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Abstract
The purpose of this report was to calculate how sensitive cat states are to displac-
ing forces and shifts in resonance frequency, caused by some force acting on the
system. To this end, we have first derived a general expression for the sensitivity
that depends on the derivative of the Wigner function of the cat state with re-
spect to the strength of the applied perturbation. We then proceeded to examine
the effects of each type of perturbation - the on-resonance displacing force, which
is a special case of the general â† + â type perturbation (also referred to as the
off-resonance displacing force), the off-resonance displacing force and the rotat-
ing perturbation - on the cat state. Based on the observations we made, we have
derived coordinate transformations for all 3 cases that mimic the effects the pertur-
bations have on the cat state. We then used these coordinate transformations to
derive analytical expressions for the sensitivity η in each case. We found that the
sensitivities for the on-resonance displacing force and the resonance frequency shift
were very similar in structure. They both exhibited an overall scaling of 1/

√
τ ,

τ being the time the state has evolved for. The off-resonance displacing force
exhibited oscillatory behavior in τ , with an overall scaling of

√
τ . For all three

perturbations, sensitivity minima coincided with regions of phase space where the
Wigner function of the initial cat state is the steepest. Lastly, we expanded our
calculations to also include effects brought about by losses. The inclusion of losses
resulted in generally higher values of η. It also negated the 1/

√
τ scaling, instead

causing the sensitivity to reach a global minimum at 10µs < τ < 15µs, and then
to rise monotonously for increasing times.
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1 INTRODUCTION

1 Introduction
Sensing has always been of great importance in physics. To measure natural con-
stants such as the speed of light, Planck’s constant and etc., very precise and
accurate measurements are required. One prominent example of a measurement
apparatus utilizing interference properties of light is the interferometer. In inter-
ferometric measurements, light derived from a single source is split into different
paths and recombined before detection. Altering the beam properties on one
path will then affect the measurement after recombination due to the interference
properties of light. A typical example of an interferometric setup is the Michelson
interferometer [1]. Here, light is split into a reference and a signal path. Al-
terations to the optical path length of the signal path can then be detected in
the interference pattern of the recombined light. This type of interferometer was
used to disprove the Aether theory, motivate special relativity, and confirm the
existence of gravitational waves as was done employing the highly optimized inter-
ferometer used in LIGO [2]. If we operate these measurement setups using specific
kinds of states, we are fundamentally limited by Heisenberg’s uncertainty princi-
ple. A common type of states employed in such experiments are squeezed states.
These states trade off a higher uncertainty in one phase space coordinate for a
reduction of the uncertainty in the other. The uncertainty in the second phase
space coordinate can be reduced below Heisenberg’s limit, while the uncertainty
principle is still satisfied for the combination of both phase space coordinates. In
this report, we investigate the application of a different type of harmonic oscillator
state with purely quantum features, a so-called Schrödinger cat state, to sensing.

1.1 Cat states

A system that can be described using the quantum mechanical harmonic oscillator
(HO) Hamiltonian Ĥ0 = h̄ω(â†â + 1/2), where â is the annihilation operator, is
most commonly described by two types of states. There are Fock states, which are
eigenfunctions of the HO Hamiltonian. They are based on the quantum number
n, which is either 0 or a positive integer. For a resonator, the quantum number
gives the number of excitations in the mode with frequency ω, also referred to
as the population of that mode. The wave function of the Fock state is either
even or odd, depending on whether n is even or odd. The spatial symmetry can
also be determined using the parity operator P̂ . This operator commutes with
the Hamiltonian and has two eigenvalues, ±1. Applying the parity operator to
a spatially symmetric wave function will result in an eigenvalue of +1, while the
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1 INTRODUCTION

application to a spatially anti-symmetric wave function will yield an eigenvalue of
−1. We therefore have P̂ |2n >= |2n > and P̂ |2n+ 1 >= −|2n+ 1 > for n ∈ N.

A way to describe states, which is equivalent to the use of density matrices, is to
use the Wigner function. This is a quasi-probability distribution which we can
calculate using

W (α) =
2

π
Tr[P̂ D̂†αρ̂D̂α] [3]. (1)

Here, D̂α is the displacement operator:

D̂α = eαâ
†−α∗â. (2)

The Wigner function gives the expectation value of the parity operator, as a func-
tion of position in phase space, of a displaced initial state described by the density
operator ρ̂. It is a way to visualize states in phase space. Negative values of the
Wigner function (hence a quasi-probability distribution) of a state are an indica-
tor that the state is inherently quantum [4]. As we can see in Fig.1, Fock states
with n > 0 clearly show regions in phase space that yield negative values of the
Wigner function. Fock states are therefore considered to be true quantum states.

A second type of states which are often used are coherent states. They are infinite
superpositions of Fock states:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (3)

Here, α is some complex number. These states are no longer eigenstates of the
â†â operator, but they are eigenstates of the â operator with eigenvalue α. For

Figure 1: Wigner functions of different Fock states with n = 0, 3, 5
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these states, the average population is given by α2. The Wigner function of
coherent states always remains positive, which is why they are often referred to
as "classical" states. In terms of Wigner functions, coherent states look exactly
like vacuum states centered around α in phase space (see Fig.2). For this reason,
coherent states can also be defined as displaced vacuum states, |α〉 = D̂α|0〉, where
D̂α is the displacement operator as defined in eq.2.

Figure 2: Wigner functions of different coherent states with α = 0,
√

3,
√

3i

Schrödinger cat states, often also referred to as just cat states, are symmetric
superpositions of these coherent states. The cat states we have used in this report
are defined as:

|C〉 =
1√
2

(|β〉 ± | − β〉). (4)

The sign in eq.4 refers to the parity of the cat state. Even cat states are superpo-
sitions of Fock states with even n, odd cat states are superpositions of Fock sates
with odd n. Here, β is once more a complex number. In this report, we will refer
to β as the cat state size, since the state size in phase space strongly depends on
this number. Without loss of generality, we have elected to only work with real
values for β.

Cat states are interesting because this specific superposition of classical states
leads to so-called quantum interference fringes in their Wigner functions. These
interference fringes are regions of alternating parity in phase space, located be-
tween the two superimposed coherent state blobs (see Fig.3). They exhibit an
oscillatory behavior in Im(α)-direction, as the parity oscillates between +1 and
−1 along that axis, and have a 2-dimensional Gaussian envelope. The Wigner
function for an even cat state is given by:
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W (α) =
2

π(1 + e−2|β|2)
[e−2|α−β|2 + e−2|α+β|2 + 2e−2|α| cos 4βIm(α)] [4]. (5)

For cat state sizes that are not too small, the interference fringes and coherent
states do not overlap, clearly separating the interference fringes from the coherent
states. In this case, the Wigner function of just the fringes can be written as:

W (α) =
2

π
e−2Re(α)2

e−2Im(α)2

cos 4βIm(α) [3] (6)

The value of the Wigner function of the fringes at the origin of phase space will
depend on whether we are working with an even or an odd cat state. Even cat
states will have W (0) = 2/π, while for odd cat state a phase of π will need to be
included in the cosine term in eq.5 and eq.6, resulting in W (0) = −2/π.

Figure 3: Wigner function of even cat state with β =
√

3.

One particular application where the presence of interference fringes is useful is
perturbation sensing. To illustrate this we consider an additional term in the HO
Hamiltonian, Ĥ1 = δâ†â, which can be the result of a physical force acting on the
system. The effect of this perturbation is best seen in the rotating frame, which
rotates with angular frequency ω, as the system Hamiltonian vanishes under the
corresponding unitary transformation. What remains after the transformation is
simply Ĥ1. Since the HO term is 0 in the rotating frame, any change in the Wigner
function of the cat state during time evolution is an effect of Ĥ1. In this particular
case, we know that this term will cause a rotation of the Wigner function of the
state around the origin of phase space.

This means that the Wigner function of the coherent state will move along a
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circle with radius β. The arc length of this rotation is proportional to β. There-
fore, the minimal angle, by which the state is rotated, to see a significant change
in parity for the coherent state is proportional to 1/β. This effect can be used
even more effectively if the radius of the circle can be increased. This can be done
in two ways: increase the cat state size β, or alternatively - without modifying the
state - displace the state such that the blob of the | − β〉 state is centered around
the origin of phase space. This can be achieved using the displacement operator
defined in eq.2:

|C ′〉 = Dβ|C〉, (7)

resulting in the final state |C ′〉 = |0〉+ |2β〉. This simple operation gives a radius
of 2β for the circular motion of the right coherent state blob. Another advantage
of this displaced state is the left blob’s fixed central position, which results in a
simpler state evolution overall. For these reasons, we will from now on work with
the displaced state (eq.7, as shown in Fig.4 on the left) instead of the cat state
defined in eq.4.

Figure 4: Left: Wigner function of displaced cat state as defined in e.7 with β =
√

3.
Right: Overlay of initial cat state and a state rotated by θ. The arc length traversed by
a fixed point of the Wigner function scales with β, the fringe size with 1/β (see main
text).

In addition to this rotation, we can also examine how the interference fringes
behave. We know that the fringes in Im(α)-direction can be described using a
cosine function with argument 4βIm(α). Within one period, there are two fringes
of opposite parity. This allows us to set the fringe size to 4βIm(α) = π. A rotation
by around π/β will therefore result in a change of parity in the center of the fringes
(see Fig.4 on the right). Combined with the rotation of the coherent states, as
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well as the fringes themselves, we obtain an overall scaling of 1/β2, which cannot
be obtained with only classical states.

1.2 Sensitivity

The first step in obtaining an expression for the sensitivity to perturbations is
to derive a general definition for the sensitivity. We will then adapt this general
definition to the particular case where we are measuring changes in the Wigner
function resulting from a perturbation term in the Hamiltonian.

In an experiment where the signal P0 is dependent on a variable S, the signal
to noise (SNR) ratio can be defined using an error propagation approach [5]:

SNR−1 =
∆P0

|dP0

dS
|S=0∆S

. (8)

To define a lower bound on ∆Smin, the smallest detectable change in S, we set
the SNR to 1:

∆P0

|dP0

dS
|S=0∆Smin

= 1. (9)

If we assume a two-level system coupled to a harmonic oscillator where the sig-
nal is given by the ground state population, the projection noise for a single
measurement is given by ∆P0 = 1/2 [5]. Therefore, the shot-noise limit for M
measurements is ∆P0(M) = 1/(2

√
M) [6]. If we assume that the total measure-

ment time is T , we can express M in terms of the measurement time for a single
measurement τ and the overhead time τOH :

M =
T

τ + τOH
. (10)

Inserting this equation together with the shot-noise limit into a slightly rearranged
eq.9 yields

∆Smin =

√
τ + τOH

2|dP0

dS
|S=0

1√
T
. (11)

We can now define the sensitivity η as the factor in front of 1/
√
T :

η =
1

2

√
τ + τOH

|dP0

dS
|S=0

. (12)

Therefore, the minimal change in S, ∆Smin is given by a combination of the sen-
sitivity η and the total measurement time T . The longer the total measurement

6



1 INTRODUCTION

time we have, the smaller the change in variable S we can detect. Also, we achieve
the best sensitivity when η is minimal. Additionally, it is important that η be
independent of S, as the sensitivity is a measure of how small S can become while
still being detectable. The sensitivity does, however, depend on how strongly the
signal depends on S, as is evidenced by the |dP0/dS|S=0 term. The sensitivity
will improve for a stronger S-dependence of P0.

We can now transfer this definition of sensitivity to measurements of the Wigner
function of cat states, as defined in eq.1. We assume the harmonic oscillator which
is used to create cat states is coupled to a two-level system, which is used to map
the parity onto two-level states. For this reason, we can continue using the shot-
noise limit we have used previously, giving us eq.11.

In measurements of the Wigner function of evolving cat states, the signal P0

is replaced by the Wigner function W (α) itself. The variable S on which the
Wigner function depends is some perturbation strength f , as our goal is to learn
what perturbation strengths we can detect. We will see in later sections that
all this perturbation strength f is, is a proportionality constant to the pertur-
bations we add to the HO Hamiltonian. The sensitivity for this application is
correspondingly given by

η =
1

2

√
τ + τOH

|dW (α)
df
|f=0

. (13)

This equation makes it evident that we need to know how the Wigner function
evolves in time under a perturbation. This will generally differ for various types
of perturbations. In this report, we will specifically investigate how cat states
evolve under perturbations caused by a displacing perturbations, which are pro-
portional to (â† + â) and perturbations that shift the resonance frequency, which
are proportional to â†â.
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2 DISPLACING FORCES

2 Displacing forces
We will start by examining a perturbation with an (â† + â) type structure:

F̂d = h̄f ∗d e−iω
′tâ† + h̄fde

iω′tâ. (14)

This corresponds to a classical drive with amplitude (also referred to as force
strength or perturbation strength) fd and frequency ω′. As Hamiltonians are
operators of energy, the individual summands in eq.14 have units of J, which
requires fd to be in units of Hz. To transform the total Hamilationan Ĥ ′ =
Ĥ0 + F̂d into the rotating frame, we employ the unitary transformation operator
Û = eiĤ0t/h̄:

Ĥ ′rot = ÛĤ ′Û † + ih̄
∂Û

∂t
Û †

= ÛĤ0Û
†︸ ︷︷ ︸

Ĥ0

+Û F̂dÛ
† + ih̄

∂Û

∂t︸︷︷︸
i(Ĥ0/h̄)Û

Û †

= Û F̂dÛ
† = h̄f ∗d ei(ω−ω

′)tâ† + h̄fde
−i(ω−ω′)tâ

= h̄f ∗d ei∆tâ† + h̄fde
−i∆tâ.

(15)

We have substituted ∆ for ω − ω′, which is the detuning. Depending on the
values of ∆, we can distinguish the limiting case of an on-resonance displacing
force (∆ = 0) from the general case of an off-resonance displacing force (∆ 6= 0).
As these two cases result in differences in the time evolution of our cat states, we
will treat them separately.

2.1 On-resonance limiting case

In the on-resonance limit, the detuning ∆ vanishes. Therefore, the effective Hamil-
tionan in the rotating frame is given by:

Ĥ ′rot = h̄f ∗d â
† + h̄fdâ (16)

In the ideal system that we will work with, the force defined in eq.16 is the only
force acting on the state. For now, we will assume that our system is lossless and
that there is no decoherence.

2.1.1 Force induced coordinate transformation

To see what happens to cat states under an on-resonance displacing force, we have
conducted simulations using QuTIP [7]. All of the simulations with on-resonance
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2 DISPLACING FORCES

displacing forces use even cat states with size β =
√

3 (see eq.7).

Since the displacing force is equivalent to a classical drive, we can artificially
create such forces with variable drive strengths in an experiment. For the first
simulations, we have chosen low perturbation strengths and have let the state
evolve over a long time (for these simulations, we use timescales on the order of
seconds) to see what happens to the state. It is also noteworthy that QuTIP au-
tomatically uses a normalization scheme where h̄ = 1 and ω = 1Hz, which renders
the perturbation strength equal to fd.

The results of simulations with low, real perturbation strengths are shown in
Fig.5. This figure shows how the cat state is displaced from its starting position
in phase space in a vertical direction without changing its horizontal orientation.
This means that the fringes remain parallel to the Im(α)-axis at all times. The
direction of the displacement depends on the sign of fd, negative fd cause a dis-
placement in positive Im(α)-direction and fd with a positive sign displace the
state in the opposite direction. The speed at which the state is displaced is pro-
portional to the magnitude of the perturbation strength. Within the first second,
the state is displaced by the exact value of fd. During the 2. second, the state
is further displaced by the value of fd, yielding a total displacement of twice the
value of the perturbation strength. This means that for more realistic time frames
(microsecond order) much stronger forces are required for noticeable changes in
the Wigner function. It is important to note that throughout the entire time
evolution, the shape of the Wigner function of the cat state doesn’t change, only
its position in phase space does.

Next, we can look at what happens if the real part of fd is 0, while the imagi-
nary part takes a non-zero value. Fig.6 shows that save for the direction of the
displacement, the general time evolution of the cat state under an on-resonance
displacing force with a purely complex perturbation strength is identical to the
time evolution under an on-resonance displacing force with a purely real pertur-
bation strength. Instead of vertical displacement, we now have strictly horizontal
displacement. Depending on whether the sign of fd is positive (negative), the
cat state will move in negative (positive) Re(α)-direction. Neither the horizontal
orientation nor the state itself changes throughout the simulation.

In cases where the perturbation strength is neither purely real nor purely imagi-
nary, the displacement will be a combination of the two previous cases (see Ap-
pendix). The cat state will move along the straight line Im(α) = Re(fd)

Im(fd)
Re(α).

9



2 DISPLACING FORCES

Figure 5: Time evolution of even cat state with size β =
√

3 under on-resonance dis-
placing forces with perturbation strengths −4Hz (1. row), −2Hz (2. row), 2Hz (3. row)
and 4Hz (last row).
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Figure 6: Time evolution of even cat state with size β =
√

3 under on-resonance displac-
ing forces with perturbation strengths −i · (4Hz) (1. row), −i · (2Hz) (2. row), i · 2Hz
(3. row) and i · 4Hz (last row).
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2 DISPLACING FORCES

Depending on the sign of Im(fd), as in the case of a purely imaginary perturba-
tion strength, the state will either be displaced in the positive direction of this
line, or in its negative direction.

To sum up, an on-resonance displacing force will linearly displace the cat state
from its original position in phase space without changing the shape of the Wigner
function itself. It is exactly because the shape of the state remains constant that
we can describe the effects of the on-resonance displacing forms using a simple
coordinate transformation. Let us define two coordinate systems, X, and X ′. X
will be our lab frame coordinate system, which coincides with the rotating frame
which rotates at a frequency of ω, X ′ will be the coordinate system the Wigner
function of the cat state remains constant in. All of the plots shown so far are
plotted in the lab frame X, as the state does not remain in its original place in
phase space. For this coordinate transformation, we will specifically consider just
the cat state fringes defined in eq.6. Even though the shape of the fringes stays
intact, we can no longer use this equation to describe the time evolution of the
cat state in the lab frame. However, this expression is still valid in the dashed
coordinate system, as this is the system where the state remains in its start-
ing position. We can therefore adjust eq.6 using the coordinate transformation
between the two coordinates to obtain an expression that is valid in the lab frame.

We have seen that a real part of fd, Re(fd), is responsible for vertical displacements
of the Wigner function:

Im(α′) = Im(α) + Re(fd) · τ, (17)

while imaginary parts of fd, Im(fd), cause displacements in horizontal direction:

Re(α′) = Re(α) + Im(fd) · τ. (18)

As we have also seen, the size of the displacement increases with the time τ . To
obtain an expression for the Wigner function in the lab frame, we start with eq.6
and plug in the coordinate transformations defined in eq.17 and eq.18 to finally
obtain an expression in lab frame coordinates:

W (α, fd; τ) =
2

π
e−2(Re(α)−β+Im(fd)·τ)2

e−2(Im(α)+Re(fd)·τ)2

· cos 4β(Im(α) + Re(fd) · τ).
(19)

The coordinate transformation has introduced a dependence on fd as well as a
parametric time dependence into the expression for the Wigner function of the
evolving cat state. At this point, we have also introduced a shift by β along the
Re(α)-direction to account for the initial displacement defined in eq.7.

12
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2.1.2 Sensitivity calculation

Now that we have obtained an expression for the time-dependent Wigner function
of an even cat state under the influence of an on resonance displacing force, we
can use eq.13 to obtain the sensitivity for this force.

As we have seen in Fig.5 and Fig.6, the fringes of the cat state remain paral-
lel to the Re(α)-axis at all times. Intuitively, we expect the cat state to be most
sensitive to displacements that are perpendicular to the orientation of the fringes.
We will therefore restrict our calculations to purely real fd at this point. This will
simplify the calculations without loss of generality.

To calculate the sensitivity, we first need to obtain the absolute value of the
derivative of the Wigner function with respect to the perturbation strength. As
the coordinate transformation has introduced an fd-dependence into the expres-
sion for the Wigner function, this is straight forward:∣∣∣∣dW (α, fd; τ)

dfd

∣∣∣∣ = τ
8

π
e−2(Re(α)−β)2

e−2(Im(α)+fd·τ)2

|(Im(α) + fd · τ) cos 4β(Im(α) + fd · τ) + β sin 4β(Im(α) + fd · τ)|. (20)

We can now plug this expression into eq.13, which yields:

η =
π

16

e2(Re(α)−β)2
e2Im(α)2√

τ + τOH
|τ(Im(α) cos 4βIm(α) + β sin 4βIm(α))|

(21)

This equation gives the sensitivity for an on-resonance displacing force as a func-
tion of α and τ . This equation tells us that the sensitivity scales with 1/

√
τ , which

means that we get improved sensitivity the longer we let the cat state evolve. This
was to be expected, as we know that the displacement itself scales with τ , and
larger displacements are easier to detect and resolve. In principle, eq.21 suggests
that if we increased τ indefinitely, we would obtain infinite precision. In real ex-
periments, however, τ will be limited by the coherence time (∼ 40µs), which as
we will see in section 4, will result in an optimal τ for which the sensitivity will
actually be in a minimum.

Furthermore, we notice that the sensitivity exhibits an oscillatory structure due
to the sin and cos terms in the denominator. Fig.7 demonstrates this nicely. It
shows the sensitivity as a function of Im(α) plotted along the line Re(α) =

√
3 for

different times τ and an overhead time of τOH = 16µs for an even cat state with

13



2 DISPLACING FORCES

τ=3µs τ=15µs

τ=30µs τ=40µs

Figure 7: Sensitivity plotted along the Re(α) =
√

3 line at different times τ for an even
cat state with β =

√
3. The blue line shows the Wigner function along the Im(α)-axis.

As can be seen, minima in sensitivity are located at values of Im(α) for which the slope
of the Wigner function is largest. We can also see that sensitivity improves with longer
τ .

size β =
√

3. In this figure, we can also see that sensitivity minima are located at
Im(α)-values that give rise to steep slopes in the Wigner function. This is very
intuitive, as we expect regions with steep slopes to be very sensitive to changes.
Due to the exponential terms in the numerator, the sensitivity increases rapidly
when we move away from the Wigner function of the cat state in phase space.

It is also noteworthy that the sensitivity in eq.21 has units of
√
Hz. Using the

sensitivity we have calculated, we can now, according to eq.11, obtain the minimal
force ∆fd,min that can be detected for a total measurement time T :

∆fd,min = η
1√
T
. (22)

Since both η and 1/
√
T have units of

√
Hz, the RHS of eq.22 is in units of Hz.

This matches the LHS of this equation exactly, as we know that the perturbation

14



2 DISPLACING FORCES

strength is also required to be in units of Hz. ∆fd,min depends on multiple param-
eters. For example, if we assume the total measurement time T to be 1s long and
we let the cat state evolve for a time τ = 40µs in each measurement, the weakest
on-resonance displacing force we could measure would be a force with perturba-
tion strength fd = 22.88Hz. These measurements would have to be performed at
points in phase space where α =

√
3± 0.197i.

Figure 8: Time evolution of even cat state with size β =
√

3 under off-resonance dis-
placing force with perturbation strength fd = 4Hz and detuning ∆ = 2πHz.
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2.2 Off resonance case

We will now move on to look at the off-resonance displacing force with the Hamil-
tonian defined in eq.15. As we did in the on-resonance case, we will again work
in an ideal system without losses and decoherence.

2.2.1 Force induced coordinate transformation

Figure 9: Time evolution of even cat state with size β =
√

3 under off-resonant displacing
force with perturbation strength fd = 6Hz and detuning ∆ = 2πHz.

To investigate the effect of an off-resonance force on a cat state we have again
conducted simulations using a state with size

√
3. In addition to the perturbation

16



2 DISPLACING FORCES

strength parameter that was already present in the on-resonance case, a second
parameter, the detuning ∆ (see eq.15), will now also be important. As in the pre-
vious case, we will start by employing low perturbation strengths and detunings,
while letting the state evolve for a long period of time.

For the first couple of simulations, we have fixed the detuning to ∆ = 2π and var-
ied fd. We have started with real, positive fd. The results of these simulations are
shown in Fig.8 and Fig.9. As we can see, the cat state no longer moves in straight
lines, although the horizontal orientation of the fringes remains unchanged. In-
stead, the state goes through a circular motion, completing the circle within 1s.
For the fd chosen in these two simulations, the motion is in an anti-clockwise
manner and the midpoint of the traversed circle is located on the Re(α)-axis, to
the right of the state’s initial position in phase space. We see that the type of
motion is identical for both perturbation strengths.

Figure 10: Motion of even cat state with size β =
√

3 when acted on by off-resonance
displacing forces with various real, positive fd. For each time-step, only the position of
the fringe-center is shown for improved clarity.

However, the radius of the traversed circle is significantly larger for fd = 6Hz
when compared to fd = 4Hz. Fig.10 depicts the cat state’s motion during its time
evolution for different real perturbation strengths (simulations for perturbation
strengths fd = 2Hz, 8Hz, 10Hz are provided in the appendix). For better visibility
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and clarity, only the very center of the fringes is shown. As can clearly be seen,
the radius of the traversed circle increases with increasing fd. When we plot this
radius as a function of fd (see Fig.17), we see that the radius is linearly dependent
on fd, with an axis intercept of 0. Therefore, we know that r(fd) = m · fd, where
r(fd) is the radius.

Figure 11: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = −6Hz and detuning ∆ = 2πHz.

Next, we would like to know what happens if we apply forces with real but nega-
tive fd. Fig.11 shows how the cat state evolves under an off-resonance displacing
force with strength fd = −6Hz. We see that the state still moves in a circular
manner and that the radius of the traversed circle is equal to the fd = 6Hz case.
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We also notice that the state goes through an anti-clockwise motion, which was
the case for positive fd as well. However, the center of the traversed circle now
lies to the left of the state’s initial position in phase space. We can also check
the size of the circle for other negative fd (see Fig.12) and see that the radius is
only dependent on the magnitude of the perturbation strength, the sign will only
determine where the center of the circle is located.

Figure 12: Motion of even cat state with size β =
√

3 when acted on by off-resonance
displacing forces with various real, negative fd. For each time-step, only the position of
the fringe-center is shown for improved clarity.

Now that we have seen the effects of real fd, we can continue to examine the
effects of imaginary fd. Fig.13 shows the time evolution of the cat state when
acted on by an off-resonance displacing force with perturbation strength fd = 4i.
We see that while the circular motion is retained, the center of the traversed circle
has moved from the Re(α)-axis to the Im(α)-axis. For a positive, imaginary fd,
the orbit has shifted below the cat state’s initial position in phase space. For a
negative, imaginary fd however, it has shifted upwards (simulation see appendix).
This is summarized in Fig.14, which shows the orbits of the cat state when acted
on by forces with perturbation strengths that all have a magnitude of 4Hz. What
has remained a constant for all of the perturbation strengths shown in this figure
is the sense of the motion: all perturbation strengths cause the state to move in
an anti-clockwise direction.
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We can therefore conclude, based on the observations we have made while exam-
ining the simulations shown, that the magnitude and nature of the perturbation
strength of the acting forces influence the time evolution of the cat state in two
ways: Firstly, the radius of the traversed orbit is linearly dependent on the mag-
nitude of fd and completely independent from fd’s polar angle. Secondly, we have
seen that the relative position of the center of the circular path compared to the
state’s initial position in phase space depends both on the sign and on whether
fd is purely real or purely imaginary.

Figure 13: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = i · 4Hz and detuning ∆ = 2πHz.

Of course, it is also possible to have perturbation strengths that are neither purely

20



2 DISPLACING FORCES

real nor purely imaginary. In these cases, the radius of the traversed circle is still
given by the magnitude of fd, while the relative position of the orbit will depend
on the real and imaginary parts of the perturbation strength. Some simulations
with perturbation strengths where both parts (real and imaginary) are non-zero
are shown in the appendix.

At this point, we have seen what effects the parameter fd has on the time evolu-
tion of a cat state. We can now move on to take a closer look at how the second
parameter, the detuning ∆, can influence how the state evolves in time.

Figure 14: Motion of even cat state with size β =
√

3 when acted on by off-resonance
displacing forces with fd = 4Hz,−4Hz, i · 4Hz, i · −4Hz and ∆ = 2πHz. For each time-
step, only the position of the fringe-center is shown for improved clarity.

Firstly, we will look at what happens when we change the detuning from ∆ = 2π
Hz to ∆ = 1πHz and ∆ = 4πHz. For ease of comparison, the perturbation
strength will remain constant at fd = 4Hz for both simulations. When we look
at Fig.15, which depicts the evolution of the state for an off-resonance displacing
force with ∆ = 1πHz, we see that, fundamentally, the state behaves in a similar
manner as in the ∆ = 2πHz case. There are, however, two main differences that
we can observe: Firstly, the circular path taken by the cat state has increased
significantly in size, compared to the previous case. Secondly, the state now needs
twice as long (2s) to clear the entire circle. We see something very similar when
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we look at Fig.16, which shows a force with detuning ∆ = 4πHz acting on the
cat state. This time, however, the size of the orbit has shrunk compared to the
∆ = 2πHz case. We also see that for this higher detuning, the cat state traversed
the circle twice as quickly as it did in the ∆ = 2πHz case. We can therefore
conclude that with increasing detuning, the size of the orbit will decrease, while
the angular velocity of the state increases. We notice that the time taken by the
cat state to complete the circle once, the period P , is given by P = 2π/∆. The
detuning, therefore, corresponds to the state’s angular velocity.

We can now write the radius of the orbit as a function of both fd and ∆,

Figure 15: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = 4Hz and detuning ∆ = 1πHz.
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r(fd,∆) = m(∆) · |fd|. We see that this is true in Fig.17a), which shows the
radius as a function of fd for ∆ = (1, 2, 4)πHz. We can also plot the radius as a
function of ∆ (see Fig.17b)) and notice that the radius is inversely proportional to
∆. This means that the slope of the linear function that we obtained in Fig.17a)
is m(∆) = 1/∆.

Figure 16: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = 4Hz and detuning ∆ = 4πHz.

The last possibility for ∆ that we need to check is a negative detuning. To this
end, we have repeated the simulations for fd = 4Hz,−4Hz, i · 4Hz,−i · 4Hz with a
detuning of ∆ = −2πHz and summarized the results in Fig.18. This figure shows
clearly that the alternate sign of the detuning has changed the sense of motion
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a) b)

Figure 17: Radii of the circles traversed by a cat state when acted on by an off-resonance
displacing force as a function of perturbation strength fd (a) and as a function of ∆ (b).
The radii are grouped according to their detunings ∆. For each detuning (in a), a linear
fit was performed and indicated in black dashed lines.

from anti-clockwise to a clockwise movement, as well as the relative position of the
orbit when compared to Fig.14. However, the sizes of the orbits have remained
unchanged. An off-resonance force with perturbation strength 4Hz and detuning
−2πHz will cause the cat state to take the same path as if the state was acted
on by an off-resonance force with fd = −4Hz and ∆ = 2πHz but will change
the sense of the motion from anti-clockwise to clockwise. Likewise, a force with
fd = i ·4Hz and ∆ = −2πHz will yield the same orbit as a force with fd = −i ·4Hz
and ∆ = 2πHz but with a changed sense of movement.

To summarise, an off-resonance displacing force acting on a cat state will result
in a circular orbit traversed by the state, with angular velocity |∆|. The radius
of the orbit is given by

r(fd,∆) =
|fd|
|∆|

. (23)

The sense of motion will be anti-clockwise for positive detunings and clockwise
for negative ∆. The relative location of the center of the orbit will depend on
both the sign of ∆ and the polar angle of fd.
If we want to move our simulations to experimentally more realistic µs time scales,
we will need to increase the angular velocity, |∆|, in order to have the cat state
change positions in phase space. Increasing |∆|, however, will simultaneously
shrink the orbit traversed by the cat state. If the order of magnitude of |∆| is
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Figure 18: Motion of even cat state with size β =
√

3 when acted on by off-resonance
displacing forces with fd = 4Hz,−4Hz, i · 4Hz,−i · 4Hz and ∆ = −2πHz. For each
time-step, only the position of the fringe-center is shown for improved clarity.

larger than the order of magnitude of |fd|, the orbit will constrict to a point,
resulting in no detectable cat state motion. We, therefore, require |fd| to approx-
imately match the order of magnitude of |∆|, or even to exceed it. If we assumed
the detuning in an experimental setting to be in the MHz region, we would require
|fd| to be at least 106.

As in the on-resonance case, we notice that overall, the Wigner function of the cat
state is only moved around in phase space, not actually altered in any way. The
horizontal orientation of the cat state fringes remains parallel to the Re(α)-axis at
all times as well. We can therefore employ another coordinate transformation, as
we did in the on-resonance case, to obtain an expression for the Wigner function
from eq.6.

To start, we first want to parametrize the effects caused by Re(fd). Compared to
the coordinate transformation we employed in the on-resonance case, the trans-
formation we have to do here is slightly more complex. For this reason, we will
use Fig.19 as a guide to establishing the correct transformation. The first dis-
placement we need to take into account is the displacement in Re(α)-direction
that is caused by eq.7, which is shown as the blue arrow in Fig.19. We know
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that for any time τ we let the cat state evolve for, it will be located somewhere
on the circle with radius |fd|/|∆| centered at (β + |fd|/|∆|) (circle indicated in
the figure). Specifically, this means that the center of the fringes will always lie
exactly on the circle. To account for this circumstance, we will use two vectors for
this displacement. The first vector will take the fringe center from the cat state’s
initial position to the center of its orbit, as indicated by a green arrow in Fig.19.
The second vector, colored purple in the figure, will then move the fringe center
onto the circle. As a consequence of this separation of the total displacement,
only the purple arrow will be time-dependent, while the blue and green arrows
remain constant during the time evolution.

Figure 19: Pictorial representation of the displacement a cat state has undergone while
being acted upon by an off-resonance displacing force with purely real perturbation
strengths. It is explicitely assumed that fd,∆ > 0.

We can therefore describe the dashed coordinates as:

Re(α′) = Re(α)− β︸︷︷︸
1

− Re(fd)
∆︸ ︷︷ ︸
2

− Re(fd)
∆

cos (∆ · τ + π)︸ ︷︷ ︸
3

(24)
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and
Im(α′) = Im(α)− Re(fd)

∆
sin (∆ · τ + π)︸ ︷︷ ︸

3

. (25)

The terms in eq.24 labeled as 1 and 2 are contributions from the blue and green
vectors respectively. The contribution from the purple vector in eq.18 and eq.17
is labeled with 3. The sine term in eq.17 takes into account the sense of motion:
a positive ∆ will lead to anti-clockwise movement, a negative ∆ to clockwise
movement. A negative sign of Re(fd) will change the direction of the green and
purple vectors (provided ∆ is positive), ensuring the correct position of the orbit
center and fringe center. In the case of a negative ∆, a negative sign on Re(fd)
will not change the orbit center position, which corresponds to the observations
we have made analyzing the simulations. To check whether we are able to recover
the coordinate transformation we have employed in the on-resonance limit, we will
need to Taylor-expand the cosine and sine terms in the previous two equations:

Re(α′) = Re(α)− β − Re(fd)
∆

[1 + (−1 +
τ 2∆2

2
− τ 4∆4

24
+ ...)], (26)

and
Im(α′) = Im(α)− Re(fd)

∆
(−τ∆ +

τ 3∆3

6
− τ 5∆5

120
). (27)

Taking the limit ∆ → 0 of these two equations will result in eq.18 and eq.17
exactly.

The coordinate trasnformation to paramtetrize the effects of Im(fd) is very similar.
However, as can be seen in Fig.20, the green vector is now vertical instead of
horizontal. This adjustment results in:

Re(α′) = Re(α)− β︸︷︷︸
1

− Im(fd)

∆
cos (∆ · τ − π

2
)︸ ︷︷ ︸

3

(28)

and
Im(α′) = Im(α) +

Im(fd)

∆︸ ︷︷ ︸
2

− Im(fd)

∆
sin (∆ · τ − π

2
)︸ ︷︷ ︸

3

. (29)

Again, this coordinate transformation accounts for all observations we have made
and also results in eq.18 and eq.17 when the sine and cosine terms are Taylor-
expanded and the ∆→ 0 limit is taken.

27
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Figure 20: Pictorial representation of the displacement a cat state has undergone while
being acted upon by an off-resonance displacing force with purely imaginary perturbation
strengths. As the green arrow is pointing upwards, Im(fd)< 0.

To obtain an expression for the Wigner function in the lab frame, we again have
to solve for the non-dashed coordinates and use them in the eq.6:

W (α, fd; τ ; ∆) =
2

π
e−2(Re(α)−β−Re(fd)

∆
[1+cos (∆·τ+π)]− Im(fd)

∆
cos (∆·τ−π

2
))2

· e−2(Im(α)−Re(fd)

∆
sin (∆τ+π)+

Im(fd)

∆
[1−sin (∆τ−π

2
)])2

· cos (4β(Im(α)− Re(fd)
∆

sin (∆τ + π) +
Im(fd)

∆
[1− sin (∆τ − π

2
)])).

(30)

2.2.2 Sensitivity calculation

We know that we are most sensitive to displacements that are perpendicular to
the orientation of the fringes. In this case, this again means vertical displacement.
Initially, the strongest vertical displacement occurs for purely real perturbation
strengths, which is why we can simplify our calculation by assuming Im(fd) to be 0.

Firstly, we need to calculate the absolute value of the derivative of the Wigner
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function with respect to (real) fd:∣∣∣∣dW (α, fd; τ ; ∆)

dfd

∣∣∣∣ =
8

π
e−2(Re(α)−β− fd

∆
[1−cos ∆τ ])2

e−2(Im(α)+
fd
∆

sin ∆τ)2

· | 1
∆
{cos (4β(Im(α) +

fd
∆

sin ∆τ))[(1− cos ∆τ)(Re(α)− β − fd
∆

(1− cos ∆τ))

− sin ∆τ(Im(α) +
fd
∆

sin ∆τ)]− β sin ∆τ sin (4β(Im(α) +
fd
∆

sin ∆τ))}| (31)

Now that we have the absolute value of the derivative of the Wigner function, we
can simply plug it into eq.13:

η =
π

16

e2(Re(α)−β)2
e2Im(α)2√

τ + τOH |∆|
| cos (4βIm(α))[(1− cos ∆τ)(Re(α)− β)− Im(α) sin ∆τ ]− β sin ∆τ sin (4β(Im(α)))|

(32)
We see that the expression for the sensitivity has become more complicated than
in the on-resonance case, although the unit of η has remained

√
Hz. The time

dependence especially has changed in type quite drastically. In the on-resonance
case the sensitivity scaled with 1/

√
τ , which means that we could achieve better

sensitivity the longer we let the state evolve. Here, on the other hand, we have
an overall scaling by

√
τ as well as oscillatory behavior in the time variable in

the denominator. This is why we expect the sensitivity to oscillate in time, even
if we fix α. If we consider that the state exhibits orbiting behavior, i.e. passes
certain points in phase space (e.g. the initial position of the fringe center) over
and over again, oscillatory behavior within the time domain is to be expected.
This is illustrated in Fig.21 and Fig.22. If we take the limit ∆ → 0 after Taylor
expanding the detuning-dependent sine and cosine terms in eq.32, we recover the
sensitivity for the on-resonance force given in eq.21.

Fig.21 shows the sensitivity for an overall detuning of 2MHz for a cat state with
β =

√
3. The sensitivity is plotted along the Re(α) =

√
3 line. It is lowest at

this line, as this line is tangential to the cat state motion for small τ . We see
that the general shape of the sensitivity is very similar to the on-resonance case.
The lowest sensitivity for each τ is still incidental with the steepest regions of the
Wigner function, which occur at α =

√
3 ± 0.197i. There are two main differ-

ences, however: Firstly, the sensitivity values are much higher, which we attribute
to the detuning of 2MHz. We know that the minimal force detectable, ∆fd,min,
is directly proportional to η (see eq.11). We know that this minimal force will
have a lower limit set by ∆, as discussed previously, which is why higher values
of η fit our understanding of the state evolution. Secondly, η takes on different
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τ=1µs τ=2µs

τ=3µs τ=4µs

Figure 21: Sensitivity plotted along the Re(α) =
√

3 line at different times τ for an even
cat state with β =

√
3, a detuning of 2MHz and an overhead time of τOH = 16µs. The

blue line shows the Wigner function along the Im(α)-axis. As can be seen, minima in
sensitivity are located at values of Im(α) for which the slope of the Wigner function is
largest.

values at different times for a constant α. As the angular velocity is given by ∆,
we expect the period of one orbit to be πµs. This is reflected in Fig.21 as well.
We see that starting at 1µs, the overall sensitivity increases for τ = 2µs, 3µs and
becomes much better again at τ = 4µs. At 4µs, the cat state has completed its
orbit and has just moved beyond its initial position again.

Fig.22 shows the minimal sensitivity as a function of time. In addition to the
general behaviour shown in Fig.21, this figure also shows the singularities that
are described in eq.32, as well as the overall

√
τ -scaling.

An example of the minimal force we can detect at τ = 1µs, assuming a total
measurement time T of 1s, is ∆fd,min = 1.11kHz at α =

√
3± 0.197i.
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Figure 22: Sensitivity at α =
√
β± 0.197i plotted as a function of time τ for a detuning

of 2MHz. The time is displayed in units of πµs, which is exactly one period for the given
detuning.
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3 Resonance frequency changing perturbation
The second type of perturbation we want to examine has an â†â type structure:

F̂r = h̄frâ
†â. (33)

This perturbation changes the resonant frequency of the HO, as we can clearly
see:

Ĥ ′′ = Ĥ0 + F̂r = h̄ω(â†â+ 1/2) + h̄frâ
†â = h̄(ω + fr)â

†â+
h̄ω

2
. (34)

Experimentally, this kind of perturbation could, for example, be caused by chang-
ing the length of a cavity by applying a constant electric field acting on a piece
of piezoelectric material. The change in cavity length will cause a shift in the
resonant frequency, which is exactly what the â†â type perturbation does.
The perturbation strength fr, which is also the shift in resonant frequency, must
be a real number and has units of Hz. This is true because F̂r is a term within
the Hamiltonian and must therefore be hermitian.

To transform this new Hamiltonian to the rotating frame, we will employ the
unitary transformation operator Û = eiĤ0t/h̄ once again:

Ĥ ′′rot = ÛĤ ′′Û † + ih̄
∂Û

∂t
Û †

= ÛĤ0Û
†︸ ︷︷ ︸

Ĥ0

+Û F̂rÛ
† + ih̄

∂Û

∂t︸︷︷︸
i(Ĥ0/h̄)Û

Û † = Û F̂rÛ
†

= h̄frâ
†â.

(35)

We see that in the rotating frame at frequency ω, the Hamiltonian is a simple
HO Hamiltonian with resonance frequency fr and an overall shift in energy by
−h̄fr/2. We, therefore, expect the Wigner function of the cat state within the
rotating frame which rotates at ω to behave as if it were in a non-rotating frame
without perturbation. In this frame, the Wigner function of a state will rotate
around the origin of phase space. In the rotating frame, the cat state will therefore
rotate around the origin of phase space as well, with angular velocity fr. For this
reason, we will often refer to this type of perturbation as a rotating perturbation.

3.1 Perturbation induced coordinate transformation

We expect the cat state to rotate with an angular velocity of fr around the origin
of phase space. More precisely, since we’re using the displaced cat state defined in
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eq.7, we expect the coherent state blob centered around the origin of phase space
to remain constant while the other coherent state blob rotates around it.

Fig.23 confirms our expectations. We see that the rotating perturbation with
fr = 4πHz causes the cat state to complete 2 entire rotations within 1s, the per-
turbation with fr = 2πHz results in only one entire rotation within the same time
frame and the perturbation with fr = 1πHz only yields half a rotation during
the given time. We notice that for these examples, all perturbation strengths are
positive and the rotational sense remains clockwise for all simulations.

Figure 23: Time evolution of even cat state with size β =
√

3 under resonance-shifting
forces with perturbation strengths 4πHz (1. row), 2πHz (2. row) and 1πHz (3. row).
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Figure 24: Time evolution of even cat state with size β =
√

3 under resonance-shifting
forces with perturbation strengths −4πHz (1. row), −2πHz (2. row) and −1πHz (3.
row).

We also have the possibility of using negative perturbation strengths, as is shown
in Fig.24. We see that the perturbation with fr = −4πHz still forces the cat state
into two whole rotations per second, the perturbation with fr = −2πHz results in
exactly 1 entire rotation and the perturbation with fr = −1πHz yields only half
a rotation. The difference to the positive perturbation strength cases is, that the
rotational sense has switched from clockwise to anti-clockwise.

To sum up, the rotating perturbation will prompt the cat state to rotate around
the origin of phase space with an angular velocity of |fr|. The rotational sense
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will be given by the sign of the perturbation strength, a positive fr will elicit
clockwise rotations while a negative fr will lead to anti-clockwise rotations. In
terms of moving these simulations to a µs-timescale, the only perturbation pa-
rameter we can adjust is the magnitude of the perturbation strength. This will
automatically increase the angular velocity of the rotation, which will allow the
cat state to significantly change within the much shorter time-frame.

While the time evolution of the cat state might be particularly simple in the case
of a rotating perturbation, parametrizing this motion will be more complicated
compared to the displacing perturbation cases. In those cases, the orientation of
the cat state fringes always remained parallel to the Re(α)-axis, which is why the
dashed coordinates were always independent of the non-dashed coordinate of the
other type (e.g. Re(α’) was independent of Im(α) and Im(α’) was independent of
Re(α)). Here, this is no longer the case, as the fringes change orientation as the
state rotates. We will therefore have to mix the coordinate types:(

Re(α′)
Im(α′)

)
=

(
cos frτ − sin frτ
sin frτ cos frτ

)(
Re(α)
Im(α)

)
−
(
β
0

)
. (36)

In this equation, we have applied a rotation matrix for clockwise rotations to the
lab frame coordinates and transformed this into X ′. The Re(α′) coordinate is
additionally displaced by β to account for the initial displacement introduced in
eq.7. A negative fr would change the type of rotation caused by the matrix from
clockwise to anti-clockwise, as the sine-function is odd, while the cosine-function
is even. This transformation introduced here therefore takes into account every-
thing it should.

We can now plug this into eq.6, which results in the expression for the Wigner
function we can use to calculate the sensitivity:

W (α, fr; τ) =
2

π
e−2(Re(α) cos frτ−Im(α) sin frτ−β)2

e−2(Re(α) sin frτ+Im(α) cos frτ)2

cos 4β(Re(α) sin frτ + Im(α) cos frτ).
(37)

3.2 Sensitivity calculation

To calculate the sensitivity for the rotating perturbation, we again need to first
calculate the magnitude of the derivative of the Wigner function with respect to
fr:
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∣∣∣∣W (α, fr; τ)

dfr

∣∣∣∣ =4τβ
2

π
e−2(Re(α) cos frτ−Im(α) sin frτ−β)2

e−2(Re(α) sin frτ+Im(α) cos frτ)2

· |Im(α) cos (frτ + 4Im(α)β cos frτ + 4Re(α)β sin frτ)

+ Re(α) sin (frτ + 4Im(α)β cos frτ + 4Re(α)β sin frτ)|.
(38)

This we can now use to find the sensitivity:

η =
π

16

e2(Re(α)−β)2
e2Im(α)2√

τ + τOH
τβ|Im(α) cos 4βIm(α) + Re(α) sin 4βIm(α)|

. (39)

This equation is actually very similar to the expression for the sensitivity for the
on-resonance displacing force. Once more, there is an overall scaling of 1/

√
τ ,

suggesting that the longer we let the state evolve for, the better our sensitivity
will become. As was already discussed in that section, we will see how this is
offset when we include losses in our simulations. Also true for this case is that
the unit of the sensitivity is

√
Hz.

A plot of the sensitivity can be found in Fig.25. Here, the sensitivity is once again
plotted along the Re(α) =

√
3 line because this line is tangential to the direction

of motion of the cat state. We see once again that the dips in sensitivity coincide
with the steepest points of the Wigner function. The best sensitivity we can
measure is η = 13.2

√
Hz at α =

√
3± 0.197i for a time τ = 40µs. If we assume a

total measurement time T of 1s, the minimal perturbation we could detect would
then be ∆fr,min = 13.2Hz.
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τ=3µs τ=15µs

τ=30µs τ=40µs

Figure 25: Sensitivity plotted along the Re(α) =
√

3 line at different times τ for an even
cat state with β =

√
3, which is acted on by a rotating perturbation. The blue line

shows the Wigner function along the Im(α′)-axis. As can be seen, minima in sensitivity
are located at values of Im(α) for which the slope of the Wigner function is largest. We
can also see that sensitivity improves with longer τ .
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4 Accounting for losses in sensitivity calculations
All of the simulations and calculations we have shown so far were done under
the approximation of an ideal system. For the purpose of eventual experimental
applications, this is insufficient. In real systems, experiments will be limited by
the coherence time of the state, here we use a coherence time of 40µs, as losses
and decoherence cannot be avoided. Generally, the coherence time will be dom-
inated by losses, so we want to adapt our simulations and calculations accordingly.

Figure 26: Time evolution of even cat state with size β =
√

3 when there is no external
force.

38



4 ACCOUNTING FOR LOSSES IN SENSITIVITY
CALCULATIONS

To see what effects losses have on a cat state, we will first examine the time
evolution of a cat state with size β =

√
3, when there are no perturbations to

the system. As we can see in Fig.26, there are two phenomena that take place:
Firstly, the fringes commence fading, they become less and less pronounced as time
goes on. At 40µs, the primary fringe is only barely visible, while the secondary
fringes disappear already at roughly 33µs. Secondly, the figure shows how the two
coherent state blobs move closer together. As the fringes become less pronounced,
the sensitivity will worsen as well. A secondary effect is that the coherent state
blobs will move closer to the origin, effectively shortening the cat state, which, in
terms of rotating perturbation, will also contribute to loss of sensitivity.

Figure 27: Time evolution of even cat state with size β =
√

6 when there is no external
force.
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Generally speaking, cat states with larger sizes will exhibit higher loss rates -
fringes will fade more quickly, blobs will move with a greater rate. This is demon-
strated in Fig.27, where we can see that the fringes of a cat state with β =

√
6

have almost entirely disappeared at already 33µs (for β =
√

3, the fringes were
still somewhat visible at 40µs). As the average population of a coherent state is
given by β2, larger cat state sizes will have more excitations that can decay spon-
taneously. We have seen that the sensitivities we have calculated for the various
perturbations all also depended on β. The size will dictate how quickly the fringes

Figure 28: Time evolution of even cat state with size β =
√

3 with large initial displace-
ment (15i) when there is no perturbation.
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oscillate and will therefore influence how tightly spaced the dips in sensitivity are.
However, especially in the on-resonance displacing force case, as well as the ro-
tating perturbation case, the sensitivity was also overall inversely proportional to
β. This would suggest that we could drastically improve the sensitivity by using
a larger cat state. If we now also consider losses, we see that these will offset this
tendency.

Another effect that losses can have on the sensitivity is that states which have
been initially displaced will commence to move towards the origin of phase space.
This effect becomes more pronounced for larger initial displacements, as can be
seen in Fig.28.

Due to losses, the cat state therefore no longer holds its general shape throughout
the simulations. This is problematic because so far, we have relied on coordinate
transformations to obtain expressions for the Wigner function that take pertur-
bations into account. Unfortunately, these coordinate transformations rely on the
cat state holding its form for all times, which is no longer the case. The result for
any of the simulations we have shown is always Wigner functions of the state, at
various time steps. In principle, we can use numerical derivatives to work with the
resulting Wigner functions. However, we are only able to perform derivatives with
respect to Re(α) and Im(α) and not with respect to the perturbation strength, or
even with respect to τ . In order to calculate the sensitivity, however, we require
the derivative with respect to the perturbation strength. For this reason, we will
employ the chain rule to get the derivative for each time step:

dW

df
=
dW

dα

dα

df
(40)

We can therefore obtain the derivative of the Wigner function with respect to the
perturbation strength from the derivative with respect to α and the derivative of
α with respect to f . To calculate this latter derivative, we can use the coordinate
transformations we have derived for each perturbation. To obtain the sensitivity
for each perturbation we have considered, we would have to conduct simulations
for each (as dW/dα will be different for each perturbation), and then numerically
derive them. As an alternative, we could calculate the derivative dW/dα′ only
once, and use the coordinate transformation to include this in the chain rule:

dW

df
=
dW

dα′
dα′

dα

dα

df
(41)

As we have discussed towards the beginning of this section, obtaining dα′/dα does
not just include using the coordinate transformations from the past section, as
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the loss rate will also vary with the displacement. That being said, this effect is
not too pronounced for small displacements, which is generally what we are using.
The advantages of using eq.41 are twofold: It is no longer necessary to perform
simulations for each type of perturbation. This in turn eliminates the necessity
of defining the perturbation strength in each simulation, guaranteeing that in the
end, the sensitivity we obtain using this method is truly independent of f . We
will therefore use the simulation shown in Fig.26 as the basis for our calculations.

4.1 Displacing perturbations

4.1.1 On-resonance displacing force

For the on-resonance displacing perturbation we can use the coordinate transfor-
mation introduced in eq.17. As we have already done in section 2.1.2, we will
again focus on finding the sensitivity along the Im(α)-direction:

dIm(α′)

dIm(α)
= 1,

dIm(α)

dfd
= τ. (42)

The sensitivity resulting from this calculation is shown in Fig.29 for τ = 3µs, 15µs,
30µs and 40µs. If we compare this to Fig.7, which shows the sensitivity without
losses, we notice that the overall values of η are higher now. We also see that as
time goes on, the sensitivity will start worsening again. In contrast, the sensitivity
we calculated in section 2.1.2 only improves as time goes on. The placement of
the sensitivity dips, however, remains unchanged. To see how the sensitivity
evolves over time, we can also plot the minimal sensitivity for each time step,
as is done in Fig.30. As we have already established when we first derived the
sensitivity, the values plotted here are for α =

√
3± 0.197i. We see that initially,

the sensitivity improves as τ increases but reaches a minimum of about 120
√
Hz

at approximately 11µs. Therefore, the minimal detectable perturbation ∆fd,min,
using the same total measurement time of T = 1s, would correspond to 120Hz,
which is quite different from the value (23Hz) we got when ignoring losses.

4.1.2 Off-resonance displacing force

For the off-resonance displacing force, we will use eq.25 to calculate the derivatives
needed. We will focus on the Im(α)-direction once more:

dIm(α′)

dIm(α)
= 1,

dIm(α)

dfd
= − 1

∆
sin ∆τ + π (43)
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Figure 29: Sensitivity for even cat state with size β =
√

3 under an on-resonance dis-
placing force, also considering losses.

Figure 30: Minimal sensitivity, occurring at α =
√

3 ± 0.197i, plotted as a function of
time for an on-resonance displacing force.

The resulting sensitivity is shown in Fig.31. When we compare this to fig.21 we
notice that the overall values are also higher here. However, the general trends
remain unchanged. In the off-resonance displacing case, the sensitivity already
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scaled with
√
τ , which is only exasperated when we also consider losses.

Figure 31: Sensitivity for even cat state with size β =
√

3 under an off-resonance
displacing force, also considering losses.

We see in fig.32 that this is true. The sensitivity is best for very short times
and only worsens as time goes on. The very best sensitivity occurs at τ = 1µs
and has a value of 1189

√
Hz, as opposed to a value of 1108

√
Hz when losses are

disregarded. These values still occur at α =
√

3± 0.197i, which is the α for which
the Wigner function is the steepest.

4.2 Rotating perturbation

For the rotating perturbation, we will employ eq.36 for the Im(α)-direction:

dIm(α′)

dIm(α)
= cos frτ ,

dIm(α)

dfr
= τ cos frτRe(α′)− τ sin frτ Im(α). (44)

We see that these derivatives no longer look as simple as in the previous two cases,
which is why we have to adjust some details at this point. Firstly, we will need to
evaluate these derivatives for fr = 0Hz, according to eq.13. Secondly, we always
plot the sensitivity for the Re(α) that gives us best results, which is Re(α) =

√
3.
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Figure 32: Minimal sensitivity, occurring at α =
√

3 ± 0.197i, plotted as a function of
time for an off-resonance displacing force. Some values, e.g. at τ = 3µs are higher than
4000
√
Hz and are therefore cut off. The dashed lines connecting the points serve to show

the correct ordering of the points, they are not an interpolation.

As we are using the simulation shown in fig.26, this corresponds to Re(α′) =
√

3
as well. We therefore have:

dW

dfr
=

dW

dIm(α′)
· 1 ·
√

3τ. (45)

Fig.33 shows the results of these calculations. Again, the sensitivity looks very
similar to the case of an on-resonance displacing perturbation, as was already true
when we neglected to consider losses. We again have overall higher values of η,
as well as an initial tendency for improved sensitivity when we increase τ . In
Fig.34, which is also quite similar to Fig.30, we see that this trend stops at 14 µs
- slightly later than in the on-resonance displacing case - when η starts increasing
for larger τ . The best value for the sensitivity we can achieve is roughly 67

√
Hz,

α =
√

3± 0.197i, at τ = 14µs. If we compare this to the sensitivity-value without
losses - around 13

√
Hz - we see that the inclusion of losses has led to a significant

worsening of the sensitivity.

To conclude, we have seen that the inclusion of losses in the sensitivity calculations
has overall led to worse sensitivity values. We have also noted that in cases
where the sensitivity scaled with 1/

√
τ in our original calculations, namely the

on-resonance displacing perturbation as well as the rotating perturbation, the
consideration of losses has removed this tendency. Instead, the values decrease
only for an initial increase in τ , reach a global minimum sometime after 10µs, and
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Figure 33: Sensitivity for even cat state with size β =
√

3 under a rotating perturbation,
also considering losses.

Figure 34: Minimal sensitivity, occurring at α =
√

3 ± 0.197i, plotted as a function of
time for a rotating perturbation.

then start monotonously increasing.
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5 Conclusion and outlook
In this report, we attempted to calculate sensitivities to different perturbations
of the harmonic oscillator for a cat state. We have chosen to focus our efforts
on cat states, because their interference fringes provide a quantum advantage, as
compared to coherent states, when it comes to resolving changes in the Wigner
function of the state. We have derived a general expression for the sensitivity, that
required a derivative of the Wigner function of an evolving cat state with respect
to the perturbation strength. To this end, we have carefully analyzed the time
evolution of cat states in an ideal system when they were being acted upon by
â†â type and â† + â type perturbations. Based on our observations on the effects
of each type of perturbation we have set up coordinate transformations that have
allowed us to obtain analytical expressions for the Wigner function of the state,
allowing the calculation of η for each type of perturbation.

We have seen that â† + â type perturbations have a displacing effect on the cat
state, without changing the horizontal orientation of the fringes. We have ex-
amined the general case of an off-resonance displacing force, as well as the on-
resonance limit where the detuning between the classical drive and the resonance
frequency of the HO was 0.
We have seen that the on-resonance displacing force causes a linear displacement
of the cat state. The real part of the perturbation strength will cause a vertical
displacement, while the imaginary part of fd will yield a horizontal displacement.
Based on these observations, we have employed a linear coordinate transforma-
tion and have obtained an expression for the Wigner function of the cat state as a
function of α and fd, with a parametric dependence on the time τ . The sensitivity
that resulted from these calculations exhibits an overall scaling of 1/

√
τ , suggest-

ing that, in principle, our system can become arbitrarily sensitive if we just let
the state evolve for long enough. The sensitivity also has an oscillatory structure,
in terms of α, in its denominator, which can be attributed to the cosine term in
the equation for the Wigner function for a constant cat state. This oscillatory
behavior leads to dips in the sensitivity that coincide with the steepest regions of
the Wigner function of a cat state.
The off-resonance displacing force on the other hand causes the cat state to orbit
in phase space. The radius of the orbit is given by |fd|/|∆|, where ∆ is the detun-
ing, and the relative position of the orbit center will depend on the magnitudes of
the real and imaginary parts of fd. The real part of fd will place the center of the
orbit on the Re(α)-axis, while Im(fd) will position it on the Im(α)-axis. A positive
detuning results in anti-clockwise orbits, a negative ∆ in clockwise motion. We
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employed a coordinate transformation that takes all of these observations into ac-
count, used it to obtain an analytical expression for the Wigner function to arrive
at a final expression for the sensitivity. While the position of the sensitivity dips
is identical to the on resonance case, there is now an overall scaling with

√
τ , as

well as some oscillatory behavior in time, which depends on ∆. The sensitivity
values are overall much larger compared to the on-resonance case.

The second type of perturbation with a general structure of â†â causes the cat
state to rotate around the origin of phase space. Here, we have only considered
purely real perturbation strengths, as imaginary parts of fr would result in a
non-Hermitian perturbation. Positive perturbation strengths cause clockwise ro-
tations, while negative fr lead to anti-clockwise rotations. Accordingly, we have
used a rotation matrix to describe the coordinate transformation required in this
situation. The resulting sensitivity is very similar to the on-resonance displacing
case, it also scales with 1/

√
τ while the position of the sensitivity dips is identical

to the two previous instances.

Finally, we have expanded our calculations to also include effects caused by losses
in non-ideal systems. We saw that losses would considerably change the general
shape of the cat state during the simulations, as the fringes would commence fad-
ing and the coherent states would move towards the origin of phase space. The
result for each simulation would always be the Wigner function of the state at a
given time step. We were therefore no longer able to derive analytical expressions
for η. Instead, we applied the chain rule of derivatives to base calculations on the
derivative of the Wigner function with respect to phase space coordinates. The
inclusion of losses in the calculations resulted in overall higher values of η for all
considered perturbations. In addition, for those perturbations where the sensitiv-
ity scaled with 1/

√
τ , this scaling was removed. Instead, the sensitivity would only

improve up to a certain point in time, after which it would only increase for larger
τ . This has resulted in an optimum time τ , for which the system is most sensitive.

A possible next step would be to also include decoherence effects in the calcu-
lations. Generally speaking, these will be secondary to losses but still have the
potential to influence how sensitive a system can become. A further possibility to
consider are various combinations of the two types of perturbations considered in
this report. The types of motion of the two individual perturbation types would
be superimposed, leading to more complex movement patterns. These could be
parametrized to find appropriate coordinate transformations, which could then be
used to find η for these more complicated combinations. At this point, it would
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also be interesting to determine certain points in phase space that lend them-
selves to measurements. These points should ideally have low sensitivities but
should also allow for distinction of the contributions of the individual perturba-
tions to the overall sensitivity. Another possibility is to consider time-dependent
perturbation strengths, which can result in interesting motion patterns. Finally,
it would also be important to translate the general calculations performed here to
specific experimental systems. This step would then allow us to actually extract
experimentally relevant data from the simulations and calculations shown in this
report. Another possibility to continue this work is to not start with an ideal
cat state but with a cat state that first has to be experimentally generated, for
example using the qcMAP-protocol [8].
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Appendices
A On-resonance displacing force

Figure 35: Time evolution of even cat state with size β =
√

3 under on-resonance
displacing force with perturbation strength fd = (1 + 1i)Hz.

Figure 36: Time evolution of even cat state with size β =
√

3 under on-resonance
displacing force with perturbation strength fd = (1− 2i)Hz.
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Figure 37: Time evolution of even cat state with size β =
√

3 under on-resonance
displacing force with perturbation strength fd = (−1 + 3i)Hz.

Figure 38: Time evolution of even cat state with size β =
√

3 under on-resonance
displacing force with perturbation strength fd = (−1− 4i)Hz.
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B Off-resonance displacing force

Figure 39: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = 2Hz and detuning ∆ = 2πHz.
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Figure 40: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = 8Hz and detuning ∆ = 2πHz.
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Figure 41: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = 10Hz and detuning ∆ = 2πHz.
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Figure 42: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = 4iHz and detuning ∆ = 2πHz.
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Figure 43: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = −4iHz and detuning ∆ = 2πHz.
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Figure 44: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = (1 + 2i)Hz and detuning ∆ = 2πHz.
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Figure 45: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = (2 + 2i)Hz and detuning ∆ = 2πHz.
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Figure 46: Time evolution of even cat state with size β =
√

3 under off-resonance
displacing force with perturbation strength fd = (3 + 2i)Hz and detuning ∆ = 2πHz.
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