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1 Introduction

The classical measurement of a parameter encoded in a system’s state is limited in its
sensitivity. To go beyond this classical limit, one can exploit quantum resources, such as
entangled states. It is thanks to the strong nonclassical correlations present in entangled
states that the classical limit can be overcome. The field studying this topic is called
quantum metrology [1].

One could then ask the following question: What measurement should be performed
on a quantum state to obtain the lowest possible uncertainty in a parameter estimation
task? This question is what this report tries to address for a number of relevant states in
continuous-variable systems. The best possible sensitivity for a given state is expressed by
the so-called Cramér-Rao bound, which is explained in Section 2. By exploring different
possible measurements, one can then determine which measurements are better than the
others, and which ones are optimal by comparing how close the achievable sensitivities are
to the Cramér-Rao bound.

In the following, we investigate the saturation of this Cramér-Rao bound for different probe
states, parameter encoding generators and measurements. In Section 2, we summarize the
key concepts needed to investigate such performances. In Section 3, we compare the
quantum Fisher information (QFI) to the sensitivity χ in the case of displacement sensing
measured by quadrature measurement as well as in the case of a rotation sensing also by
quadrature measurement. Finally, Section 4 comes back to displacement sensing, but this
time as measured by displaced parity measurements.

2 Quantum metrology

A usual way to obtain precision measurements is to map physical quantities to phase
shifts that can be measured by interferometry [1]. When trying to measure a phase θ by
classical means, the uncertainty ∆θ is bounded by the standard quantum limit ∆θ ≥ 1√

N

which arises when considering uncorrelated or classically-correlated particles [1]. Here, N
stands for the number of particles in the probe state. Theoretically, however, the ultimate
bound that can be reached is the so-called Heisenberg bound ∆θ ≥ 1

N
. Quantum-enhanced

metrology is the field that studies how to go beyond this standard quantum limit to get as
close as possible to the Heisenberg bound.

It turns out that only certain types of correlations overcome this limit, as entanglement
itself is necessary but not sufficient. A way to quantify the maximal phase sensitivity for a
given probe state and measurement is given by the quantum Fisher information (QFI), and
by the corresponding quantum Cramér-Rao bound [1]. The quantum Fisher information
can be defined as

FQ[ρ̂θ] = max
Ê

F (θ), (1)

where we maximize the (classical) Fisher information F (θ) [2] associated with the probabil-

3



ity distribution obtained by applying the generalized measurement Ê (as defined in [3]) on
the quantum state under consideration [1]. For the usual case of a projective measurement
M̂ =

∑
mmP̂m with projectors P̂m, the generalized measurement Ê with value m reduces

to Êm = P̂ †mP̂m = P̂m (see [4]). The (classical) Fisher information is defined as [1]

F (θ) =
∑
m

1

P (m|θ)

(
∂P (m|θ)

∂θ

2
)
, (2)

where P (m|θ) = Tr[ρ̂θÊm] represents the probability of getting the result m when mea-
suring M̂ (in the projective case) given a phase change θ. The Fisher information F (θ)
is a measure of the amount of information about the parameter θ that is available given
samples from the distribution P (m|θ) [5](i.e. from the observable M̂). From the QFI, one
can obtain the quantum Cramér-Rao bound

∆θ ≥ 1√
τFQ[ρ̂θ]

(3)

where τ is the number of independent measurements on the probe state ρ̂θ. This gives
a lower bound to our uncertainty on the parameter estimation θ. Entanglement that
overcomes the standard quantum bound are uniquely specified by the condition FQ > N [1].

It is clear that Eq. (1) is difficult to calculate in practice. However, it turns out there is a
useful upper bound [1]

FQ[ρ̂0, Ĝ] ≤ 4∆2Ĝ, (4)

where Ĝ is the operator responsible for imprinting on the state ρ̂ the parameter θ (i.e.

ρ̂θ = eiĜθρ̂0e
−iĜθ), which reduces to an equality for pure states.

On the other hand, for a given state ρ̂θ and a specific measurement M̂ , the method of
moments (see Section 2.2) allows us to compute the uncertainty ∆θmom for estimating θ.
To find the measurement attaining the lowest possible uncertainty, one can try to find an
operator M̂ such that that ∆θmom saturates the Cramér-Rao bound. If one defines the
sensitivity χ as

χ =
1

τ∆2θmom

, (5)

then the goal becomes to find a measurement M̂ for which χ = FQ[ρ̂θ].

The rest of this section gathers the general theoretical background needed in the following
sections. We start by defining the density matrix necessary to describe mixed state, as
well as the Wigner function, extremely useful for the visualization of quantum states in
phase-space. Then, we explore the method of moments in more details, as it is the main
building block of our work. Besides this, we also prove a relationship between the QFI and
the Wigner function.
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2.1 Definitions

In [6], we learn the definition of a density matrix

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (6)

where pi is the probability of the system being in the pure state |ψi〉, with 〈ψi| |ψj〉 = δij.
The density matrix is useful to describe so-called mixed quantum states, i.e. states which
cannot be written as a pure state (wavefunction).

From the density matrix, it is possible to define a quasi-probability distribution called the
Wigner function

W (x, p) =
1

2π

∫ ∞
−∞

dq 〈x+
1

2
q| ρ̂ |x− 1

2
q〉 eipq, (7)

where |x± 1
2
q〉 are the eigenkets of the position operator [6]. Here and in the following we

will be working with the dimensionless quantities x and p.

Similarly to the density matrix, the Wigner function gives also a complete description of
the system’s state. Therefore, it allows us to compute expectation values of operators, or
other quantities of interest. For example, it is possible to write the quantum fidelity as an
integral of Wigner functions:

F (ρ̂, σ̂) ≡
(

Tr[

√√
ρ̂σ̂
√
ρ̂]

)2

= 2π

∫ ∫
dxdpWρ̂(x, p)Wσ̂(x, p). (8)

This relation is proved in Appendix A.

In turns out that the Wigner function can also be written as the expectation value of a
displaced parity measurement [6]:

W (α) =
2

π
Tr
[
ρ̂D̂(α)Π̂D̂†(α)

]
, (9)

so

W (x, p) =
1

π
Tr
[
ρ̂D̂(x, p)Π̂D̂†(x, p)

]
, (10)

where D̂(x, p) is the displacement operator and Π̂ is the parity operator and α = x+ip√
2

.

The factor of 2 disappears due to the need of normalization
∫

dxdpW (x, p) = 1 after the
change of variables.

2.2 Method of moments

Let us consider the measurement of an observable M̂ onto a state ρ̂, performed before and
after some small phase shift ∆θ from the initial phase θ0. We will write the expectation
value of the measurement M̂ applied on the unperturbed state and perturbed state as
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〈M̂〉θ0 and 〈M̂〉θ0+∆θ, respectively. For a small perturbation ∆θ around θ0 we get to first
order 〈

M̂
〉
θ0+∆θ

'
〈
M̂
〉
θ0

+
∂
〈
M̂
〉
θ

∂θ

∣∣∣
θ0

∆θ . (11)

This means that a perturbation ∆θ imprinted on the state can be estimated from
〈
M̂
〉
θ0+∆θ

by inverting Eq. (11). Here, note that it is essential to know the derivative
∂〈M̂〉
∂θ

.

To be able to detect the perturbation ∆θ, however, one requires this perturbation to result
in a change of the distribution of measurement results that is larger than its standard
deviation. Namely, we want 〈

M̂
〉
θ0+∆θ

−
〈
M̂
〉
θ0
≥ ∆M̂√

τ
. (12)

From the two last expressions, we conclude that

∆θ ≥ ∆M̂
√
τ |∂〈M̂〉

∂θ
|
. (13)

Note that, in general, ∆M̂ depends on θ0. Let us define here the sensitivity as

χ =

∣∣∣∂〈M̂〉∂θ

∣∣∣2
∆2M̂

, (14)

such that we get

∆θ ≥ 1
√
τχ
. (15)

It is very interesting and useful to realize that, using von Neumann’s equation of motion
i∂ρ
∂t

= [H, ρ] with Hamiltonian Ĥ = Ĝ and parameter t = θ, we find

∂〈M̂〉
∂θ

= Tr

[
M̂
dρ

dθ

]
= −iTr[M̂ [ρ, Ĝ]]

= −iTr[M̂ρĜ− M̂Ĝρ]

= −iTr[ĜM̂ρ− M̂Ĝρ]

= −iTr[[Ĝ, M̂ ]ρ]

= iTr[[M̂, Ĝ]ρ]

= i〈[M̂, Ĝ]〉.

(16)
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This tells us that the sensitivity χ can also be written as

χ =

∣∣∣〈[M̂, Ĝ]〉
∣∣∣2

∆2M̂
, (17)

which will be useful in sections 3.1 and 3.2. As a sanity check, we could ask ourselves
what happens if M̂ and Ĝ happened to commute. In that case, we have a measurement M̂
commuting with the Hamiltonian Ĝ = Ĥ, or in other words, the observable M̂ represents
a symmetry of the system. It is therefore not surprising to find absolutely no sensibility
to the phase of the evolution θ when measuring M̂ .

2.3 Link between QFI and Wigner

Having introduced the QFI and the Wigner function, we are tempted to ask if there exists
a simple connection between the two.

In the following, we show that the QFI FQ is bounded from above by

FQ ≤ 4π

∫
dxdp(∂θW (x, p))2, (18)

with an equality for pure states. To do so, we first prove the two following results

FQ[ρ̂] ≤ 2Tr

[(
∂

∂θ
ρ̂

)2
]
, (19)

and

Tr

[(
∂

∂θ
ρ̂

)]
=

1

2π

∫
dxdp

(
∂

∂θ
W (x, p)

)2

, (20)

where we assume θ = x, so we consider a translation in the x direction.

To find the first result, we use the second order expansion of ρ̂ around θ:

ρ̂(θ + dθ) = ρ̂(θ) + ∂θρ̂dθ +
1

2
∂2
θ ρ̂(dθ)2 , (21)

together with the definition of Uhlmann fidelity [7]

F (ρ, σ) =

(
Tr

[√√
ρσ
√
ρ

])2

. (22)

and with the relation [8]

FQ(dθ)2 = 8(1−
√
F [ρ̂(θ), ρ̂(θ + dθ)]). (23)

Lastly, we use the fact that the fidelity can be upper bounded by the superfidelity [9]

F (ρ, σ) ≤ Tr[σρ] +
√

1− Tr[ρ2]
√

1− Tr[σ2]. (24)
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Now that these relations have been introduced, we can insert σ = ρ(θ+ dθ) and expand in
second order in (24). First, we can use the following second order expansion around x = 0:

√
a
√
a− x ≈ a− x

2
− x2

8a
. (25)

Here we use a = 1− Tr[ρ2] and x = Tr[σ2]− Tr[ρ2]. This gives√
1− Tr[ρ2]

√
1− Tr[σ2] ≈ 1− Tr[ρ2]− 1

2
(Tr[σ2]− Tr[ρ2])− 1

8

1

1− Tr[ρ2]
(Tr[σ2]− Tr[ρ2])2

= 1− Tr[ρ2 + ρ∂θρdθ +
1

2
((∂θρ)2 + ρ∂2

θρ)(dθ)2]− (dθ)2

2

1

1− Tr[ρ2]
Tr[ρ∂θρ]2

(26)

On the other hand, we have

Tr[ρσ] = Tr[ρ2 + ρ∂θρdθ +
1

2
ρ∂2

θρ(dθ)2] (27)

Taking the sum of both equations gives (inserting in (24))

F (ρ, σ) ≤ 1− (dθ)2

2

[
Tr[(∂θρ)2] +

1

1− Tr[ρ2]
Tr[ρ∂θρ]2

]
. (28)

One can notice that the second term in the parenthesis can be written in a more convenient
way

1

1− Tr[ρ2]
Tr[ρ∂θρ]2 =

(
∂

∂θ

√
1− Tr[ρ2]

)2

. (29)

So, in the situation where the purity Tr[ρ2] does not depend on θ (pure states), this term
vanishes. This yields

F (ρ, σ) ≤ 1− (dθ)2

2
Tr[(∂θρ)2]. (30)

Now let us focus on pure initial states (Tr[ρ2] = 1) and unitary evolution. In this case,
(22) gives F (ρ, σ) = Tr[ρσ]. Taking the second order expansion gives

F (ρ, σ) = Tr[ρ2] + dθTr[ρ∂θρ] +
(dθ)2

2
Tr[(∂θρ)2]. (31)

The second term vanishes with the assumption that the purity is independent of θ:

0 = ∂θTr[ρ2] = Tr[2ρ∂θρ]. (32)

Moreover, the last term is now − (dθ)2

2
Tr[(∂θρ)2] since ∂θ(ρ∂θ) = 0 = (∂θρ)2 + ρ∂2

θρ. In that
case, we get

F (ρ, σ) = 1− (dθ)2

2
Tr[(∂θρ)2]. (33)
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If we now insert these results in (23), we obtain

FQ ≤ 2Tr[(∂θρ)2], (34)

with equality for pure initial states with unitary evolution.

We now want to show the second result (20). To do so, we use a general result about
Wigner-Weyl transforms (see [10])

Tr[ÂB̂] =
1

2π

∫
dxdpã(x, p)b̃(x, p), (35)

where g̃(x, p) is the Wigner-Weyl transform of the operator Ĝ

g̃(x, p) =

∫
dy 〈x+

y

2
|G |x− y

2
〉 e−ipy. (36)

Inserting Â = B̂ = ∂θρ̂ gives

Tr[(∂θρ)2] =
1

2π

∫
dxdp

(
˜∂θρ̂(x, p)

)2

, (37)

where

˜∂θρ̂(x, p) =

∫
dy 〈x+

y

2
| ∂θρ̂ |x−

y

2
〉 e−ipy

= ∂θ

∫
dy 〈x+

y

2
| ρ̂ |x− y

2
〉 e−ipy.

(38)

Now, if we recall (7),we find

˜∂θρ̂(x, p) = 2π∂θW (x, p). (39)

Inserting in (37) finally gives

Tr[(∂θρ)2] = 2π

∫
dxdp (∂θW (x, p))2 (40)

Inserting Eq. (40) into Eq. (34) gives the result

FQ ≤ 4π

∫
dxdp(∂θW (x, p))2 (41)

with equality for pure states.
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3 Sensing from quadrature measurements

In this Chapter we focus on sensing displacements and rotation by performing quandrature
measurements on continuous-variable states.

3.1 Displacement sensing with quadrature measurements

The displacement operator can be written as

D̂(α) ≡ eαâ
†−α∗â = eiĜ(φ)θ , (42)

where α = θe−iφ/
√

2, and Ĝ(φ) = sin(φ)x̂− cos(φ)p̂ is the generator of the perturbation.

Let us consider the goal of estimating the amplitude θ of a displacement. We can assume
the phase φ of the displacement to be either known or unknown at the time of the state
preparation. The task then consists of optimizing the state preparation and the final
measurement, in order to maximize the sensitivity.

Assuming an unknown phase φ for the displacement, in the worst-case scenario the QFI is
lower bounded by

Fmin
Q [ρ̂] = min

φ
FQ[ρ̂, Ĝ(φ)] . (43)

Alternatively, we can define the average QFI as

F avg
Q [ρ̂] =

1

2π

∫ 2π

0

dφFQ[ρ̂, Ĝ(φ)]. (44)

The optimization strategy consists here in maximizing either Fmin
Q or F avg

Q . Indeed, in real
case scenarios, one might not know the direction of the displacement. The best one can do
is then to optimize a quantity that is independent of φ, so in our case, either the worst-case
scenario or the average scenario.

To evaluate the QFI, we exploit the fact that for pure states it coincides with four times
the variance of the generator. Then, the variance along some direction φ in phase space
can be written in terms of the covariance matrix Γ as

Var[Ĝ(φ)] = uTΓu. (45)

where u = (sin(φ),− cos(φ)) and

Γ =

(
Var(x̂) Cov(x̂, p̂)

Cov(x̂, p̂) Var(p̂)

)
. (46)

A derivation of this statement is provided in Appendix B.
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The following question will be to understand what measurement M can achieve the sensi-
tivity predicted by the QFI. For a general measurement M̂ , remember we have

χ =

∣∣∣〈[M̂, Ĝ]
〉∣∣∣2

Var[M̂ ]
≤ FQ[ρ̂, Ĝ] . (47)

This means that for a given M̂ , one can see if the inequality is saturated and χ = FQ.

In the following, we will consider M̂ to be a linear quadrature measurement: M̂(ε) =
sin(ε)x̂ − cos(ε)p̂. We compute the associated sensitivity χ for Fock, coherent, Gaussian
and cat states, and compare it to the QFI. We also make the distinction between cases
where we know the direction φ of the displacement, and where we do not.

3.1.1 Fock states

Fock states are defined as |n〉 =
(a†)n√
n!
|0〉. We use the following definitions for x̂ and p̂:

x̂ =
1√
2

(a+ a†) , p̂ =
1

i
√

2
(a− a†) . (48)

By computing expectation values of x̂, p̂, x̂2, p̂2, x̂p̂ and p̂x̂ as in Appendix C.1, we find
the covariance matrix

Γ =

(
n+ 1

2
0

0 n+ 1
2

)
. (49)

So finally,

Var[Ĝ(φ)] = uTΓu

=
(
sinφ − cosφ

)( (n+ 1
2
) sinφ

−(n+ 1
2
) cosφ

)
= n+

1

2
,

(50)

which does not depend on φ, as we might expect from the rotational symmetry of Fock
states. For pure states, FQ[ρ̂, Ĝ] = 4 Var[Ĝ], so here

FQ = 4n+ 2. (51)

The minimum and average QFI are trivially

Fmin
Q = F avg

Q = 4n+ 2. (52)

Now we will compute χ. To do this, we need to know Var[M̂ ] for quadrature measurements.
We can directly use (50) to obtain again

Var[M̂ ] = n+
1

2
. (53)
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We also need the commutator [M̂, Ĝ]:

[M̂, Ĝ] = [sin εx̂− cos εp̂, sinφx̂− cosφp̂]

= sin ε sinφx̂2 − cos ε sinφp̂x̂− sin ε cosφx̂p̂+ cos ε cosφp̂2 − sin ε sinφx̂2

+ sin ε cosφp̂x̂+ cos ε sinφx̂p̂− cos ε cosφp̂2

= (cos ε sinφ− sin ε cosφ)[x̂, p̂]

= i(cos ε sinφ− sin ε cosφ).

(54)

The norm squared of the expectation value is then∣∣∣〈[M̂, Ĝ]〉
∣∣∣2 = (cos ε sinφ− sin ε cosφ)2. (55)

Putting together these results gives the sensitivity

χ =
sin2(ε− φ)

n+ 1
2

≤ 4n+ 2. (56)

Let us assume first that we know the displacement direction φ. In this case, we are able
to compute maxε χ by solving the first derivative for 0 and checking the sign of the second
derivative. Doing so yields a maximum at ε = φ+ π

2
, so

max
ε
χ =

1

n+ 1
2

. (57)

We see here that the upper bound is only achieved for n = 0, and that the maximum
gets further away from the QFI as n grows larger. This implies that (linear) quadrature
measurements are in general not optimal for detecting displacements of Fock states.

The fact that the sensitivity is maximal when ε and φ are perpendicular makes sense
intuitively: if we take for example φ = 0, then Ĝ = −p̂ generates a displacement along x.
Since Var[M̂ ] does not depend on ε, one can maximize χ by maximizing the commutator
[M̂, Ĝ], which means taking M̂ = x̂, as expected.

Now, if we consider φ to be unknown, then we cannot choose the optimal measurement
direction ε. So, to estimate the sensitivity of a measurement protocol, we can fix the mea-
surement direction to be M̂ = x̂, and take the average of χ over all possible displacement
directions φ:

χavg =
1

2π

∫ 2π

0

dφ
sin2(ε− φ)

n+ 1
2

=
1

4π

1

n+ 1
2

[ε− φ− cos(ε− φ) sin(ε− φ)]2π0

=
1

2n+ 1
.

(58)

This is only half of the best-case scenario where we know the displacement direction φ.
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3.1.2 Coherent states

We can write coherent states in the Fock basis as [11]:

|α〉 = e−
1
2
|α|

∞∑
n=0

αn√
n!
|n〉 . (59)

We can compute the expectation values of x̂, p̂, x̂2, etc. just as for the Fock states (see
Appendix C.2), to find the covariance matrix

Γ =

(
1
2

0
0 1

2

)
. (60)

So finally,

Var[Ĝ(φ)] = uTΓu

=
(
sinφ − cosφ

)( 1
2

sinφ
−1

2
cosφ

)
=

1

2
,

(61)

which again does not depend on φ. This means that, also for coherent states, the minimum
and average QFI are

FQ = Fmin
Q = F avg

Q = 2. (62)

The variance of M̂ is here Var[M̂ ] = 1
2
, and the commutator is the same as before, namely

[M̂, Ĝ] = i(cos ε sinφ− sin ε cosφ). The sensitivity χ is thus

χ = 2 sin2(ε− φ) ≤ 2. (63)

We then get a maximum at ε = φ+ π
2
, so

max
ε
χ = 2, (64)

which corresponds to the upper bound given by the QFI. If we do not know the displacement
direction φ, we find the average sensitivity

χavg =
1

2π

∫ 2π

0

dφ2 sin2(ε− φ)

=
1

2π
[ε− φ− sin(ε− φ) cos(ε− φ)]2π0

= 1,

(65)

which is again half as large as the maximum sensitivity.

Note that the results in this Section coincide with the case of Fock state |0〉. This is
expected, since coherent states can be written as displaced vacuum states, and that for
displacement sensing there is not preferred definition of a phase-space origin.
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3.1.3 Gaussian states

We can define Gaussian states as those states that have a Gaussian Wigner function [12].
In the case of a single mode, the density matrix corresponding to the vacuum state with
density matrix ρ0 = |0〉 〈0| is given by (Eq. 2.15 in [12])

ρ = D(α)S(ξ)ρ0S
†(ξ)D†(α), (66)

where S(ξ) is the squeezing operator

S(ξ) = e
1
2
ξ(â†)2− 1

2
ξ∗â2 (67)

and ξ = reiγ. In other words, any Gaussian state can be written as a displaced squeezed
vacuum state.

It turns out that Gaussian states can be fully described by its associated covariance matrix
Γ. From [12], we know that it can be written as Γ = ΣT

ξ Γρ0Σξ, where Σξ = µ12 + Rξ,

and Rξ =

(
<[ν] =[ν]
=[ν] −<[ν]

)
. The parameters µ and ν are related to the amplitude of the

squeezing r and its direction γ by µ = cosh r and ν = eiγ sinh r. The vacuum covariance
matrix is known to be 1

2
12 from Subsection 3.1.1. We then find

Γ =
1

2

(
<[ν] + µ =[ν]
=[ν] −<[ν] + µ

)2

=
1

2

(
cosh(2r) + sinh(2r) cos γ sinh(2r) sin γ

sinh(2r) sin γ cosh(2r)− sinh(2r) cos γ

)
,

(68)

which does not depend on α. This means that we can assume α = 0, leaving us a squeezed
vacuum state. From [12], we also know that n = 〈ξ| n̂ |ξ〉 = |ν| = sinh2 r. This gives

2n+ 1 = 2 sinh2 r + 1 = sinh2 r + cosh2 r = cosh(2r), (69)

and therefore
sinh(2r) = 2

√
n(n+ 1), (70)

since here we consider r ≥ 0.
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The covariance matrix gives

Var[Ĝ(φ)] = uTΓu

=
1

2

(
sinφ − cosφ

)( [cosh(2r) + sinh(2r) cos γ] sinφ− [sinh(2r) sin γ] cosφ
[sinh(2r) sin γ sinφ] sinφ− [cosh(2r)− sinh(2r) cos γ] cosφ

)
=

1

2

(
[cosh(2r) + sinh(2r) cos γ] sin2 φ− 2 sinh(2r) sin γ cosφ sinφ

+[cosh(2r)− sinh(2r) cos γ] cos2 φ
)

=
1

2
(cosh(2r)− sinh(2r) cos γ cos(2φ)− sinh(2r) sin γ sin(2φ)))

=
1

2
[cosh(2r)− sinh(2r)(cos γ cos(2φ) + sin γ sin(2φ))]

=
1

2
(cosh(2r)− sinh(2r) cos(γ − 2φ)),

(71)

From which we find

FQ[ρ̂, Ĝ] = 2(cosh(2r)− sinh(2r) cos(γ − 2φ)). (72)

To evaluate the minimum QFI we take the derivative of FQ with respect to φ

dFQ[Ĝ]

dφ
= −4 sinh(2r) sin(γ − 2φ) (73)

which is zero if φ = γ
2

(or if r = 0, but in that case we just have a vacuum state). We then
get

Fmin
Q = 2[cosh(2r)− sinh(2r)]

= 2e−2r.
(74)

We can convince ourselves that this does indeed represent a minimum by seeing that the
second derivative is given by

d2FQ[Ĝ]

dφ2
= 8 sinh(2r) cos(γ − 2φ) ≥ 0 (75)

in the neighbourhood of φ = γ
2

since r ≥ 0. Integrating φ over a period and dividing by
2π gives

F avg
Q = 2 cosh(2r)

= 4n+ 2.
(76)

For calculating the sensitivity, [M̂, Ĝ] is the same as before, but the variance of M̂ is now
given by (see (71))

Var[M̂ ] =
1

2
[cosh(2r)− cos(γ − 2ε) sinh(2r)]. (77)
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Finally, we find

χ =
sin2(ε− φ)

n+ 1
2
−
√
n(n+ 1) cos(γ − 2ε)

≤ FQ = 2(cosh(2r)− sinh(2r) cos(γ − 2φ)) (78)

We notice here that this is similar to the Fock state sensitivity (56), but with an additional
term in the denominator. If we consider φ to be known, then the maximal sensitivity is
found by taking derivatives of χ with respect to ε. We can also set φ = 0 without loss of
generality. For the sake of the calculations, we call a = n + 1

2
and b =

√
n(n+ 1). The

derivative is then given by

∂εχ =
2 cos(ε) sin(ε)

a− b cos(γ − 2ε)
+

2b sin(γ − 2ε) sin2(ε)

(a− b cos(γ − 2ε))2
. (79)

Solving for the zeros and checking which zeros give a maximum, we find that χ is maximal
at

ε = − cos−1

(
−

√
b2 − b2 cos(2γ)

√
2
√
a2 + b2 − 2ab cos(γ)

)
(80)

with value

χmax =
1− 4n(1+n) sin2(γ)

1+8n+8n2−4
√
n(1+n)(1+2n) cos(γ)

1
2

+ n−
√
n(1 + n) cos

(
γ + 2 cos−1

(
− 2

√
n(1+n) sin2(γ)√

1+8n+8n2−4
√
n(1+n)(1+2n) cos(γ)

)) (81)

If we do not know φ, we take the average sensitivity

χavg =
1

2π

∫ 2π

0

dφ
sin2(ε− φ)

n+ 1
2
−
√
n(n+ 1) cos(γ − 2ε)

(82)

which can be integrated numerically.

3.1.4 Cat states

Cat states are defined as quantum superposition of coherent states, such as [11]

|Ψ〉 = N [|α〉+ eiθ |−α〉], (83)

where N −1 = 2 + 2 cos θe−2|α| is the normalization constant. In this subsubsection we will
consider for convenience α to be real. We can take specific states such as θ = 0 (even cat
state), or θ = π (odd cat state). In the following, we will consider the even cat state

|Ψe〉 = Ne[|α〉+ |−α〉]. (84)
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The covariance matrix is given by (see Appendix C.3)

Γ =

(
Var(x̂) Cov(x̂, p̂)

Cov(p̂, x̂) Var(p̂)

)
=

(
1
2

+ 2α2

1+e−2α2
0

0 1
2
− 2α2e−2α2

1+e−2α2

)
. (85)

So finally,

Var[Ĝ(φ)] = uTΓu

=
(
sinφ − cosφ

) [
1
2

+ 2α2

1+e−2α2

]
sinφ

−
[

1
2
− 2α2e−2α2

1+e−2α2

]
cosφ


=

[
1

2
+

2α2

1 + e−2α2

]
sin2 φ+

[
1

2
− 2α2e−2α2

1 + e−2α2

]
cos2 φ

=
1

2
+

2α2

1 + e−2α2 (sin2 φ+ e−2α2

cos2 φ)

=
1

2
+

2α2

1 + e−2α2 − 2α2 1− e−2α2

1 + e−2α2 cos2 φ,

(86)

which depends on both φ and α. We show in Appendix C.3 that 〈n〉 = |α|2. The QFI is
then given by

FQ[ρ̂, Ĝ] = 2 +
8α2

1 + e−2α2 − 8α2 1− e−2α2

1 + e−2α2 cos2 φ

= 2 +
8n

1 + e−2n
− 8n

1− e−2n

1 + e−2n
cos2 φ.

(87)

The minimum QFI happens quite obviously for φ = 0, so

Fmin
Q = 2 +

8n

1 + e−2n
− 8n

1− e−2n

1 + e−2n

= 2 + 8n
e−2n

1 + e−2n
.

(88)

The average QFI can easily be found to be

F avg
Q = 2 +

8n

1 + e−2n
− 4n

1− e−2n

1 + e−2n

= 2 + 4n
1 + e−2n

1 + e−2n

= 2 + 4n.

(89)

To evaluate the sensitivity, we compute the variance of M̂ to be

Var[M̂ ] =
1

2
+

2n

1 + e−2n
− 2n

1− e−2n

1 + e−2n
cos2 ε. (90)
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This then gives the following result

χ =
sin2(ε− φ)

1
2

+ 2n
1+e−2n − 2n1−e−2n

1+e−2n cos2 ε
≤ FQ = 2 +

8n

1 + e−2n
− 8n

1− e−2n

1 + e−2n
cos2 φ (91)

We can maximize ε by taking derivatives with respect to ε. Let r = 2n 1
1+e−2n and s =

1− e−2n. We have

∂εχ =
2 sin(ε− φ) cos(ε− φ)

1
2

+ r − rs cos2(ε)
− 2rs sin(ε) cos(ε) sin2(ε− φ)(

1
2

+ r − rs cos2(ε)
)2 . (92)

If we consider the specific case where φ = 0, the derivative is equal to 0 in the interval
[0, 2π) if ε = 0, ε = π

2
, ε = π, or ε = 3π

2
. The maximum is reached at ε = π

2
or ε = 3π

2
, and

is

χmax(φ = 0) =
1

1
2

+ 2n
1+e−2n

. (93)

In the general case, the algebra becomes rather unpractical to work with, which is why
it might be preferable to rely on numerical maximization on a case-by-case basis. The
average sensitivity is

χavg =
1

2π

∫ 2π

0

dφ
sin2(ε− φ)

1
2

+ 2n
1+e−2n − 2n1−e−2n

1+e−2n cos2 ε
. (94)

which can be integrated numerically.

3.1.5 Fock state superposition

Let us consider here also the superposition of two Fock states |m〉 and |n〉 with m 6= n.

The state is given by |ψ〉 = |m〉+|n〉√
2

. The corresponding density matrix is then

ρmn =
1

2
(|m〉+ |n〉)(〈m|+ 〈n|)

=
1

2
(|m〉 〈m|+ |m〉 〈n|+ |n〉 〈m|+ |n〉 〈n|).

(95)

In the following we will consider the case m = 0. The relevant expectation values are
computed in Appendix C.4. There we find

Γ =

(
1
2
(n+ 1 + δ0,n +

√
2δ2,n − δn,1) 0

0 1
2
(n+ 1 + δ0,n −

√
2δ2,n)

)
, (96)

so using n 6= m = 0

Var[Ĝ] =
1

2
(n+ 1−

√
2δ2,n cos(2φ)− δn,1 sin2 φ), (97)
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and
FQ = 2(n+ 1−

√
2δ2,n cos(2φ)− δn,1 sin2 φ). (98)

The minimum is given by

Fmin
Q =


2 n = 1

2(3−
√

2) n = 2

2(n+ 1) otherwise

, (99)

while the average can be written as

F avg
Q = 2(n+ 1− 1

2
δn,1). (100)

We can use our results from the preceding sections again to compute the sensitivity

χ =
2 sin2(ε− φ)

n+ 1−
√

2δ2,n cos(2φ)− δn,1 sin2 φ
(101)

as well as the maximum over ε

χmax =
2

n+ 1−
√

2δ2,n cos(2φ)− δn,1 sin2 φ
, (102)

and the average sensitivity

χavg =
1

2π

∫ 2π

0

dφ
2 sin2(ε− φ)

n+ 1−
√

2δ2,n cos(2φ)− δn,1 sin2 φ
. (103)

In the case of a displacement in the x-direction, so φ = 0, we find

χmax =
2

n+ 1−
√

2δ2,n

. (104)

3.1.6 Summary of the results

Let us summarize here the results we have got so far. For Fock, coherent, Gaussian and cat
states, we considered two cases: φ is either known or unknown. In Table 1 and Table 2, we
show expressions corresponding to the first case which are the sensitivity χ, its maximum
χmax, and the upper bound FQ. Table 3 contains the results relative to the second situation,
so the average sensitivity χ, as well as the minimum and average QFI.
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Fock Coherent Gaussian

χ sin2(ε−φ)

n+ 1
2

2 sin2(ε− φ) sin2(ε−φ)

n+ 1
2
−
√
n(n+1) cos(γ−2ε)

χmax 1
n+ 1

2

2 See (81)

FQ 4n+ 2 2 4n+ 2− 4
√
n(n+ 1) cos(γ − 2φ))

Table 1: Sensitivity χ, maximum sensitivity χmax, and QFI FQ for Fock, coherent and
Gaussian states.

Even cat |0〉+ |n〉
χ sin2(ε−φ)

1
2
−2n 1−e−2n

1+e−2n cos2 ε

2 sin2(ε−φ)

n+1−
√

2δ2,n cos(2φ)−δn,1 sin2 φ

χmax See 3.1.4 2
n+1−

√
2δ2,n cos(2φ)−δn,1 sin2 φ

FQ 2 + 8n
1+e−2n − 8n1−e−2n

1+e−2n cos2 φ 2(n+ 1−
√

2δ2,n cos(2φ)− δn,1 sin2 φ)

Table 2: Sensitivity χ, maximum sensitivity χmax, and QFI FQ for even cat states and
|0〉+ |n〉 superpositions (n 6= 0).

Fock Coherent Gaussian Even cat |0〉+ |n〉
χavg 1

2n+1
1 See (82) See (94) See (103)

Fmin
Q 4n+ 2 2 4n+ 2−

√
n(n+ 1) 2 + 8n e−2n

1+e−2n See (99)

F avg
Q 4n+ 2 2 4n+ 2 4n+ 2 2(n+ 1− 1

2
δn,1)

Table 3: Average sensitivity χavg, minimum QFI Fmin
Q and average QFI F avg

Q for Fock,
coherent, Gaussian, even cat states and |0〉+ |n〉 superpositions (n 6= 0).

We can observe the following. The bound χ ≤ FQ (47) is saturated by no states, with

the best case scenario being the vacuum state for which χmax =
FQ

2
. For cat states with

|α|2 large, we obtain Fmin
Q [ρ̂] ' 2 but, if the phase of the displacement is known, one can

achieve maxφ FQ[ρ̂, Ĝ(φ)] ' 8n + 2 (see (87)). For a Gaussian state (displaced squeezed
vacuum) we observed that the covariance matrix does not depend on the displacement, and
therefore without loss of generality we considered a squeezed vacuum state, which gives
Fmin
Q [ρ̂] = 4n + 2 −

√
n(n+ 1). This is again lower than the one of a Fock state, even if

for a known phase of the displacement to be estimated the sensitivity can be higher.

3.2 Rotation sensing with quadrature measurements

We consider here the goal of estimating the angle of a rotation. The task consists again
of optimizing the state preparation and the final measurement, in order to maximize the
sensitivity.
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The rotation operator is given by

R̂(θ) = eiθâ
†â = eiθĜ , (105)

where Ĝ = â†â is the generator of the perturbation.

In this case, the variance of Ĝ is a constant, and the QFI of a pure state is given by

FQ[ρ̂, Ĝ] = 4 Var[n̂] . (106)

Interestingly, this result implies that states with definite particle number n are insensitive
to rotations.

In the following, we compute for different states of interest the sensitivity χ, as well as
the quantum Fisher information FQ, as we did for the case of displacement sensing. The
measurement chosen to be performed on the perturbed state is always a linear quadrature
measurement.

3.2.1 Fock states

To compute the variance of n̂, we clearly have

〈n| Ĝ |n〉 = 〈n| â†â |n〉 = n, (107)

〈n| (Ĝ)2 |n〉 = 〈n| (â†â)2 |n〉 = n2, (108)

which gives the expected
Var[Ĝ] = 0. (109)

For the senitivity, we can reuse the variance of M̂ computed for the displacement sensing
case: Var[M̂ ] = 1

2
. However, the commutator [M̂, Ĝ] is now (see Appendix D.1)

[M̂, Ĝ] = i(cos εx̂+ sin εp̂). (110)

Recalling (176) and (177), we find that the expectation value of the commutator is 0, so

χ = 0 ≤ FQ = 0. (111)

This means that no matter what ε we choose, we will not be able to get any information
on the perturbation if we consider a measurement M̂ that is a linear combination of x̂ and
p̂.
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3.2.2 Coherent states

For a coherent state we have

〈α| Ĝ |α〉 = 〈α| â†â |α〉 = |α|2 , (112)

〈α| (Ĝ)2 |α〉 = 〈α| (â†â)2 |α〉 = |α|2 + 〈α| (â†)2â2 |α〉 = |α|2 (1 + |α|2), (113)

which gives
Var[Ĝ] = |α|2 , (114)

and thus
FQ = 4 |α|2 . (115)

Using (61) directly gives

Var[M̂ ] =
1

2
. (116)

The commutator was already computed in (215), so we can compute the expectation value
directly using the expectation values of x̂ and p̂ with respect to the coherent states from
(183) and (184):

〈[M̂, Ĝ]〉 =
i√
2

(cos ε(α + α∗) + i sin ε(α∗ − α)). (117)

Taking the norm squared gives∣∣∣〈[M̂, Ĝ]〉
∣∣∣2 = 2(cos ε<[α] + sin ε=[α])2. (118)

With this we are now able to find the sensitivity

χ = 4(cos ε<[α] + sin ε=[α])2 ≤ 4 |α|2 . (119)

If we let α = |α| eiβ, we find by solving ∂εχ = 0

ε = β + kπ, (120)

where k is an integer. The only solution in [0, 2π] where the second derivative is negative
is when k = 0. In that case we get ε = β and

χmax = 4 |α|2 (cos2(β) + sin2(β))2 = 4 |α|2 , (121)

which corresponds exactly to the upper bound given by the QFI. This means that we
have to measure along ε = arg(α) to get maximal sensitivity. This can also be understood
intuitively: imagine a coherent state on the x axis (i.e. with real alpha), that is subject to a
small rotation. We find ε = arg(α) = 0, meaning that, as expected, the best measurement
to be performed is along p.
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3.2.3 Gaussian states

The following results will be useful for computing expectation values [12]:

D†(α)âD(α) = â+ α, (122)

D†(α)â†D(α) = â† + α∗, (123)

S†(ξ)âS(ξ) = µâ+ νâ†, (124)

S†(ξ)â†S(ξ) = µâ† + ν∗â. (125)

Using these, we then find (see Appendix D.2)

〈n̂〉 = |α|2 + |ν|2 , (126)

〈n̂〉2 = |α|4 + 2 |α|2 |ν|2 + |ν|4 , (127)

and similarly

〈n̂2〉 = |α|2 + |ν|2 + 2 |ν|4 + µ2 |ν|2 + (α∗)2µν + 4 |α|2 |ν|2 + α2µν∗ + |α|4 , (128)

which gives

Var[Ĝ] = |α|2 + |ν|2 + |ν|4 + µ2 |ν|2 + (α∗)2µν + 2 |α|2 |ν|2 + α2µν∗. (129)

The QFI is then

FQ[ρ, Ĝ] = 4
[
|α|2 + |ν|2 + |ν|4 + µ2 |ν|2 + 2 |α|2 |ν|2 + (α∗)2µν + α2µν∗

]
. (130)

We can recall from (77) that Var[M̂ ] = 1
2
[cosh(2r)−cos(γ−2ε) sinh(2r)]. The expectation

values of x̂ and p̂ are found to be

〈x̂〉 =
α + α∗√

2
, and (131)

〈p̂〉 =
α− α∗

i
√

2
. (132)

This gives
〈[M̂, Ĝ]〉 = i

√
2(cos ε<[α] + sin ε=[α]) (133)

and therefore the sensitivity

χ =
4(<[α]2 cos2 ε+ =[α]2 sin2 ε)

cosh(2r)− cos(γ − 2ε) sinh(2r)
. (134)

The maximum is here given by

χmax =
4 max{<[α]2,=[α]2}

cosh(2r)− cos(γ − 2ε) sinh(2r)
, (135)

and it is achieved for ε = 0 if |=[α]| < |<[α]|, and for ε = π
2

otherwise.
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3.2.4 Cat states

We consider here the general case of a cat state (83) with α complex and θ in [0, 2π]. The
expectation values are given by (see Appendix D.3)

〈Ψ| â†â |Ψ〉 = |α|2 , (136)

〈Ψ| (â†â)2 |Ψ〉 =
|α|2

2 + 2 cos θe−2|α|2
(2 + 2 |α|2 + 2 cos θe−2|α|2(−1 + |α|2)). (137)

For α large, the last equality reduces to

〈Ψ| (â†â)2 |Ψ〉 ' |α|2 (1 + |α|2). (138)

This finally gives for large α
Var[Ĝ] ' |α|2 . (139)

If we now still consider α to be large, and if we restrict ourselves to the even cat state
considered before, Var[M̂ ] is given by (90). The commutator is given by (215). If we recall
(193) and (194), we immediately see that

χ = 0 ≤ 4 |α|2 . (140)

This means again that choosing M̂ to be linear cannot give us any information about the
rotation of an even cat state.

3.2.5 Summary of the results

Let us summarize here the results for rotation sensing we got so far. In Table 4, we show
the sensitivity χ, its maximum χmax, and the upper bound FQ for the different states
considered.

Fock |n〉 Coherent Gaussian Even cat

χ 0 4(cos ε<[α] + sin ε=[α])2 4(<[α]2 cos2 ε+=[α]2 sin2 ε)
cosh(2r)−cos(γ−2ε) sinh(2r)

0

χmax 0 4 |α|2 4 max{<[α]2,=[α]2}
cosh(2r)−cos(γ−2ε) sinh(2r)

0

FQ 0 4 |α|2 See (130) 4 |α|2

Table 4: Sensitivity χ, maximum sensitivity χmax, and QFI FQ for Fock, coherent, Gaussian
and cat states. For the cat state we assumed |α| � 1.

This means that we cannot get any information about rotations by performing quadrature
measurements on Fock states. This is no surprise, since Fock states are rotationally sym-
metric. Coherent states with |α| > 0, however, have a nonzero sensitivity which is maximal
when the measurement direction is ε = arg(α). Gaussian states do not saturate the QFI
bound, and cat states have zero sensitivity under rotations with our choice of M̂ .
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4 Sensing from displaced parity measurements

In this Chapter we focus on sensing displacements by performing displaced parity measure-
ments on continuous-variable states. The same idea can be applied to sensing rotations,
which we leave for future investigations.

4.1 Displacement sensing with displaced parity measurements

Parity measurements refer to measuring whether the number of excitations are even or
odd, and they are defined as

Π̂ = (−1)n̂ =
∑
n

(−1)n |n〉 〈n| . (141)

With this, we can define a new measurement operator M̂ for our sensing applications,
based on displaced parity measurements instead of linear quadratures:

M̂(β) = D̂(β)Π̂D̂(β)† (142)

In the following, we compute χ for this M̂ and Ĝ = sinφx̂ − cosφp̂ (the generator of
displacements). Given the link between the Wigner function and parity measurement (10),

we have
〈
M̂
〉

= πW (x, p), while for the variance we use the fact that
〈
M̂2
〉

= 1 to write

Var[M̂ ] = ∆2M̂ = 1 − (πW (x, p))2. For simplicity, we will restrict in this Section to the
case of known displacement directions, meaning φ = 0.

4.1.1 Fock states

The Wigner function of a Fock state |n〉 is given by [6]:

Wn(α) =
2

π
(−1)ne−2|α|2Ln(4 |α|2), (143)

where Ln(z) is the n-th degree Laguerre polynomial, and α = x+ip√
2

. Expressed in terms of
x and p, we get

Wn(x, p) =
1

π
(−1)ne−(x2+p2)Ln(2(x2 + p2)) (144)

We can use this formula for the Wigner function to find the sensitivity of Fock states for
displacements and parity measurements. For simplicity, we choose here a displacement
along the x direction. As Fock states are rotationally symmetric, this implies also no loss
of generality. The derivative is

∂〈M〉
∂θ

= π
∂Wn(x− θ, p)

∂θ

= 2(−1)n(x− θ)e−p2−(x−θ)2 (Ln (2 (p2 + (x− θ)2
))

+ 2L1
n−1

(
2
(
p2 + (x− θ)2

)))
.

(145)
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Taking the reference displacement θ0 = 0, we find∣∣∣∣∂〈M〉∂θ

∣∣∣
θ=0

∣∣∣∣2 = 4x2e−2(x2+p2)
[
Ln
(
2
(
x2 + p2

))
+ 2L1

n−1

(
2
(
x2 + p2

))]2
. (146)

This gives the sensitivity

χ =

∣∣∣∂〈M〉∂θ

∣∣∣2
1− π2W 2(x, p)

=
4x2

[
Ln (2 (x2 + p2)) + 2L1

n−1 (2 (x2 + p2))
]2

(−1)2n+1Ln (2 (p2 + x2)) 2 + e2(p2+x2)
.

(147)

As this expression is relatively complex, we plot it for n = 0, 1, 2 in Fig. 1.

We can see that for x = 0 the sensitivity reaches the upper bound given by the QFI,
implying that the measurement is optimal. For different points in phase space, however,
the sensitivity quickly goes to 0. This is to be expected since the Wigner function also
vanishes quickly away from the origin.

It might seem counterintuitive to see the highest sensitivity at x = 0, where the Wigner
function has a maximum/minimum, and thus where it is to first order insensitive to dis-
placements. In fact, this point is ill-defined, as both numerator and denominator of the
expression for the sensitivity vanish at x = 0.This is not an uncommon situation, as pointed
out in [1]. In a realistic situation, where technical noise is present (so when the denomi-
nator is not exactly 0 at the origin), the sensitivity must vanish at the origin and has a
maximum at a position that depends on the amount of noise.
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(a) Wigner n = 0. (b) Wigner n = 1. (c) Wigner n = 2.

(d) Sensitivity n = 0. (e) Sensitivity n = 1. (f) Sensitivity n = 2.

(g) Sensitivity and QFI n = 0
at p = 0.

(h) Sensitivity and QFI n = 1
at p = 0.

(i) Sensitivity and QFI n = 2
at p = 0.

Figure 1: Wigner functions and corresponding sensitivities χ for the n = 0, 1, 2 Fock states
in the case of displaced parity measurement of a translation in the x-direction.

4.1.2 Coherent states

For a coherent state |β〉 the Wigner function is given by [6]

Wβ(α) =
2

π
e−2|α−β|2 , (148)

or in terms of x and p

Wβ(α) =
1

π
e−|x+ip−

√
2β|2 . (149)

We can notice that this is the same Wigner as the |0〉 Fock state with x and p replaced
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by x −
√

2<[β] and p −
√

2=[β], respectively. So, the sensitivity will for coherent state is
simply the vacuum Fock state sensitivity shifted in phase space.

4.1.3 Gaussian state

By definition, the Wigner function of a Gaussian state is a Gaussian. Defining X =

(
x̂
p̂

)
,

the Wigner function reads [12]

W (α) =
e−

1
2

(X−〈X〉)TΓ−1(X−〈X〉)

(2π)nκ2n
2

√
det[Γ]

, (150)

where κ2 = 2−1/2, n = 1, and Γ is the covariance matrix given by (68). This then gives

W (α) =
e−

1
2

(X−〈X〉)TΓ−1(X−〈X〉)

π
√

det[Γ]
. (151)

Here we consider a squeezing of a vacuum state in the p direction without displacement.
This means that 〈X〉 = 0 and γ = π. So, in this case, the covariance matrix becomes

Γ =
1

2

(
cosh(2r) sinh(2r)
sinh(2r) cosh(2r)

)
. (152)

The Wigner function, as well as sensitivity χ, is plotted for r = 1
2

in Fig. 2. The analytical
expression for γ = π is given by

χ(x, p) =
8e4rx2

e4e−2r(p2+e4rx2) − 1
. (153)

Again, we see a saturation of the bound given by the QFI at x = 0. However, in the
presence of noise, the same conclusion as for Fock states holds.
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(a) Wigner r = 1
2 .

(b) Sensitivity r = 1
2 .

(c) Sensitivity and QFI r = 1
2

at p = 0.

Figure 2: Wigner functions and corresponding sensitivities χ for the r = 1
2

squeezed vacuum
state in the case of displaced parity measurement of a translation in the x-direction.

4.1.4 Cat states

For an even cat state |Ψ〉 = N [|β〉+ |−β〉] with β real, the Wigner function is given by [11]

Wβ(x, p) =
1

2π[1 + e−2β2 ]

(
e−((x−

√
2β)2+p2) + e−((x+

√
2β)2+p2) + 2e−(x2+p2) cos(2

√
2βp)

)
.

(154)

Now, we will consider β ∈ iR to make the cat state more sensitive to a displacement along
φ = 0 than with β ∈ R. This gives us
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Wβ(x, p) =
1

2π[1 + e−2β2 ]

(
e−(x2+(p−

√
2β)2) + e−(x2+(p−

√
2β)2) + 2e−(x2+p2) cos(2

√
2βx)

)
.

(155)

From this expression, we evaluate the sensitivity χ as before. The analytical expression is
given by

χ =
4
(

2e4β2+p2
(√

2β sin
(
2
√

2βx
)

+ x cos
(
2
√

2βx
))

+ x
(
e(p−

√
2β)

2

+ e(
√

2β+p)
2))2

4 (e2β2 + 1)
2
e4β2+4p2+2x2 −

(
2e4β2+p2 cos

(
2
√

2βx
)

+ e(p−
√

2β)
2

+ e(
√

2β+p)
2)2 .

(156)
In Fig. 3 we plot this expression for some selected values of β. At x = 0 we observe a
saturation of the bound given by the QFI. This, however, is again an ill-defined point,
whose sensitivity goes to zero even for an infinitesimal amount of noise.
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(a) Wigner β = i. (b) Wigner β = 2i. (c) Wigner β = 3i.

(d) Sensitivity β = i. (e) Sensitivity β = 2i. (f) Sensitivity β = 3i.

(g) Sensitivity and QFI β = i
at p = 0.

(h) Sensitivity and QFI β = 2i
at p = 0.

(i) Sensitivity and QFI β = 3i
at p = 0.

Figure 3: Wigner functions and corresponding sensitivities χ for the β = 1, 2, 3 even cat
states in the case of displaced parity measurement of a translation in the x-direction.

4.1.5 Superposition of Fock states

Let us consider the superposition of two Fock states again. We can recall the density
matrix

ρmn =
1

2
(|m〉 〈m|+ |m〉 〈n|+ |n〉 〈m|+ |n〉 〈n|) (157)

for m 6= n.

To find the corresponding Wigner function, we rely on known results for the Wigner func-
tion of |m〉 〈n|. Using the formulation from [13], after adjusting the normalization according
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to our definitions, we obtain

Wmn(x, p) =

{
1
π
(−1)m

(
n!
m!

)1/2
e−(x2+p2)

(
−
√

2(x− ip)
)m−n

Lm−nn (2(x2 + p2)) if m ≥ n
1
π
(−1)n

(
m!
n!

)1/2
e−(x2+p2)

(
−
√

2(x+ ip)
)n−m

Ln−mm (2(x2 + p2)) if m < n
.

(158)
Notice that for n = m, we get

Wn(x, p) =
1

π
(−1)nLn(2(x2 + p2))e−(x2+p2), (159)

as expected.

For m = 0, we get the Wigner function for the superposition |0〉+ |n〉

W (x, p) =
e−(x2+p2)

2π

(
2n/2√
n!

((x+ ip)n + (x− ip)n) + (−1)nLn
(
2
(
p2 + x2

))
+ 1

)
(160)

We can compute χ again by taking the derivative. The results for n = 1, 2, 3 are plotted in
Fig. 4. We see that in this case, there is saturation of the QFI bound only for n = 2. This
might hint toward a saturation for even n, even if still for an ill-defined point. For the cases
n = 1, 3, however, the QFI bound is not reached. This means that measuring displaced
parity measurements cannot give us the best possible sensitivity for such a superposition
of Fock states. If one wants to get higher sensitivities, one would probably need to perform
higher order measurements of x̂ and p̂.

In Fig. 5, we compare the sensitivity for the n = 2 state, with the one for the same state
after a rotation by π

2
, which we expect to be more sensitive to displacements along the x

direction. The slice view at p = 0 seems to indicate that it is better to use displaced parity
measurements if one makes measurements where the sensitivity is maximal, rather than
using quadratures.
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(a) Wigner n = 1. (b) Wigner n = 2. (c) Wigner n = 3.

(d) Sensitivity n = 1. (e) Sensitivity n = 2. (f) Sensitivity n = 3.

(g) Sensitivity and QFI n = 1
at p = 0.

(h) Sensitivity and QFI n = 2
at p = 0.

(i) Sensitivity and QFI n = 3
at p = 0.

Figure 4: Wigner functions and corresponding sensitivities χ for the n = 0, 1, 2 Fock state
superposition |0〉+ |n〉 in the case of displaced parity measurement of a translation in the
x-direction. The QFI is computed in Appendix C.4. The maximum sensitivity χmax for
quadrature measurements (104) is also plotted for comparison.
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(a) Wigner n = 2, 0 phase shift. (b) Wigner n = 2, π2 phase shift.

(c) Sensitivity n = 2, 0 phase shift. (d) Sensitivity n = 2, π2 phase shift.

(e) Sensitivity and QFI n = 2 at p = 0,
0 phase shift.

(f) Sensitivity and QFI n = 2 at p = 0,
π
2 phase shift.

Figure 5: Wigner function and sensitivities for the n = 2 superposition with additional
phase 0 and π

2
respectively.
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5 Conclusion

In conclusion, we studied the sensitivities for various probe states, perturbations, and mea-
surements using the framework of the quantum metrology. We started with the study of
sensitivity to displacements for Fock, coherent, Gaussian, cat states, and Fock state su-
perposition as detected by linear quadrature measurements. For the same states (except
the vacuum Fock superposition) and measurement process, we also analyzed the sensitiv-
ity to rotations. Finally, we came back to the study of displaced probe states, as seen
from the measurement of displaced parity operators. What we learned in this process are
the conditions for which the Cramér-Rao bound is saturated. Investigating other types
of measurements, such as high-order quadrature measurements, might lead to better re-
sults. In the near future, it would be interesting to text experimentally our predictions,
for example with optical or mechanical systems. This could lead to the development of
quantum-enhanced sensors, which is of key interest for quantum technologies.
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[7] M. Bia lończyk, F. J. Gómez-Ruiz, and A. del Campo, “Uhlmann fidelity and fidelity
susceptibility for integrable spin chains at finite temperature: Exact results,” New
Journal of Physics, vol. 23, no. 9, p. 093 033, Sep. 1, 2021, issn: 1367-2630. doi:
10.1088/1367-2630/ac23f0. arXiv: 2105.05055. [Online]. Available: http://
arxiv.org/abs/2105.05055 (visited on 01/25/2022).

[8] L. Banchi, S. L. Braunstein, and S. Pirandola, “Quantum fidelity for arbitrary gaus-
sian states,” Physical Review Letters, vol. 115, no. 26, p. 260 501, Dec. 22, 2015, Pub-
lisher: American Physical Society. doi: 10.1103/PhysRevLett.115.260501. [On-

36

https://doi.org/10.1103/RevModPhys.90.035005
https://link.aps.org/doi/10.1103/RevModPhys.90.035005
https://link.aps.org/doi/10.1103/RevModPhys.90.035005
https://doi.org/10.1098/rsta.1922.0009
https://royalsocietypublishing.org/doi/10.1098/rsta.1922.0009
https://doi.org/10.1103/PhysRevLett.72.3439
https://link.aps.org/doi/10.1103/PhysRevLett.72.3439
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE
https://doi.org/10.1016/B978-008044485-7/50048-8
https://www.sciencedirect.com/science/article/pii/B9780080444857500488
https://doi.org/10.1017/CBO9780511791239
https://www.cambridge.org/core/books/introductory-quantum-optics/B9866F1F40C45936A81D03AF7617CF44
https://www.cambridge.org/core/books/introductory-quantum-optics/B9866F1F40C45936A81D03AF7617CF44
https://doi.org/10.1088/1367-2630/ac23f0
https://arxiv.org/abs/2105.05055
http://arxiv.org/abs/2105.05055
http://arxiv.org/abs/2105.05055
https://doi.org/10.1103/PhysRevLett.115.260501


line]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.115.260501
(visited on 08/21/2021).

[9] J. A. Miszczak, Z. Pucha la, P. Horodecki, A. Uhlmann, and K. Życzkowski, “Sub– and
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A Link between quantum fidelity and Wigner

It is possible to relate the fidelity to the Wigner function directly. Let us consider a pure
state ρ̂ = |ψ〉 〈ψ|

F (ρ̂, σ̂) =

(
Tr[

√√
ρ̂σ̂
√
ρ̂]

)2

=

(
Tr[

√√
|ψ〉 〈ψ|σ̂

√
|ψ〉 〈ψ|]

)2

(i)
=
(

Tr[
√
|ψ〉 〈ψ| σ̂ |ψ〉 〈ψ|]

)2

= (
√
〈ψ| σ̂ |ψ〉Tr[|ψ〉 〈ψ|])2

= 〈ψ| σ̂ |ψ〉 · 12

=
∑
i

〈ψ|φi〉 〈φi|ψ〉

=
∑
i

ci |〈ψ|φi〉|2

(ii)
= 2π

∑
i

ci

∫ ∫
dxdpWρ̂(x, p)W|φi〉〈φi|(x, p)

=

∫ ∫
dxdpWρ̂(x, p)

∫
dy 〈x+

1

2
y|
∑
i

ci |φi〉 〈φi| |x−
1

2
y〉 eipy

= 2π

∫ ∫
dxdpWρ̂(x, p)Wσ̂(x, p),

(161)

where in (i) we used that the square root of a pure state density matrix is itself, and in (ii)
we used Eq. (19) of Ref. [10].

B Proof of the relation Var[Ĝ(φ)] = uTΓu

The covariance of two operators Â and B̂ is given by Cov[Â, B̂] = 〈ÂB̂ + B̂Â

2
〉 − 〈Â〉〈B̂〉.

We have by definition:

Var[Ĝ(φ)] = 〈ψ| Ĝ2(φ) |ψ〉 − (〈ψ| Ĝ(φ) |ψ〉)2

= 〈ψ| sin2 φx̂2 − sinφ cosφ(x̂p̂+ p̂x̂) + cos2 φp̂2 |ψ〉 − (sinφ 〈ψ| x̂ |ψ〉 − cosφ 〈ψ| p̂ |ψ〉)2

= sin2 φ 〈ψ| x̂2 |ψ〉+ cos2 φ 〈ψ| p̂2 |ψ〉 − sinφ cosφ 〈ψ| x̂p̂+ p̂x̂ |ψ〉
− sin2 φ(〈ψ| x̂ |ψ〉)2 − cos2 φ(〈ψ| p̂ |ψ〉)2 + 2 sinφ cosφ 〈ψ| x̂ |ψ〉 〈ψ| p̂ |ψ〉

= sin2 φVar[x̂] + cos2(φ) Var[p̂]− sinφ cosφ 〈ψ| x̂p̂+ p̂x̂ |ψ〉+ 2 sinφ cosφ 〈ψ| x̂ |ψ〉 〈ψ| p̂ |ψ〉
= sin2 φVar[x̂] + cos2(φ) Var[p̂]− 2 sinφ cosφCov[x̂, p̂]

(162)
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On the other hand,

uTΓu = sin2 φVar(x̂)− Cov(x̂, p̂) sinφ cosφ− Cov(p̂, x̂) sinφ cosφ+ cos2 φVar(p̂)

= sin2 φVar(x̂) + cos2 φVar(p̂)− 2 sinφ cosφCov[x̂, p̂].
(163)

It is then clear that both expressions are the same, so indeed

Var[Ĝ(φ)] = uTΓu. (164)

C Calculation of the covariance matrix for transla-

tions

C.1 Fock states

The following basic properties will be useful (see [11]):

â |α〉 = α |α〉 , (165)

〈α| â† = α∗ 〈α| , (166)

〈α| ââ† |α〉 = |α|2 . (167)

â |n〉 =
√
n |n− 1〉 , (168)

â† |n〉 =
√
n+ 1 |n+ 1〉 , (169)

ââ† |n〉 = n |n〉 , (170)

[â, â†] = 1⇒ ââ† = 1 + â†â. (171)

To find the variance of Ĝ(φ), we just have to find Γ. We have

x̂2 =
1

2
(â2 + ââ† + â†â+ (â†)2) (172)

p̂2 = −1

2
((â†)2 − â†â− ââ† + â2), (173)

x̂p̂ =
i

2
(ââ† − â2 + (â†)2 − â†â), (174)

p̂x̂ =
i

2
(â†â+ (â†)2 − â2 − ââ†). (175)

This gives

〈n| x̂ |n〉 =

√
1

2
(〈n| â |n〉+ 〈n| â† |n〉)

= 0,

(176)

39



〈n| p̂ |n〉 = i

√
1

2
(〈n| â† |n〉 − 〈n| â |n〉)

= 0,

(177)

〈n| x̂2 |n〉 =
1

2
〈n| 1 + 2â†â |n〉

=
1

2
(2n+ 1),

(178)

〈n| p̂2 |n〉 = −1

2
〈n| − 1− 2â†â |n〉

=
1

2
(2n+ 1),

(179)

〈n| x̂p̂ |n〉 = i
1

2
〈n| ââ† − â†â |n〉

=
i

2
,

(180)

〈n| p̂x̂ |n〉 = i
1

2
〈n| â†â− ââ† |n〉

= − i
2
,

(181)

We are now able to find Γ:

Γ =

(
Var(x̂) Cov(x̂, p̂)

Cov(p̂, x̂) Var(p̂)

)
=

(
n+ 1

2
0

0 n+ 1
2

)
. (182)

C.2 Coherent states

The expectation values for coherent states are given by

〈α| x̂ |α〉 =
1√
2

(
〈α| â+ â† |α〉

)
=

1√
2

(α + α∗) ,
(183)

〈α| p̂ |α〉 =
i√
2

(
〈α| â† − â |α〉

)
=

i√
2

(α∗ − α) ,
(184)

〈α| x̂2 |α〉 =
1

2

(
〈α| â2 + ââ† + â†â+ (â†)2 |α〉

)
=

1

2

(
〈α| â2 + 1 + 2â†â+ (â†)2 |α〉

)
=

1

2

(
α2 + 1 + 2 |α|2 + (α∗)2

)
,

(185)
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〈α| p̂2 |α〉 = −1

2

(
〈α| (â†)2 − â†â− ââ† + â2 |α〉

)
= −1

2

(
〈α| (â†)2 − 1− 2â†â+ â2 |α〉

)
= −1

2

(
(α∗)2 − 1− 2 |α|2 + α2

)
,

(186)

〈α| x̂p̂ |α〉 =
i

2

(
〈α| ââ† − â2 + (â†)2 − â†â |α〉

)
=
i

2

(
〈α| 1− â2 + (â†)2 |α〉

)
=
i

2

(
1− α2 + (α∗)2

)
,

(187)

〈α| p̂x̂ |α〉 =
i

2

(
〈α| â†â+ (â†)2 − â2 − ââ† |α〉

)
=
i

2

(
〈α| − 1 + (â†)2 − â2 |α〉

)
=
i

2

(
−1 + (α∗)2 − α2

)
.

(188)

This lets us find the variances and covariances:

Var(x̂) =
1

2

[
(α∗)2 + 1 + 2 |α|2 + α2

]
− 1

2

[
α2 + 2 |α|2 + (α∗)2

]
=

1

2
,

(189)

Var(p̂) = −1

2

[
(α∗)2 − 1− 2 |α|2 + α2

]
+

1

2

[
α2 − 2 |α|2 + (α∗)2

]
=

1

2
,

(190)

Cov(x̂, p̂) =
i

2
((α∗)2 − α2)− i

2
(α + α∗)(α∗ − α)

= 0,
(191)

We can summarize this into Γ:

Γ =

(
Var(x̂) Cov(x̂, p̂)

Cov(p̂, x̂) Var(p̂)

)
=

(
1
2

0
0 1

2

)
. (192)
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C.3 Even cat states

The expectation values are here

〈Ψe| x̂ |Ψe〉 =
1√
2
N 2
e (〈α|+ 〈−α|)(â+ â†)(|α〉+ |−α〉)

=
1√
2
N 2
e (〈α| â |α〉+ 〈α| â |−α〉) + 〈α| â† |α〉+ 〈α| â† |−α〉

+ 〈−α| â |α〉+ 〈−α| â |−α〉+ 〈−α| â† |α〉+ 〈−α| â† |−α〉

=
1√
2
N 2
e (α− αe−2|α|2 + α∗ − α∗e−2|α|2 + αe−2|α|2 − α + α∗e−2|α|2 − α∗)

= 0,

(193)

〈Ψe| p̂ |Ψe〉 =
i√
2
N 2
e (〈α|+ 〈−α|)(â† − â)(|α〉+ |α〉)

=
i√
2
N 2
e (〈α| â† |α〉+ 〈α| â† |−α〉)− 〈α| â |α〉 − 〈α| â |−α〉

+ 〈−α| â† |α〉+ 〈−α| â† |−α〉 − 〈−α| â |α〉 − 〈−α| â |−α〉

=
i√
2
N 2
e (α∗ + α∗e−2|α|2 − α− αe−2|α|2 − α∗e−2|α|2 − α∗ − αe−2|α|2 + α)

= 0,

(194)

〈Ψe| x̂2 |Ψe〉 =
1

2
N 2
e (〈α|+ 〈−α|)(â2 + 1 + 2â†â+ (â†)2)(|α〉+ |α〉)

=
1

2
N 2
e

[
〈α| â2 + 1 + 2â†â+ (â†)2 |α〉+ 〈α| â2 + 1 + 2â†â+ (â†)2 |−α〉

+ 〈−α| â2 + 1 + 2â†â+ (â†)2 |α〉+ 〈−α| â2 + 1 + 2â†â+ (â†)2 |−α〉
]

=
1

2
N 2
e

[
α2 + 1 + 2 |α|+ (α∗)2 + e−2|α|2 ((−α)2 + 1− 2 |α|2 + (α∗)2

)
+e−2|α|2 (α2 + 1− 2 |α|2 + (−α∗)2

)
+ (−α)2 + 1 + 2 |α|2 + (−α∗)2

]
=

1

2 + 2e−2|α|2

[
α2 + 1 + 2 |α|2 + (α∗)2 + e−2|α|2 (α2 + 1− 2 |α|2 + (α∗)2

)]
=

1

2
+

2α2

1 + e−2α2 ,

(195)
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〈Ψe| p̂2 |Ψe〉 = −1

2
N 2
e (〈α|+ 〈−α|)

(
(â†)2 − 1− 2â†â+ â2

)
(|α〉+ |α〉)

= −1

2
N 2
e

[
〈α| â†)2 − 1− 2â†â+ â2 |α〉+ 〈α| â†)2 − 1− 2â†â+ â2 |−α〉

+ 〈−α| â†)2 − 1− 2â†â+ â2 |α〉+ 〈−α| â†)2 − 1− 2â†â+ â2 |−α〉
]

= −1

2
N 2
e

[
(α∗)2 − 1− 2 |α|2 + α2 + e−2|α|2 ((α∗)2 − 1 + 2 |α|2 + (−α)2

)
+e−2|α|2 ((−α∗)2 − 1 + 2 |α|2 + α2

)
+ (−α∗)2 − 1− 2 |α|2 + α2

]
= − 1

2 + 2e−2|α|2

[
(α∗)2 − 1− 2 |α|2 + α2 + e−2|α|2 ((α∗)2 − 1 + 2 |α|2 + (−α)2

)]
= − 1

2 + 2e−2|α|2

[
(−1 + e−2α2

) + 4e−2α2

α2
]

=
1

2
− 2α2e−2α2

1 + e−2α2 ,

(196)

〈Ψe| x̂p̂ |Ψe〉 =
i

2
N 2
e (〈α|+ 〈−α|)

(
1− â2 + (â†)2

)
(|α〉+ |α〉)

=
i

2

1

1 + e−2|α|2
(1− α2 + (α∗)2)(1 + e−2|α|2)

=
i

2
(1− α2 + (α∗)2)

=
i

2
,

(197)

〈Ψe| p̂x̂ |Ψe〉 =
i

2
N 2
e (〈α|+ 〈−α|)

(
−1− â2 + (â†)2

)
(|α〉+ |α〉)

=
i

2

1

1 + e−2|α|2
(−1− α2 + (α∗)2)(1 + e−2|α|2)

=
i

2
(−1− α2 + (α∗)2)

= − i
2
.

(198)

Notice that here we used at the end of each calculation that we consider α to be real. We
then find

Γ =

(
Var(x̂) Cov(x̂, p̂)

Cov(p̂, x̂) Var(p̂)

)
=

(
1
2

+ 2α2

1+e−2α2
0

0 1
2
− 2α2e−2α2

1+e−2α2

)
. (199)
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C.4 Vacuum state and Fock state superposition

The expectation values needed to compute the QFI are given by

(〈0|+ 〈n|)x̂(|0〉+ |n〉) = 〈0| x̂ |0〉+ 〈n| x̂ |0〉+ 〈0| x̂ |n〉+ 〈n| x̂ |n〉

= 0 +
1√
2
〈n| â+ â† |0〉+

1√
2
〈0| â+ â† |n〉+ 0

=
1√
2

(〈n| |1〉+ 〈1| |n〉)

=
√

2δn,1,

(200)

(〈0|+ 〈n|)x̂2(|0〉+ |n〉) =
1

2
(〈0|+ 〈n|)(â2 + ââ† + â†â+ (â†)2)(|0〉+ |n〉)

=
1

2
(〈0|+ 〈n|)(â2 + 1 + 2â†â+ (â†)2)(|0〉+ |n〉)

= n+ 1 + δ0,n +
√

2δ2,n,

(201)

(〈0|+ 〈n|)p̂(|0〉+ |n〉) = 〈0| p̂ |0〉+ 〈n| p̂ |0〉+ 〈0| p̂ |n〉+ 〈n| p̂ |n〉

= 0 +
1√
2
〈n| â− â† |0〉+

1√
2
〈0| â− â† |n〉+ 0

=
1√
2

(−〈n| |1〉+ 〈1| |n〉)

= 0,

(202)

(〈0|+ 〈n|)p̂2(|0〉+ |n〉) =
1

2
(〈0|+ 〈n|)(−â2 + ââ† + â†â− (â†)2)(|0〉+ |n〉)

= n+ 1 + δ0,n −
√

2δ2,n,
(203)

(〈0|+ 〈n|)x̂p̂(|0〉+ |n〉) =
i

2
(〈0|+ 〈n|)(−â2 + ââ† − â†â+ (â†)2)(|0〉+ |n〉)

= i(1 + δ0,n),
(204)

(〈0|+ 〈n|)p̂x̂(|0〉+ |n〉) =
i

2
(〈0|+ 〈n|)(−â2 − ââ† + â†â+ (â†)2)(|0〉+ |n〉)

= −i(1 + δ0,n).
(205)

So,

Var[x̂] =
1

2
(n+ 1 + δ0,n +

√
2δ2,n − δn,1), (206)

Var[p̂] =
1

2
(n+ 1 + δ0,n −

√
2δ2,n), (207)

Cov[x̂, p̂] = 0, (208)

which gives

Γ =

(
Var(x̂) Cov(x̂, p̂)

Cov(p̂, x̂) Var(p̂)

)
=

(
1
2
(n+ 1 + δ0,n +

√
2δ2,n − δn,1) 0

0 1
2
(n+ 1 + δ0,n −

√
2δ2,n)

)
.

(209)
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This then gives

Var[Ĝ(φ)] = uTΓu

=
1

2

(
sinφ − cosφ

)((n+ 1 + δ0,n +
√

2δ2,n − δn,1) sinφ

−(n+ 1 + δ0,n −
√

2δ2,n) cosφ

)
=

1

2
(n+ 1 + δ0,n −

√
2δ2,n(cos2 φ− sin2 φ)− δn,1 sin2 φ)

=
1

2
(n+ 1 + δ0,n −

√
2δ2,n cos(2φ)− δn,1 sin2 φ),

(210)

D Rotations

D.1 Commutator [M̂, Ĝ]

We have

Ĝ = â†â

=
1

2
(x̂− ip̂)(x̂+ ip̂)

=
1

2
(x̂2 − ip̂x̂+ ix̂p̂+ p̂2)

=
1

2
(−1 + x̂2 + p̂2),

(211)

so

[M̂, Ĝ] =
1

2
[sin εx̂− cos εp̂,−1 + x̂2 + p̂2]

=
1

2
[sin εx̂− cos εp̂, x̂2 + p̂2]

=
1

2
[sin εx̂3 − cos εp̂x̂2 + sin εx̂p̂2 − cos εp̂3 − sin εx̂3 − sin εp̂2x̂+ cos εx̂2p̂+ cos εp̂3]

=
1

2
(cos ε[x̂2, p̂] + sin ε[x̂, p̂2]).

(212)

Now, we have

[x̂2, p̂] = x̂2p̂− p̂x̂2

= ix̂+ x̂p̂x̂+ ix̂− x̂p̂x̂
= 2ix̂,

(213)

and

[x̂, p̂2] = x̂p̂2 − p̂2x̂

= ip̂+ p̂x̂p̂+ ip̂− p̂x̂p̂
= 2ip̂.

(214)
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Inserting in (212) gives
[M̂, Ĝ] = i(cos εx̂+ sin εp̂). (215)

D.2 Gaussian states

We can compute

〈n̂〉 = 〈0| Ŝ†(ξ)D̂†(α)â†âD̂(α)Ŝ(ξ) |0〉
= 〈0| Ŝ†(ξ)(â† + α∗)(â+ α)Ŝ(ξ) |0〉
= 〈0| Ŝ†(ξ)(â†â+ α∗â+ αâ† + |α|2)Ŝ(ξ) |0〉
= 〈0| [(µâ† + ν∗â)(µâ+ νâ†) + α∗(µâ+ νâ†) + α(µâ† + ν∗â†) + |α|2] |0〉
= 〈0| [|ν|2 ââ† + |α|2 |0〉
= |α|2 + |ν|2 ,

(216)

which gives
〈n̂〉2 = |α|4 + 2 |α|2 |ν|2 + |ν|4 . (217)

Similarly, we get

〈n̂2〉 = 〈0| Ŝ†(ξ)D̂†(α)â†ââ†âD̂(α)Ŝ(ξ) |0〉
= 〈0| Ŝ†(ξ)D̂†(α)(â†â+ (â†)2â2)D̂(α)Ŝ(ξ) |0〉
= |α|2 + |ν|2 + 〈0| Ŝ†(ξ)(â† + α∗)2(â+ α)2Ŝ(ξ) |0〉
= |α|2 + |ν|2 + 〈0| Ŝ†(ξ)((â†)2 + 2α∗â† + (α∗)2)(â2 + 2αâ+ α2)Ŝ(ξ) |0〉
= |α|2 + |ν|2 + 〈0| Ŝ†(ξ)[(â†)2â2 + 2α∗â†â2 + (α∗)2â2 + 2α(â†)2â+ 4 |α|2 â†â

+ 2α∗ |α|2 â+ α2(â†)2 + 2α |α|2 â† + |α|4]Ŝ(ξ) |0〉
= |α|2 + |ν|2 + 〈0| [(µâ† + ν∗â)2(µâ+ νâ†)2 + 0 + (α∗)2(µâ+ νâ†)2 + 0

+ 4 |α|2 |ν|2 + 0 + α2(µâ† + ν∗â)2 + 0 + |α|4] |0〉
= |α|2 + |ν|2 + |ν|4 〈0| â2(â†)2 |0〉+ µ2 |ν|2 〈0| ââ†ââ† |0〉+ (α∗)2µν + 4 |α|2 |ν|2 + α2µν∗ + |α|4

= |α|2 + |ν|2 + |ν|4 〈0| [(1 + â†â)2 + 1 + â†â] |0〉+ µ2 |ν|2 〈0| [1 + 2â†â+ â†ââ†â] |0〉
+ (α∗)2µν + 4 |α|2 |ν|2 + α2µν∗ + |α|4

= |α|2 + |ν|2 + 2 |ν|4 + µ2 |ν|2 + (α∗)2µν + 4 |α|2 |ν|2 + α2µν∗ + |α|4

= 〈n̂〉2 + |α|2 + |ν|2 + |ν|4 + µ2 |ν|2 + (α∗)2µν + 2 |α|2 |ν|2 + α2µν∗,

(218)

which gives us

Var[Ĝ] = |α|2 + |ν|2 + |ν|4 + µ2 |ν|2 + (α∗)2µν + 2 |α|2 |ν|2 + α2µν∗. (219)
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D.3 Even cat states

The expectation values are easily computed to be

〈Ψ| â†â |Ψ〉 = N (〈α|+ e−iθ 〈−α|)(â†â)(|α〉+ eiθ |−α〉)
= N

[
〈α| â†â |α〉+ eiθ 〈α| â†â |−α〉

+e−iθ 〈−α| â†â |α〉+ 〈−α| â†â |−α〉
]

= N (|α|2 − eiθe−2|α|2 |α|2 − e−iθe−2|α|2 |α|2 + |α|2)

=
|α|2

2 + 2 cos θe−2|α|2
(2− 2 cos θe−2|α|2)

= |α|2 ,

(220)

〈Ψ| (â†â)2 |Ψ〉 = 〈Ψ| â†â+ (â†)2â2 |Ψ〉
= N (〈α|+ e−iθ 〈−α|)(â†â+ (â†)2â2)(|α〉+ eiθ |−α〉)
= N

[
〈α| â†â+ (â†)2â2 |α〉+ eiθ 〈α| â†â+ (â†)2â2 |−α〉

+e−iθ 〈−α| â†â+ (â†)2â2 |α〉+ 〈−α| â†â+ (â†)2â2 |−α〉
]

= N (|α|2 + |α|4 + eiθe−2|α|2(− |α|2 + |α|4)

− e−iθe−2|α|2(− |α|2 + |α|4) + |α|2 + |α|4)

=
|α|2

2 + 2 cos θe−2|α|2
(2 + 2 |α|2 + 2 cos θe−2|α|2(−1 + |α|2)).

(221)
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