py1|2q1,1 ` 0.0392 ¨ py´1|2q1,1`

0.9608 ¨ py1|3q1,1 ` 0.0392 ¨ py´1|3q1,1 ` 0.9608 ¨ py1|4q1,1 ` 0.0392 ¨ py´1|4q1,1 ě 0.

Implementing this D-SDP in Matlab gives very similar results for the different matrices as

in the previous appendix section. The code snippet can be found in the appendix section

C.3.3.

1

2

3 F1 =

4

5 -0.4196 - 0.0000i 2.0562 + 0.0000i

6 2.0564 - 0.0001i -30.2304 - 0.0000i

7

8

9 F2 =

10

11 -0.4196 - 0.0000i -0.0000 + 0.0000i

12 0.0003 - 0.0001i -40.3071 - 0.0000i

13

14

15 F3 =

16

17 0.0000 + 0.0000i 0.0000 - 2.0562i

18 -0.0000 + 2.0567i 10.0768 + 0.0000i

19

20

21 F4 =

22

23 1.0e-03 *

24

25 0.0000 + 0.0000i 0.0011 - 0.0003i

26 -0.0003 + 0.5271i 0.0656 + 0.0000i

27

28

29 F5 =

30

31 -0.0000 + 0.0000i -2.0562 - 0.0000i

32 -2.0565 + 0.0001i 10.0768 + 0.0000i

33

34
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35 F6 =

36

37 1.0e-03 *

38

39 -0.0000 + 0.0000i 0.0013 - 0.0002i

40 -0.2736 + 0.0530i 0.0562 + 0.0000i

41

42

43 F7 =

44

45 -0.0000 - 0.0000i 0.0000 + 2.0562i

46 0.0000 - 2.0567i 10.0768 + 0.0000i

47

48

49 F8 =

50

51 1.0e-03 *

52

53 -0.0000 - 0.0000i 0.0014 - 0.0001i

54 0.0104 - 0.5159i 0.0656 + 0.0000i

55

56

57 Grprime =

58

59 -0.4196 + 0.0000i -0.0000 - 0.0000i

60 -0.0000 + 0.0000i -40.3069 - 0.0000i

61

62

63 G1prime =

64

65 0.0000 + 0.0000i 2.0562 + 0.0000i

66 2.0562 - 0.0000i 10.0767 + 0.0000i

67

68

69 G2prime =

70

71 -0.0000 + 0.0000i 0.0000 - 2.0562i

72 0.0000 + 2.0562i 10.0767 + 0.0000i

73

74

75 G3prime =

76

77 0.0000 + 0.0000i -2.0562 + 0.0000i

78 -2.0562 - 0.0000i 10.0767 + 0.0000i
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79

80

81 G4prime =

82

83 0.0000 + 0.0000i 0.0000 + 2.0562i

84 0.0000 - 2.0562i 10.0767 + 0.0000i

Thus, we have now implemented 3 different methods yielding very similar results each time.

Therefore, one could now assume that our initial approach is a valid procedure, in contradic-

tion to Ref.[17].

C.3.3 MATLAB code

1

2 %% we will implement the D-SPD from the Overleaf document to find the dual

variables

3

4 dB = 2;

5 assemblageS;

6 assemblageUS;

7 cvx_begin SDP quiet

8 cvx_solver SeDuMi %mosek

9 cvx_precision best

10

11 variable y1 complex % y(+1|1) ^(1,1)

12 variable y2 complex % y(+1|1) ^(1,2)

13 variable y3 complex % y(+1|1) ^(2,1)

14 variable y4 complex % y(+1|1) ^(2,2)

15 variable y5 complex % y( -1|1)^(1,1)

16 variable y6 complex % y( -1|1)^(1,2)

17 variable y7 complex % y( -1|1)^(2,1)

18 variable y8 complex % y( -1|1)^(2,2)

19

20 variable y9 complex % y(+1|2) ^(1,1)

21 variable y10 complex % y(+1|2) ^(1,2)

22 variable y11 complex % y(+1|2) ^(2,1)

23 variable y12 complex % y(+1|2) ^(2,2)

24 variable y13 complex % y( -1|2)^(1,1)

25 variable y14 complex % y( -1|2)^(1,2)

26 variable y15 complex % y( -1|2)^(2,1)

27 variable y16 complex % y( -1|2)^(2,2)

28

29 variable y17 complex % y(+1|3) ^(1,1)

30 variable y18 complex % y(+1|3) ^(1,2)
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31 variable y19 complex % y(+1|3) ^(2,1)

32 variable y20 complex % y(+1|3) ^(2,2)

33 variable y21 complex % y( -1|3)^(1,1)

34 variable y22 complex % y( -1|3)^(1,2)

35 variable y23 complex % y( -1|3)^(2,1)

36 variable y24 complex % y( -1|3)^(2,2)

37

38 variable y25 complex % y(+1|4) ^(1,1)

39 variable y26 complex % y(+1|4) ^(1,2)

40 variable y27 complex % y(+1|4) ^(2,1)

41 variable y28 complex % y(+1|4) ^(2,2)

42 variable y29 complex % y( -1|4)^(1,1)

43 variable y30 complex % y( -1|4)^(1,2)

44 variable y31 complex % y( -1|4)^(2,1)

45 variable y32 complex % y( -1|4)^(2,2)

46

47 variable y0 % y_0

48 variable ytr % y_tr

49

50 maximise( y0 + ytr )

51

52 yp11 = [y1,y2;y3,y4];

53 ym11 = [y5,y6;y7,y8];

54 yp12 = [y9,y10;y11 ,y12];

55 ym12 = [y13 ,y14;y15 ,y16];

56 yp13 = [y17 ,y18;y19 ,y20];

57 ym13 = [y21 ,y22;y23 ,y24];

58 yp14 = [y25 ,y26;y27 ,y28];

59 ym14 = [y29 ,y30;y31 ,y32];

60

61 yi = ytr*eye (2);

62

63 subject to

64 % constraint eq. (21)

65 -yi - ym11 - ym12 - ym13 - ym14 == hermitian_semidefinite(dB);

66 -yi - ym11 - ym12 - ym13 - yp14 == hermitian_semidefinite(dB);

67 -yi - ym11 - ym12 - yp13 - ym14 == hermitian_semidefinite(dB);

68 -yi - ym11 - ym12 - yp13 - yp14 == hermitian_semidefinite(dB);

69 -yi - ym11 - yp12 - ym13 - ym14 == hermitian_semidefinite(dB);

70 -yi - ym11 - yp12 - ym13 - yp14 == hermitian_semidefinite(dB);

71 -yi - ym11 - yp12 - yp13 - ym14 == hermitian_semidefinite(dB);

72 -yi - ym11 - yp12 - yp13 - yp14 == hermitian_semidefinite(dB);

73 -yi - yp11 - ym12 - ym13 - ym14 == hermitian_semidefinite(dB);

74 -yi - yp11 - ym12 - ym13 - yp14 == hermitian_semidefinite(dB);
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75 -yi - yp11 - ym12 - yp13 - ym14 == hermitian_semidefinite(dB);

76 -yi - yp11 - ym12 - yp13 - yp14 == hermitian_semidefinite(dB);

77 -yi - yp11 - yp12 - ym13 - ym14 == hermitian_semidefinite(dB);

78 -yi - yp11 - yp12 - ym13 - yp14 == hermitian_semidefinite(dB);

79 -yi - yp11 - yp12 - yp13 - ym14 == hermitian_semidefinite(dB);

80 -yi - yp11 - yp12 - yp13 - yp14 == hermitian_semidefinite(dB);

81

82 % constraint eq. (22)

83 -y0 - 1 + assemblageS (1,1)*y1 + assemblageS (1,2)*y3 + assemblageS (2,1)*y2

...

84 + assemblageS (2,2)*y4 + assemblageS (3,1)*y5 + assemblageS (3,2)*y7 ...

85 + assemblageS (4,1)*y6 + assemblageS (4,2)*y8 + assemblageS (5,1)*y9 +

...

86 assemblageS (5,2)*y11 + assemblageS (6,1)*y10 + assemblageS (6,2)*y12

+...

87 assemblageS (7,1)*y13 + assemblageS (7,2)*y15 + assemblageS (8,1)*y14 +

...

88 assemblageS (8,2)*y16 + assemblageS (9,1)*y17 + assemblageS (9,2)*y19

+...

89 assemblageS (10,1)*y18 + assemblageS (10,2)*y20 + assemblageS (11,1)*y21

...

90 + assemblageS (11,2)*y23 + assemblageS (12,1)*y22 + assemblageS (12,2)*

y24 ...

91 + assemblageS (13,1)*y25 + assemblageS (13,2)*y27 + assemblageS (14,1)*

y26...

92 + assemblageS (14,2)*y28 + assemblageS (15,1)*y29 + assemblageS (15,2)*

y31 ...

93 + assemblageS (16,1)*y30 + assemblageS (16,2)*y32 ...

94 == hermitian_semidefinite (1);

95

96 % constraint eq. (23)

97 -y0 + assemblageUS (1,1)*y1 + assemblageUS (3,1)*y5 + assemblageUS (5,1)*y9

...

98 + assemblageUS (7,1)*y13 + assemblageUS (9,1)*y17 + assemblageUS (11,1)*

y21...

99 + assemblageUS (13,1)*y25 + assemblageUS (15,1)*y29 ...

100 == hermitian_semidefinite (1);

101

102 cvx_end

103 cvx_status

104 %cvx_optval

105

106 % The y elements represent the dual variables of the D-SPD:

107 %diary myDiaryfile
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108

109 %diary on

110

111 F1 = yp11 % F(+1 ,1)

112 F2 = ym11 % F(-1,1)

113 F3 = yp12 % F(+1 ,2)

114 F4 = ym12 % F(-1,2)

115 F5 = yp13 % F(+1 ,3)

116 F6 = ym13 % F(-1,3)

117 F7 = yp14 % F(+1 ,4)

118 F8 = ym14 % F(-1,4)

119

120

121 Grprime = F2 + F4 + F6 + F8

122

123 G1prime = F1 - F2

124 G2prime = F3 - F4

125 G3prime = F5 - F6

126 G4prime = F7 - F8

127

128 %diary off

57 of 64



D WIGNER FUNCTION

D Wigner function

In this section, we seek to find a ”Bell-like” inequality for the considered state ρ (3) in terms

of Wigner function values.

D.1 Definition of Wigner function

According to the Heisenberg uncertainty principle, it is impossible to precisely measure a

particle’s position and momentum at the same time in quantum theory, i.e. to find a phase

point in the phase space. Therefore, to examine the quantum state and motion of microscopic

particles, scientists searched to define the quasi-distribution function in phase space. In 1932,

Eugene Wigner introduced such a quasi-classical distribution function, whose marginal distri-

butions correspond to the particle probability measured in coordinate space q and momentum

space p. In addition, the Wigner function has an unusual property which makes it a good

diagnostic of quantum properties: it may be negative in some sections of phase space when

the field includes nonclassical interferences9.

The Wigner function W pq, pq is usually expressed in the following integral form, given the

density matrix ρ of a quantum particle moving in one dimension [32]:

W pq, pq “
1

πℏ

ż

xq ´ x| ρ |q ` xy expp2ipx{ℏq dx. (97)

However, this is not always easy to compute, since given a density matrix, computing quasi-

probabilities is a time-consuming job that requires integration over phase-space variables.

Therefore, scientists such as for instance Wünsche [33], Moya-Cessa [34] and Cahill [35]

sought to derive alternative expressions.

In our case, we will consider the joint 2-mode Wigner function WJpρ, βA, βBq, which is a

continuous-variable representation of the considered quantum state with βA and βB be-

ing complex variables in Alice’s and Bob’s system respectively. Here, WJ describes a 4-

dimensional phase space function, whose value at each point (Re(βA), Im(βA), Re(βB),

Im(βB)) is equal to the expectation value of the joint parity operator PJ after indepen-

dent displacements in Alice’s and Bob’s system after rescaling by π2{4 [36]. A full quantum

state tomography for the two cavity system between them can then be realized by measuring

the joint Wigner function. With the aim of doing so, we first require to write the density

9Although of course not all nonclassical field states have negative contributions to their Wigner functions.
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matrix ρ in the tensor Fock state basis, i.e.:

ρ “
ÿ

i,j,k,l

ρijkl |i, jy xk, l| . (98)

Subsequently, the linearity ofWJ in ρ can then be used to compute the individual contribution

from each component ρijkl [36]:

WJpρ, βA, βBq “
4

π2

ÿ

ijmn

ρi,j,m,nKmipβAqKnjpβBq. (99)

The matrix elements Kmnpβq are given by:

Kmnpβq “ e´|β|2p´1qmp2βqpn´mq

c

m!

n!
Lpn´mq
m p|β|q, (100)

where L
pn´mq
m represent the generalized Laguerre polynomials [37].

D.2 Analytical computation

In order to compute the joint two-mode Wigner function, we first write our density matrix ρ

(3) in two parts:

ρpηq “ η |Ψy xΨ|
l jh n

ρ1

`p1 ´ ηq |0, 0y x0, 0|
l jh n

ρ2

, (101)

where

|Ψy “
1

?
2

p|0, 1y ` |1, 0yq. (102)

Thus, we acquire ρ in the correct form (98), with:

ρ1 “
1

2
r|0, 1y x0, 1| ` |0, 1y x1, 0| ` |1, 0y x0, 1| ` |1, 0y x1, 0|s, (103)

ρ2 “ |0, 0y x0, 0| . (104)

This enables us now to compute the appropriate matrix elements (100) with the initial con-
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ditions L
pαq

0 “ 1 and L
pαq

1 pxq “ 1 ` α ´ x [37]:

K00pβq “e´|β|2 , (105)

K10pβq “
|β|

2β
e´|β|2 , (106)

K01pβq “2βe´|β|2 , (107)

K11pβq “p|β| ´ 1qe´|β|2 . (108)

This then gives the desired Wigner function:

WJpη, βA, βBq “ η
4

2π2
rK00pβAqK11pβBq ` K10pβAqK01pβBq ` K01pβAqK10pβBq

` K11pβAqK00pβBqs ` p1 ´ ηq
4

π2
rK00pβAqK00pβBqs

“ η
2

π2
re´|βA|2´|βB |2p|βB| ´ 1q `

|βA|β2
B ` |βB|β2

A

βAβB
e´|βA|2´|βB |2

` p|βA| ´ 1qe´|βA|2´|βB |2s ` p1 ´ ηq
4

π2
re´|βA|2´|βB |2s (109)

D.3 Bell’s Inequality and Wigner Function

The typical CHSH Bell inequalities cannot be applied directly in the setting of non-local two-

mode states with continuous variables over a 4-dimensional phase space. Nevertheless, it is

possible to write simple inequalities that have the form of a Bell inequality by discretizing the

field observables [38, 39]. According to Banaszek and Wódkiewicz [27] and Jeong [28], any

local representation of reality should yield measurements that satisfy the following inequality:

B “ |Πpα1, β1q ` Πpα, β1q ` Πpα1, βq ´ Πpα, βq| ď
?
2, (110)

with Πpα, βq “ π2

4 WJpα, βq being a scaled version of the joint 2-mode Wigner function (99)

at the point in the 4-dimensional phase space defined by the complex amplitudes α and β.

Thus, the Bell signal B in our case is given by the above equation, inserting (109).

Consequently, local theories impose the bound:

´ 2 ď B ď 2. (111)
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