
ResLib 3.4

3-axis resolution library for MatLab

A. Zheludev

Neutron Scattering Sciences Division,

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6393, USA.

(Dated: November 28, 2007)

1

Abstract

Features of the latest ResLib release include: 3-axis resolution calculations in the Cooper-

Nathans and Popovici approximations with support for horizontally focusing analyzers,

anisotropic sample mosaic, neutron guides, normalization to monitor counts, analyzer reflectivity

corrections and data smoothing; numerical convolution of user-supplied cross section functions

with calculated experimental resolution, including cross sections written in the single mode or

Lorenzian approximations; fitting of parameterized model cross sections to experimental data;

graphical representation of resolution ellipsoids in 2 and 3 dimensions; spectrometer positioning

and and crystallographic utility functions. The present manual provides a detailed description

of the functions included in the ResLib library and quotes all the essential formulas used in the

calculations.

2

Contents

I. Introduction 6

II. Formulas for Resolution calculation 7

A. Cooper-Nathans resolution matrix 7

B. Popovici resolution matrix 8

C. Normalization factors 9

1. Normalization to source flux 9

2. Normalization to monitor counts 10

3. Analyzer reflectivity 11

D. Focusing analyzer 11

E. Sample mosaic 12

F. Guide collimators 12

G. Coordinate systems 12

H. Smoothed data 13

III. ResLib functions for resolution calculation 14

A. ResMat.m 14

B. ResMatS.m 18

C. MakeExp.m 19

IV. Crystallography utility functions 20

A. star.m 20

B. scalar.m 21

C. modvec.m 21

D. angle.m 21

E. angle2.m 22

F. gtensor.m 22

G. vector.m 23

H. reciprocate.m 23

I. GetLattice.m 24

V. Cartesian coordinates of vectors. 25

3

A. StandardSystem.m 25

B. R2S.m 26

C. S2R.m 26

VI. Convolution with resolution function: general 4-D convolution 27

A. ConvRes.m 28

VII. Convolution with resolution function: Single Mode Approximation and

Voigt profiles 31

A. ConvResSMA.m 32

VIII. Least-squares fitting of convoluted cross sections 34

A. FitConv.m 34

B. FitConvSMA.m 36

C. FitConvBoth.m 36

IX. Graphic representations of resolution ellipsoids 37

A. ResPlot.m 37

B. ResPlot3D.m 38

X. Miscellaneous functions 40

A. CleanArgs.m 40

B. GetTau.m 40

C. Rebin.m 41

D. SpecGoTo.m 41

E. SpecWhere.m 42

F. Spurions.m 42

XI. New features in ResLib 3.4 44

XII. Downloads, packaging, installation and feedback 44

A. File download 44

B. Packaging 44

C. Installation 46

D. Feedback 46

4

XIII. Credits 46

XIV. Disclaimer 47

References 47

5

I. INTRODUCTION

Perhaps the most important aspect of analyzing inelastic neutron scattering data mea-

sured using a 3-axis spectrometer is properly taking into account the experimental resolution.

Even though one is fairly confident that the Gaussian approximation to the resolution func-

tion is accurate, thanks to the Central Limit Theorem, the problem is still quite non-trivial.

In general, to properly analyze experimental scans using a parameterized model cross section

S(Q, h̄ω,p), one needs to 1) be able to calculate the resolution function at each data point,

given the spectrometer configuration and sample parameters, 2) numerically convolute the

theoretical cross section with this resolution function; and 3) fit the convoluted cross section

to the data. The ResLib library is designed to accomplish these tasks.

6

II. FORMULAS FOR RESOLUTION CALCULATION

ResLib is based on the Gaussian approximation for the resolution function. The measured

inelastic neutron scattering intensity is related to the dynamic structure factor through:

dσ

dΩdE ′ ≈ R0(Q0)
∫ ∫ ∫ ∫

d4QS(Q) exp
[
−1

2

(
Qi −Qi

0

) (
Qj −Qj

0

)
Mij(Q0)

]
. (1)

Here Q ≡ (Qx, Qy, h̄ω,Qz) represents a 4-D vector in energy-momentum space, Q0 = ki−kf

is the momentum transfer to the sample, and h̄ω0 = Ei − Ef is the energy transfer. In

ResLib wave vectors are measured in Å−1, and energy in meV. The coordinate system for

components of Q and M is defined by the scattering vector and the scattering plane. x

is chosen along Q0, z is perpendicular to the scattering plane (vertical) and y completes

the orthogonal right-handed basis set. Note that in Eq. 1 the usual ki/kf scaling factor is

included into R0.

A. Cooper-Nathans resolution matrix

In the Cooper-Nathans approximation [1, 2] it is assumed that the beam divergences

on each arm of the 3-axis spectrometer are determined by the Soller collimators and the

mosaic spread of monochromator and analyzer crystals. The most elegant formulas for this

approximation are given in [3]. The Soller collimators are described by a diagonal 8 × 8

matrix with non-zero elements G1,1 = 8 ln(2)α−2
1 , G2,2 = 8 ln(2)α−2

2 , G3,3 = 8 ln(2)β−2
1 ,

G4,4 = 8 ln(2)β−2
2 , G5,5 = 8 ln(2)α−2

3 , G6,6 = 8 ln(2)α−2
4 , G7,7 = 8 ln(2)β−2

3 and G8,8 =

8 ln(2)β−2
4 , where αi and βi are the FWHM horizontal and vertical beam divergences in

the collimators, starting from the in-pile collimation. η and η′,the horizontal and vertical

FWHM mosaic spreads for the monochromator and analyzer crystals, are collected into a

diagonal 4 × 4 matrix with non-zero elements F1,1 = 8 ln(2)η−2
M , F2,2 = 8 ln(2)η

′−2
M , F3,3 =

8 ln(2)η−2
A , and F4,4 = 8 ln(2)η

′−2
A . In addition, the following matrixes are defined. A is a 6×8

matrix with non-zero elements A1,1 = −A1,2 = ki cot(θM)/2, A4,5 = −A4,6 = kf cot(θA)/2,

A2,2 = A3,4 = ki and A5,5 = A6,7 = kf . C is a 6 × 8 matrix with non-zero elements C1,1 =

C1,2 = C3,5 = C3,6 = 1/2, C2,3 = −C2,4 = 1/(2 sin θM) and C4,7 = −C4,7 = 1/(2 sin θA).

Note that in [3] there is a typo in the definition of matrix C. Finally, B is defined as

a 4 × 6 matrix with the following non-zero elements: B1,1 = B2,2 cos φ, B1,2 = −B2,1 =

sin φ, B1,4 = B2,5 = − cos(φ − 2θS), B1,5 = −B2,4 = − sin(φ − 2θS), B3,3 = −B3,6 = 1,

7

B4,1 = h̄2

m
ki and B4,4 = − h̄2

m
kf . In these formulas 2θM , 2θS and 2θA, are the scattering

angles in monochromator, sample and analyzer, respectively and m is the neutron mass.

The scattering angles are calculated as:

θM = − arcsin(τM/(2ki))εM ,

θA = − arcsin(τA/(2kf))εA,

2θS = arccos[(k2
i + k2

f − Q2)/(2kikf)], (2)

where εM = 1 if the sample scattering direction is opposite to the monochromator scattering

directions and −1 otherwise, εA = 1 if the sample scattering direction is opposite to the

analyzer scattering directions and −1 otherwise, and τM = 2π/dM and τA = 2π/dA are the

monochromator and analyzer scattering vectors, respectively. The sample rotation angle is

given by:

φ = ATAN2(−kf sin 2θS, ki − kf cos 2θS). (3)

These matrixes defined, the resolution matrix is given by:

M̃−1 = BA(G + CT FC)−1AT BT . (4)

The resolution matrix M is obtained from M̃ by switching the 3rd and 4th rows and columns.

B. Popovici resolution matrix

The beam divergences are influenced not only by Soller collimators, but also by the shapes

and dimensions of the source, monochromator, sample, analyzer and detector [3]. These

shapes are described by the 13 × 13 covariance matrix S−1. The matrix is cell-diagonal

and has the form: S−1 = {〈y2
0〉, 〈z2

0〉, S−1
M , S−1

S , S−1
A 〈y2

4〉, 〈z2
4〉}. 〈y2

0〉 and 〈z2
0〉 describe the

spatial distribution of the source density perpendicular to the first spectrometer arm in

the horizontal and vertical directions, respectively. Similarly, 〈y2
4〉 and 〈z2

4〉 describe the

spatial distribution of the detector. S−1
M , S−1

S and S−1
A are the spatial distributions of the

monochromator, sample and analyzer densities, respectively. For example,

S−1
S =

⎡
⎢⎢⎢⎢⎣
〈x2〉 〈xy〉 〈xz〉
〈yx〉 〈y2〉 〈yz〉
〈zx〉 〈zy〉 〈z2〉

⎤
⎥⎥⎥⎥⎦ , (5)

8

where x bisects the incident and scattered beams on the sample, z is the vertical axis and

y completes an orthogonal coordinate system.

Additional matrices are defined and contain the distances L0, L1, L2 and L3from the

source to the monochromator, from the monochromator to the sample, from the sample

to the analyzer and from the analyzer to the detector, respectively. Additional parame-

ters are the horizontal and vertical curvature radii ρ and ρ′, for the monochromator and

analyzer crystals. T is a 4 × 13 matrix with the following non-zero elements: T1,1 =

−1/(2L0), T1,3 = cos θM(1/L1 − 1/L0)/2, T1,4 = sin θM(1/L0 + 1/L1 − 2/(ρM sin θM))/2,

T1,6 = sin θS/(2L1), T1,7 = cos θS/(2L1), T2,2 = −1/(2L0 sin θM), T2,5 = (1/L0 + 1/L1 −
2 sin θM/ρ′

M)/(2 sin θM), T2,8 = −1/(2L1 sin θM), T3,6 = sin θS/(2L2), T3,7 = − cos θS/(2L2),

T3,9 = cos θA(1/L3 − 1/L2)/2, T3,10 = sin θA(1/L2 + 1/L3 − 2/(ρA sin θA))/2, T3,12 =

1/(2L3), T4,8 = −1/(2L2 sin θA), T4,11 = (1/L2 + 1/L3 − 2 sin θA/ρ′
A)/(2 sin θA) and T4,13 =

−1/(2L3 sin θA). D is defined as an 8 × 3 matrix with non-zero elements D1,1 = −1/L0,

D1,3 = − cos θM/L0, D1,4 = sin θM/L0, D3,2 = D1,1, D3,5 = −D1,1, D2,3 = cos θM/L1,

D2,4 = sin θM/L1, D2,6 = sin θS/L1, D2,7 = cos θS/L1, D4,5 = −1/L1, D4,8 = −D4,5,

D5,6 = sin θS/L2, D5,7 = − cos θS/L2, D5,9 = − cos θA/L2, D5,10 = sin θA/L2, D7,8 = −1/L2,

D7,11 = −D7,8, D6,9 = cos θA/L3, D6,10 = sin θA/L3, D6,12 = 1/L3, D8,11 = −D6,12 and

D8,13 = D6,12. Note that [3] contains numerous typos in the definition of matrix T and D.

The resolution matrix M in the Popovici approximation is given by:

M̃−1 = BA
[
{D(S + T T FT)−1DT}−1 + G

]−1
AT BT (6)

C. Normalization factors

1. Normalization to source flux

The normalization of the measured intensity by the intensity of the neutron source in the

Cooper-Nathans approximation is given by:

R0 =
kf

ki

π2(k3
i cot θM)(k3

f cot θA)

(16 sin θM sin θA)

√√√√ det(F)

det(G + CT FC)
× (2π)−2

√
det(M). (7)

The factor (2π)−2
√

det(M) is included to comply with the resolution function normalization

convention used in Eq. 1 above and [2]. As mentioned above, the kf/ki factor is included

9

in the normalization coefficient. The expression for R0 in the Popovici approximation in [3]

does not include the effect of Soller collimators. If these are correctly taken into account,

R0 becomes:

R0 =
kf

ki

π2(k3
i cot θM)(k3

f cot θA)

(16 sin θM sin θA)

√√√√ det(F)

det([D(S + T T FT)−1DT]−1 + G)
× (2π)−2

√
det(M).

(8)

2. Normalization to monitor counts

The monitor is typically positioned between the 2nd Soller collimator and the sample. In

the Cooper-Nathans approximation the flux on the monitor is straightforward to calculate,

since the resolution function is simply a product of transmission functions for each spec-

trometer component. Including the 1/ki monitor sensitivity correction, the count rate on

the monitor is proportional to:

Rmon =
1

ki

π(k3
i cot θM)

(2 sin θM)

√√√√ det(f)

det(g + cT fc)
. (9)

In this formula is the matrices g, f and c are primary minors of matrices G, F and C, of

sizes 4 × 4, 2 × 2 and 2 × 4, respectively.

In the Popovici approximation the monitor rate will depend on the dimensions and po-

sition of the monitor on the second spectrometer arm. To estimate the count rate, one

has to define the following matrices. The matrix s is similar to S and is defined as

s−1 = {〈y2
0〉, 〈z2

0〉, S−1
M , 〈y2

mon〉, 〈z2
mon〉}. Here 〈y2

mon〉 and 〈z2
mon〉 describe the spatial distri-

bution of the monitor perpendicular to the second spectrometer arm, in the horizontal and

vertical directions, respectively. Lmon being the distance from the monochromator to the

monitor, the transformation matrices t and d are of dimension 4× 7 and 2× 7, respectively,

and have the following non-zero elements: t1,1 = −1/(2L0), t1,3 = cos(θm)(1/Lmon−1/L0)/2,

t1,4 = sin(θm)(1/L0 +1/Lmon−2/(ρM sin(θm)))/2, t1,7 = 1/(2Lmon), t2,2 = −1/(2L0 sin(θm)),

t2,5 = (1/L0 + 1/Lmon − 2 sin(θm)/ρ′
M)/(2 sin(θm)), d1,1 = −1/L0, d1,3 = − cos(θm)/L0,

d1,4 = sin(θm)/L0, d3,2 = d1,1, d3,5 = −d1,1, d2,3 = cos(θm)/Lmon, d2,4 = sin(θm)/Lmon,

d2,6 = 0, d2,7 = 1/Lmon, and d4,5 = −1/Lmon. The monitor rate is then proportional to:

Rmon =
1

ki

π(k3
i cot θM)

(2 sin θM)

√√√√ det(f)

det([d(s + tT ft)−1dT]−1 + g)
. (10)

10

In either the Popovici or Cooper-Nathans case, to normalize the measured intensity to

monitor counts, the factor R0 in Eq. 1 is to be modified: R0 → R0/Rmon.

3. Analyzer reflectivity

The prefactor R0 can include the effect of analyzer reflectivity. The effective reflectivity in

the Gaussian model differs form the actual reflectivity of the analyzer crystal. To compensate

for this effect, R0 is corrected so that the integral reflectivity of the effective Gaussian

matches the integral reflectivity of an ideal crystal. The reflectivity curve of an ideal crystal

can be taken from [4]. In particular, for a PG(002) analyzer, at Ef < 5.5 meV, where no

parasitic (hkl) reflections interfere with the reflected (002) peak [5], this approximation is

expected to be valid within a few percent [6]. At higher final neutron energies this approach

can not be considered valid, as the Shapiro-Chesser effects become important [5]. In ResLib

the optional reflectivity correction is done following [7].

D. Focusing analyzer

ResLib provides a means of calculating the Cooper-Nathans resolution function in the case

of a multi-blade horizontally focusing analyzer. The central analyzer blade is positioned to

reflect at nominal kf . The remaining blades are aligned to reflect at the same |kf | as the

central blade. Energy resolution is actually improved, because the narrow blades provide

additional collimation. Wave vector resolution is of course broadened. The effect can be

taken into account through an approximation proposed by C. L. Broholm. Eq. ?? for the

resolution matrix is replaced with:

M̃−1 = BP−1BT , (11)

Pi,j =
[(

A(G + CT FC)−1 ∗ AT
)−1

]
i,j

for i, j �= 4, 5,

P5,5 = 12/(kfαf)
2,

P4,4 = 12 [tan θA/(ηAkf)]
2 ,

P4,5 = (P−1)5,4 = 0,

where αf is the angular size of the analyzer as seen from the sample. When calculating the

prefactor R0, the FWHM horizontal beam divergence in the 3rd Soller collimator α3 in the

11

definition of matrix G is to be replaced by
√

8 ln 2√
12

αf .

E. Sample mosaic

The effect of sample mosaic can be included in the resolution calculation following [8].

The matrix M and the prefactor R0 are modified as follows:

R0 → R0

[
1 +

1

8 ln 2
(|Q0|ηS)2M4,4

]−1/2 [
1 +

1

8 ln 2
(|Q0|η′

S)2M2,2

]−1/2

, (12)

(M−1)2,2 → (M−1)2,2 + (|Q0|ηS)2/(8 ln 2), (13)

(M−1)4,4 → (M−1)4,4 + (|Q0|η′
S)2/(8 ln 2). (14)

Here ηS and η′
S are the FWHM of horizontal and vertical sample mosaic spreads, respectively.

F. Guide collimators

The neutron beam is often collimated not by slit- or blade-type collimation devices, but

by a neutron guide. The key difference is that in this case the beam divergence is dependent

on the neutron energy. The critical reflection angle Θc of the guide is inversely proportional

to the wavenumber of the neutron: Θc = θλ, where θ is a characteristic of the material

the guide is made of. For convenience, guides are characterized by their so-called m-value,

which is defined as m = θ/θ0, θ0 = 0.1◦Å
−1

being the critical angle for natural Ni. Isotopic

58Ni has a slightly higher critical angle, with m = 1.2. Super-mirror guides can have m = 2

or higher. The angular transmission of a guide has a roughly rectangular profile of width

2Θ. The corresponding angular standard deviation is Θ/
√

3. Thus, a neutron guide acts as

a collimator with a FWHM divergence of mθ0λ
√

8 ln 2/
√

3.

G. Coordinate systems

All the formulas above describe the resolution matrix in the coordinate system defined

by the scattering vector and the scattering plane. x is chosen along Q0, z is vertical and y

completes the orthogonal right-handed basis set. This coordinate system is referred to as the

Q-system in the text below. The ResLib function used to calculate resolution parameters in

this coordinate system is ResMat.m.

12

ResLib also provides a means to calculate the resolution matrix in a coordinate system

(S-system) coupled to the sample. The S-system is defined by two (h, k, l) reciprocal-space

vectors in the sample. The axis x is chosen along the 1st orienting vector, y is normal

to x in the scattering plane and is in the direction of the second vector, and z completes

the orthogonal right-handed basis set. The ResLib function ResMatS.m performs all the

calculations in the S-system.

H. Smoothed data

In certain cases it is useful to bin or smooth collected data before proceeding with the

data analysis. This is particularly true for very large data sets, such as those collected

using area-sensitive detectors. Smoothing consists of folding the measured intensity with a

custom smoothing kernel, such as a Π-shaped function of a Gaussian. Of course, the effective

resolution of the measurement is modified by this procedure and is equal to a convolution of

the smoothing kernel and the actual spectrometer resolution. ResLib can handle the special

case of a Gaussian resolution kernel at the level of ResMatS.m. The resolution matrix is

modified by the 4 × 4 smoothing matrix σ as follows:

Σ1,1 = 8 ln 2/σ2
x,

Σ2,2 = 8 ln 2/σ2
y ,

Σ3,3 = 8 ln 2/σ2
E,

Σ4,4 = 8 ln 2/σ2
z ,

M−1 → Σ−1 + M−1, (15)

R0 →
√

det(Σ−1 + M−1)√
det(M−1)

R0. (16)

Here σx,σy and σz, are the smoothing Gaussian FWHM along the three components of the

scattering vector and σE is the smoothing Gaussian FWHM along the energy axis.

13

III. RESLIB FUNCTIONS FOR RESOLUTION CALCULATION

A. ResMat.m

This function calculates the resolution matrix M and the prefactor R0 in the Q coordinate

system (see definition above).

function [R0,M]=ResMat(Q,W,EXP)

Input arguments:

• Q is the wave vector transfer in Å−1.

• W is the energy transfer in meV.

• EXP is a structure that contains all the information on the experimental setup and the

required method of resolution calculation. See the detailed description below.

Output arguments:

• R0 is the normalization prefactor as defined above.

• M is a 4 × 4 resolution matrix as defined above.

Dependencies: ResMat.m uses the utility functions CleanArgs.m and GetTau.m.

ResMat.m can be used to simultaneously calculate resolution matrices for several scat-

tering vectors, energies, and experimental setups. The input arguments Q, W and EXP can

be vectors of the same length N , in which case R0 will be returned as a vector of length N

and M will be a 4 × 4 × N array. If some of the input arguments are scalars, they will be

automatically replicated into vectors of appropriate length.

The fields of the structure EXP are defined as follows:

• EXP.method selects the computation method. If EXP.method=0 or the field is left

undefined, a Cooper-Nathans calculation is performed. For a Popovici calculation set

EXP.method=1.

• EXP.moncor selects the type of normalization used to calculate R0. If EXP.moncor=1

or the field is left undefined, R0 is calculated in normalization to monitor counts (Sec-

tion II C 2). 1/ki monitor efficiency correction is included automatically. To normalize

R0 to source flux (Section II C 1), use EXP.moncor=0.

14

• EXP.mono is a structure that describes the monochromator:

– EXP.mono.tau is the monochromator reciprocal lattice vector in Å−1. Instead of

a numerical input one can use one of the following keyword strings: ’PG(002)’,

’PG(004)’, ’Ge(111)’, ’Ge(220)’, ’Ge(311)’, ’Be(002)’ or ’PG(110)’.

– EXP.mono.mosaic is the monochromator mosaic in minutes of arc.

– EXP.mono.vmosaic is the vertical mosaic of monochromator in minutes of arc. If

this field is left unassigned, an isotropic mosaic is assumed.

• EXP.ana is a structure that describes the analyzer and contains fields as in EXP.mono

plus the following optional fields:

– EXP.ana.thickness is the analyzer thickness in cm for ideal-crystal reflectivity

corrections (Section II C 3). If no reflectivity corrections are to be made, this field

should remain unassigned or set to a negative value.

– EXP.ana.Q is the kinematic reflectivity coefficient for this correction. It is given

by Q = 4|F |2
V0

(2π)3

τ3 , where V0 is the unit cell volume for the analyzer crystal, F

is the structure factor of the analyzer reflection, and τ is the analyzer reciprocal

lattice vector. For PG(002) Q = 0.1287. Leave this field unassigned or make it

negative if you don’t want the correction done.

– EXP.horifoc is a flag that is set to 1 if a horizontally focusing analyzer is used

(Section II D). In this case EXP.hcol(3) (see below) is the angular size of the

analyzer, as seen from the sample position. If the field is unassigned or equal to

-1, a flat analyzer is assumed. Note that this option is only available with the

Cooper-Nathans method.

• EXP.hcol(1:4) are the horizontal Soller collimations in minutes of arc (FWHM beam

divergence) starting from the in-pile collimator. In case of a horizontally-focusing

analyzer EXP.hcol(3) is the angular size of the analyzer, as seen from the sample

position. If the beam divergence is limited by a neutron guide, the corresponding

element of EXP.hcol is the negative of the guide’s m-value. For example, for a 58-Ni

guide (m=1.2) before the monochromator, EXP.hcol(1) should be -1.2.

15

• EXP.vcol(1:4) are the vertical Soller collimations in minutes of arc (FWHM beam

divergence) starting from the in-pile collimator. If the beam divergence is limited

by a neutron guide, the corresponding element of EXP.vcol is the negative of the

guide’s m-value. For example, for a 58-Ni guide (m=1.2) before the monochromator,

EXP.vcol(1) should be -1.2.

• EXP.dir1 defines the scattering direction in the monochromator. This field is equal

to 1 or left unassigned if the scattering direction in the monochromator is opposite to

that in the sample. Set this field to -1 if the sample and monochromator scattering

directions are the same.

• EXP.dir2 defines the scattering direction in the analyzer. This field is equal to 1 or

left unassigned if the scattering direction in the analyzer is opposite to that in the

sample. Set this field to -1 if the sample and analyzer scattering directions are the

same.

• EXP.mondir defines the scattering angle in the monochromator which is positive

(counter-clockwise) if this field is absent or positive, and negative (clockwise) oth-

erwise [10].

• EXP.efixed is the fixed incident or final neutron energy, in meV.

• EXP.infin is a flag set to -1 or left unassigned if the final energy is fixed, or set to +1

in a fixed-incident setup.

• EXP.sample is a structure that describes the sample. It contains the following fields:

– EXP.sample.mosaic is the FWHM sample mosaic in the scattering plane in min-

utes of arc.If this field is left unassigned, no sample mosaic corrections (section

II E) are performed.

– EXP.sample.vmosaic is the vertical sample mosaic in minutes of arc.If this field

is left unassigned, isotropic mosaic is assumed.

Additional fields in the structure EXP are needed for Popovici calculations:

• A series of fields contains information on the linear dimensions of spectrometer com-

ponents. For each object the “sizes” along a the given coordinate axis x are defined as

16

√
〈x2〉. For a rectangular shape of width A along the x axis, for example, the correct

input would be A/
√

12. For a spherical object of diameter D, the input would be D/4.

– EXP.beam.width is the width of the source in length units.

– EXP.beam.height is the height of source in length units.

– EXP.detector.width is the width of detector in length units.

– EXP.detector.height is the height of detector in length units.

– EXP.mono.width is the width of the monochromator crystal.

– EXP.mono.height is the height of monochromator crystal.

– EXP.mono.depth is the thickness of monochromator crystal.

– EXP.ana.width is the width of analyzer.

– EXP.ana.height is the height of analyzer.

– EXP.ana.depth is the thickness of analyzer.

– EXP.monitor.width is the width of the monitor. This field is only used in

EXP.moncor=1.

– EXP.monitor.heigth is the height of the monitor. This field is only used in

EXP.moncor=1.

• EXP.sample.shape is a matrix describing the sample shape. This is a 3 × 3 matrix

similar to the matrix SS in section 5. A crucial difference is that EXP.sample.shape

is defined in the Q coordinate system used in ResMat.m. The two matrices are related

by a rotation around the vertical axis, which ResMat.m performs automatically in the

course of its calculations.

• EXP.arms(1:5) are distances between the source and monochromator, monochromator

and sample, sample and analyzer, analyzer and detector, and monochromator and

monitor, respectively. The 5th element is only needed if EXP.moncor=1.

• EXP.mono.rv is the vertical curvature radius of the monochromator crystal. Use a

large value for a flat monochromator.

• EXP.mono.rh is the horizontal curvature radius of the monochromator

17

• EXP.ana.rv is the vertical curvature radius of the analyzer

• EXP.ana.rh is the horizontal curvature radius of the analyzer

B. ResMatS.m

This function is very similar to ResMat.m, and calculates the resolution matrix M and

the prefactor R0, but works in the S coordinate system.

function [R0,M]=ResMatS(H,K,W,L,EXP)

Input arguments:

• H, K and L specify the wave vector transfer and are given in reciprocal-lattice units.

• W is the energy transfer in meV.

• EXP is a structure that contains all the information on the experimental setup and the

required method of resolution calculation. It requires all the fields as for ResMat.m

plus additional fields described below.

Output arguments and vectorization are similar to those for ResMat.m.

Dependencies: ResMatS.m requires ResMat.m, StandardSystem.m, GetLattice.m,

star.m, scalar.m, CleanArgs.m, GetTau.m and modvec.m to function properly.

The function ResMatS.m requires the following additional fields in structure EXP:

• EXP.sample.a is the a lattice constant of the sample in Å.

• EXP.sample.b is the b lattice constant of the sample in Å.

• EXP.sample.c is the c lattice constant of the sample in Å.

• EXP.sample.alpha is the α lattice angle of the sample in degrees of arc.

• EXP.sample.beta is the β lattice angle of the sample in degrees of arc.

• EXP.sample.gamma is the γ lattice angle of the sample in degrees of arc.

• EXP.orient1(1:3) are Miller indexes of the first reciprocal-space orienting vector for

the S coordinate system, as explained in Section II G.

18

• EXP.orient2(1:3) are Miller indexes of the second reciprocal-space orienting vector

for the S coordinate system, as explained in Section II G.

• EXP.sample.shape is similar to the corresponding field used with ResMat.m, but de-

fines the sample shape in the S coordinate system.

• EXP.Smooth defines the smoothing parameters as explained in Section II H. Leave this

field unassigned if you don’t want this correction done.

– EXP.Smooth.E is the smoothing FWHM in energy (meV). A small number means

“no smoothing along this direction”.

– EXP.Smooth.X is the smoothing FWHM along the first orienting vector (x0 axis)

in Å−1.

– EXP.Smooth.Y is the smoothing FWHM along the y axis in Å−1.

– EXP.Smooth.Z is the smoothing FWHM along the vertical direction in Å−1.

C. MakeExp.m

This function is an example of creating the EXP structure for use with ResMat.m and

ResMatS.m. The user is encouraged to make copies of this m-file and edit them to generate

particular experimental setups. The function takes no arguments and returns a ResMatS-

compatible structure EXP.

19

IV. CRYSTALLOGRAPHY UTILITY FUNCTIONS

ResLib contains several routines for crystallographic calculations “free of charge”.

These are star.m, scalar.m, modvec.m, angle.m, angle2.m, gtensor.m, vector.m, and

reciprocate.m. They are particularly useful in user-supplied prefactor and background

functions used with ConvRes.m and ConvResSMA.m (see below).

A. star.m

Given direct-space lattice parameters, this function calculates reciprocal-space lattice

parameters (or vice-versa).

function [V,Vstar,rlattice]=star(lattice)

Input arguments:

• lattice is a structure that contains the direct or reciprocal-space lattice parameters

(note the difference with the structure EXP.sample described above!):

– lattice.a is the a or a∗ lattice constant in Å or Å−1.

– lattice.b is the b or b∗ lattice constant in Å or Å−1.

– lattice.c is the c or c∗ lattice constant in Å or Å−1.

– lattice.alpha is the α or α∗ lattice constant in radians.

– lattice.alpha is the β or β∗ lattice constant in radians.

– lattice.gamma is the γ or γ∗ lattice constant in radians.

Output arguments: V and Vstar are the direct (reciprocal) and reciprocal (direct)

unit cell volumes depending on weather direct or reciprocal lattice parameters are put in.

rlattice has the same structure as lattice, but contains reciprocated cell parameters.

Vectorization: The function can be used to simultaneously reciprocate several sets of

lattice parameters. For N calculations each field of lattice should be a vector of length N

or a scalar (if identical values are assumed for a particular cell constant). V and Vstar and

the fields of rlattice will then be vectors of length N .

Dependencies: star.m is a stand-alone function.

20

B. scalar.m

Calculate the scalar product of two vectors defined by their fractional cell coordinates.

Alternatively, calculates the scalar product of two reciprocal vectors defined by their Miller

indexes.

function s=scalar(x1,y1,z1,x2,y2,z2,lattice)

Input arguments:

• lattice is as in star.m. It contains all the lattice parameters for this calculation.

Alternatively, it contains reciprocal-lattice parameters.

• x1, y1, z1 are fractional cell coordinates of the first vector. Alternatively, they define

the Miller indexes of the first reciprocal-lattice vector.

• x2, y2, z2 are fractional cell coordinates of the second vector. Alternatively, they

define the Miller indexes of the second reciprocal-lattice vector.

Output arguments: The returned value is the scalar product of the two vectors.

Vectorization: The function can be used to simultaneously calculate several scalar

products. For N calculations, x1–z2 are vectors of length N or scalars. Correspondingly,

each field of lattice should be a vector of length N or a scalar. The returned value will be

a vector of length N as well.

Dependencies: scalar.m is a stand-alone function that does not rely on any other

components in ResLib.

C. modvec.m

Very similar to scalar.m, but takes only one vector for input and returns its modulus.

function m=modvec(x,y,z,lattice)

Dependencies: modvec.m relies on scalar.m.

D. angle.m

Calculate the angle between two vectors in real or reciprocal space.

function phi=angle(x1,y1,z1,x2,y2,z2,lattice)

21

Input arguments: As is scalar.m.

Output arguments: The returned value is angle, in radians, between the two vectors.

Vectorization: As is scalar.m.

Dependencies: angle.m relies on scalar.m and modvec.m.

E. angle2.m

Calculate the angle between a real-space and a reciprocal-space vector.

function phi=angle2(x,y,z,h,k,l,lattice)

Input arguments:

• lattice is as in star.m. It contains all the lattice parameters for this calculation.

• x, y, z are fractional cell coordinates of the first vector, that is defined in real space.

• h, k, l are Miller indexes of the second vector that is defined in reciprocal space.

Output arguments: The returned value is angle, in radians, between the two vectors.

Vectorization: As is scalar.m.

Dependencies: angle.m relies on scalar.m and modvec.m.

F. gtensor.m

Calculate the metric tensor for a set of crystallographic parameters.

function g=gtensor(lattice)

Input arguments:

• lattice is as in star.m.

Output arguments: g is the 3 × 3 metric tensor.

Vectorization: The function can be used to simultaneously calculate several metric

tensors. For N calculations, lattice is a vector of length N . Correspondingly, g is a

3 × 3 × N array.

Dependencies: gtensor.m is a stand-alone function.

22

G. vector.m

Calculate the scalar product of two vectors defined by their fractional cell coordinates.

Alternatively, calculates the scalar product of two reciprocal vectors defined by their Miller

indexes.

function s=scalar(x1,y1,z1,x2,y2,z2,lattice)

Input arguments:

• lattice is as in star.m. It contains all the lattice parameters for this calculation.

Alternatively, it contains reciprocal-lattice parameters.

• x1, y1, z1 are fractional cell coordinates of the first vector. Alternatively, they define

the Miller indexes of the first reciprocal-lattice vector.

• x2, y2, z2 are fractional cell coordinates of the second vector. Alternatively, they

define the Miller indexes of the second reciprocal-lattice vector.

Output arguments: The returned value is the scalar product of the two vectors.

Vectorization: The function can be used to simultaneously calculate several scalar

products. For N calculations, x1–z2 are vectors of length N or scalars. Correspondingly,

each field of lattice should be a vector of length N or a scalar. The returned value will be

a vector of length N as well.

Dependencies: scalar.m is a stand-alone function that does not rely on any other

components in ResLib.

H. reciprocate.m

Calculate the reciprocal-space coordinates (Miller indexes) of a vector defined by its

fractional cell coordinates, or vice versa.

function [h,k,l]=reciprocate(x,y,z,lattice)

Input arguments:

• lattice is as in star.m and contains crystallographic lattice parameters. x, y and z

are fractional cell coordinates of a vector. Alternatively lattice contains reciprocal

lattice parameters and x, y and z define a reciprocal-space vector.

23

Output arguments: h, k and l are reciprocal-space coordinates of the input real-space

vector (or real-space coordinates of the input reciprocal-space vector).

Vectorization: As is scalar.m.

Dependencies: reciprocate.m calls gtensor.m.

I. GetLattice.m

This function extracts the lattice parameter from an experimental setup structure (such

as used by ResMatS) and returns the direct and reciprocal lattice parameters in the form

used by scalar.m, star.m, etc.

function [lattice,rlattice]=GetLattice(EXP)

Input arguments:

• EXP is a structure of type used with ResMatS.m. The fields actually

used are: EXP.sample.a, EXP.sample.b, EXP.sample.c, EXP.sample.alpha,

EXP.sample.beta, EXP.sample.gamma.

Output arguments: lattice and rlattice are structures containing the direct and

reciprocal space lattice parameters, respectively. They are in the form described above for

use with star.m.

Vectorization: if EXP is a vector of length N , then each field in lattice and rlattice

will be a vector of length N .

Dependencies: GetLattice.m is a standalone function.

24

V. CARTESIAN COORDINATES OF VECTORS.

ResLib contains several routines for crystallographic calculations involving cartesian coor-

dinates of vectors defined in the S-system. These are StandardSystem.m, R2S.m and S2R.m.

They are particularly useful in user-supplied prefactor and background functions used with

ConvRes.m and ConvResSMA.m (see below).

A. StandardSystem.m

Based on a structure EXP of type used by ResMatS.m constructs the standard basis set of

the S coordinate system, as defined in Section II G.

[x,y,z,lattice,rlattice]=StandardSystem(EXP)

Input arguments:

• EXP is a structure of type used with ResMatS.m. The fields actually

used are: EXP.sample.a, EXP.sample.b, EXP.sample.c, EXP.sample.alpha,

EXP.sample.beta, EXP.sample.gamma, EXP.orient1 and EXP.orient2.

Output arguments:

• x(1:3) are Miller indexes of the first unit length basis vector for the S system.

• y(1:3) are Miller indexes of the second unit length basis vector for the S system.

• z(1:3) are Miller indexes of the third unit length basis vector for the S system.

• lattice is a structure containing lattice parameters for the sample in EXP. It is of the

same form as used by star.m, modvec.m, scalar.m, etc..

• rlattice is a structure containing reciprocal lattice parameters for the sample in EXP.

It is of the same form as used by star.m, modvec.m, etc.

Vectorization: If EXP is a vector of length N , then x, y and z are 3×N matrices and

the fields of sample and rsample are vectors of length N .

Dependencies: StandardSystem.m relies on star.m, GetLattice.m, scalar.m and

modvec.m.

25

B. R2S.m

Given cartesian coordinates of a vector in the S-system, calculate its reciprocal-space

coordinates (Miller indexes).

function [H,K,L,q]=R2S(qx,qy,qz,EXP)

Input arguments:

• EXP is as in StandardSystem.m.

• qx, qy, qz are cartesian coordinates of a vector in the S-system defined by the param-

eters of EXP.

Output arguments: H, K and K are reciprocal-space coordinates of the input vector.

q is the vector’s absolute value.

Vectorization: As is scalar.m.

Dependencies: R2S.m relies on StandardSystem.m, GetLattice.m, star.m, scalar.m

and modvec.m.

C. S2R.m

Given reciprocal-space coordinates of a vector, calculates its cartesian coordinates in the

S-System.

function [qx,qy,qz,q]=S2R(H,K,L,EXP)

The syntaxis and usage is similar to S2R.m

26

VI. CONVOLUTION WITH RESOLUTION FUNCTION: GENERAL 4-D CON-

VOLUTION

In many cases it is convenient to break down the parameterized model cross section

function S(Q, ω,p) into a sum of partial contributions of several excitation “modes”:

S(Q, ω,p) =
Nm∑
m=1

Sm(Q, ω,p). (17)

To save numerical computation time, each partial contribution can be further broken down

into a product of a “slowly” and “rapily” varying components:

Sm(Q, ω,p) = Pm(Q, ω,p)S̃m(Q, ω,p). (18)

Here the “slow” prefactor Pm(Q, ω,p) is expected to be almost constant within the volume

of the resolution ellipsoid, and therefore does not need to be numerically folded with the

resolution function. Typical examples are polarization factors and magnetic form factors.

For the “fast” part of the cross section S̃m(Q, ω,p) there is no escape and a full convolution

has to be performed numerically in four dimensions. With the “slow” prefactor and an

additional background function B(Q), Equation 1 becomes:

dσ

dΩdE ′ ≈ B(Q0) + R0(Q0)
Mm∑
m=1

{Pm(Q0, ω0,p)×

×
∫ ∫ ∫ ∫

d4QS(Q) exp
[
−1

2

(
Qi −Qi

0

) (
Qj −Qj

0

)
Mij(Q0)

]}
. (19)

Given the above definitions and by a substitution of integration variables Equation 19

can be rewritten as:

dσ

dΩdE ′ ∝ B(Q0) + R0(Q0)
1√

det(M)
×

×
Nm∑
m=1

{
Pm(Q0, ω0,p)

∫ π/2

−π/2
dφ1

∫ π/2

−π/2
dφ2

∫ π/2

−π/2
dφ3

∫ π/2

−π/2
dφ4S̃m(Q, ω,p)×

× exp
(
−1

2
tan2 φ1 − 1

2
tan2 φ2 − 1

2
tan2 φ3 − 1

2
tan2 φ4

)
cos2 φ1 cos2 φ2 cos2 φ3 cos2 φ4

⎫⎬
⎭ , (20)

where the new variables are defined as:

Qx − Q0,x = − 1√
M̃11

tan φ1,

27

Qy − Q0,y = − 1√
M̃22

tan φ2 − M̃12

M̃22

√
M̃11

tan φ1,

ω − ω0 = − 1

M33

tan φ3 − M23

M33

√
M̃22

tan φ2 −
(

M13

M33
− M23

M22

M̃12

M̃22

)
√

M̃11

tan φ1,

Qz − Q0,z = − 1√
M44

tan φ4,

M̃11 = M11 − M2
13

M33

− M̃2
12

M̃22

,

M̃12 = M12 − M13M23

M33

,

M̃22 = M22 − M2
23

M33

.

If this integral is evaluated numerically by sampling of integrand in a set of points uniformly

distributed in φ-space, the sampling points will be distributed according to a Lorenzian in

(Q, ω)-space. The widths of the 4D-Lorenzian will be determined by the resolution ellipsoid.

More points will get sampled near the resolution center, and less on the ”tails”. This allows

one to achieve much better results with fewer sampling points.

A. ConvRes.m

Numerically convolutes a user-supplied cross section function (defined in separate m-files)

with the resolution function in a given set of points in (Q, ω)-space. This process requires

laborious calculations and one always has to compromise between computation times and

accuracy. The sharper the intrinsic features of the cross section, the more difficult it is

to get an accurate result. In particular, if the cross section has a singular form (energy

δ-function), straightforward 4D convolution doesn’t work at all. A work-around is to ar-

tificially introduce some intrinsic width in the excitations. A much better approach is to

use ConvResSMA.m, described below. In fact, try to use ConvResSMA.m whenever possible,

as it is much faster than ConvRes.m. ConvRes.m implements two algorithms of numerical

integration. The ”fixed-sampling” method samples the “fast” cross section on a fixed grid

in φ-space. Alternatively, the Monte Carlo algorithm can be used, eliminating any ”struc-

tured” artifacts (a common problem with fixed sampling), but introduces “noise”. MC is

good for simulations, but the irreproduceable “noise” will confuse many least-squares fitting

routines. For an example of use see ConvDemo.m.

28

function conv=ConvRes(sqw,pref,H,K,L,W,EXP,METHOD,ACCURACY,p)

Input arguments:

• ’sqw’ is the name of the user-supplied “fast” model cross section. It must be defined

in a separate m-file. The requirements for this function are specified below.

• ’pref’ is the name of the user-supplied “slow” cross section prefactor and background

function. It must be defined in a separate m-file. The requirements for this function

are specified below. If this argument is set to [], the prefactors for all modes will be

assumed to be unity, and the background will be zero for all data points.

• H, K, L and W specify the wave vector and energy transfers at which the convolution is

to be calculated (i.e., define Q0). H, K and L are given in reciprocal lattice units, and

W in meV.

• EXP is a structure that contains all the information on the experimental setup. It has

the form used with ResMatS.m, as described above.

• METHOD is a string that specifies which 4D-integration method to use, and ACCURACY

determines the number of sampling points in the integration. The following options

are available:

– METHOD=’fix’: Sample the cross section on a fixed grid of points uniformly

distributed in φ-space. If this option is chosen, 2*ACCURACY(1)+1 points are

sampled along φ1, φ2 and φ3, and 2*ACCURACY(2)+1 along φ4 (vertical direction).

– METHOD=’mc’: 4D Monte Carlo integration. The cross section is sampled in

1000*ACCURACY randomly chosen points, uniformly distributed in φ-space.

• p is a parameter that is passed on, without change, to sqw and pref.

Output arguments: conv is the calculated value of the cross section, folded with the

resolution function, at the give Q0 position.

Vectorization: The code is vectorized with respect to H, K, L, W and EXP. It can

be used to simultaneously calculate convolutions at several Q0-points or even for several

experimental setups. Any vectors among H, K, L, W and EXP must be of the same length.

If any of these are scalars, they will be automatically replicated into vectors of appropriate

29

length. For input vectors of length N the result is, correspondingly, a length-N row-vector

of convolution values.

Dependencies: To properly function ConvRes.m requires the following m-files from

ResLib: ResMatS.m, ResMat.m, StandardSystem.m, GetLattice.m, star.m, scalar.m,

modvec.m, GetTau.m, CleanArgs.

The “fast” cross section functions are defined in a separate user-supplied m-file that

must be of the form: function s=sqw(H,K,L,W,p). The arguments H, K and L specify

the scattering vector in rec. lattice units, and W is the energy transfer in meV. p is an

additional parameter that can be anything: a number, an array, a structure, or a cell array.

See SqwDemo.m for an example. The function sqw must be vectorized, i.e., if H, K, L and W

are vectors of length N , the output should be a vector of values of the same length. Even

when some of the input arguments are vectors of length N , others may be scalars, and in

this case should be treated as equivalents on length-N vectors of constant values. sqw can

return several partial contribution to the cross section. For Nm modes and N data points

the output argument must be a Nm × N matrix.

The “slow” cross section prefactors p and background b are defined in a separate user-

supplied m-file that must be of the form: function [p,b]=pref(H,K,L,W,p,EXP), or, if no

background is to be calculated: function p=pref(H,K,L,W,p,EXP). pref is similar to sqw

function, except that it has direct access to experimental conditions and must list EXP as

its argument. See PrefDemo.m for an example. If sqw returns several partial contributions

to the cross section, pref is expected to do the same: for Nm modes and N data points the

output argument p must be a Nm ×N matrix. The background is calculated separately for

each data point, so b is a length-N vector. For a flat background b can be a scalar. Note

that b is truly the “raw” background. It is applied to the result after all the convolutions,

summation over multiple modes, and scaling factors.

30

VII. CONVOLUTION WITH RESOLUTION FUNCTION: SINGLE MODE AP-

PROXIMATION AND VOIGT PROFILES

In many cases the “fast” dynamic structure factor can be broken written as:

S̃m(Q, ω,p) = sm(Q,p)δ(ω − ωm(Q,p)). (21)

Here sm(Q,p) is the intensity of the m-th excitation branch, and ωm(Q,p) is its dispersion

relation. ConvRes.m becomes unusable in this case, as it can not handle infinitely sharp

features of the cross section. The solution is to eliminate the δ-functions analytically, also

reducing a laborious 4-D numerical convolution to a much faster 3-D convolution.

Equation 21 can be generalized to the case when each mode is characterized by some

intrinsic Lorenzian energy-width Γm(Q,p):

S̃m(Q, ω,p) =
1

π
sm(Q,p)

Γm(Q,p)

Γm(Q,p)2 + [ω − ωm(Q,p)]2
(22)

While a convolution of a Gaussian and a Lorenzian (so-called Voigt function) can not be

computed analytically, some very efficient numerical approximations are available [9].

The φ-transformation is performed only in 3 dimensions in either case. Exact expressions

used in ResLib are as follows: Equation 1 is rewritten as:

dσ

dΩdE ′ ≈ B(Q0) + R0(Q0)
1√

M̃11M̃22 − M̃2
12

√
M̃33

×

×
Nm∑
m=1

{
Pm(Q0, ω0,p)

∫ π/2

−π/2
dφ1

∫ π/2

−π/2
dφ2

∫ π/2

−π/2
dφ3s̃m(Q,p)V

(
ω̃m(Q,p), Γ̃m(Q,p)

)
×

× exp
(
−1

2
tan2 φ1 − 1

2
tan2 φ2 − 1

2
tan2 φ3

]
cos2 φ1 cos2 φ2 cos2 φ3

⎫⎬
⎭ , (23)

where the new variables are defined as:

Γ̃m(Q,p) =
1√
M33

Γm(Q,p),

ω̃m(Q,p) = ω − ωm(Q,p) +
M13Qx + M23Qy√

M33

,

V (x, y) ≡ 1

π

∫
dt exp(−t2)

y

y2 + (t − x)2
,

Qy − Q0,y =

√
M̃11√

M̃11M̃22 − M̃2
12

tan φ2,

31

Qx − Q0,x =
1√
M̃11

tan φ1 − M̃12√
M̃11

√
M̃11M̃22 − M̃2

12

tan φ2,

Qz − Q0,z = − 1√
M44

tan φ4,

M̃11 = M11 − M2
13

M33

,

M̃12 = M12 − M13M23

M33

,

M̃22 = M22 − M2
23

M33

.

A. ConvResSMA.m

Handles user-supplied cross section functions written in the single-mode form. Having

one dimension less to deal with, it is much faster than ConvRes.m and should be used in its

stead whenever possible. For an example of use see ConvDemo.m.

function conv=ConvResSMA(sqw,pref,H,K,L,W,EXP,METHOD,ACCURACY,p)

Input arguments:

• ’sqw’ is the name of the user-supplied “fast” model single-mode cross section. It must

be defined in a separate m-file. The requirements for this function are listed below.

• ’pref’, H, K, L, W, p, and EXP have exactly the same meaning and form as for

ConvRes.m.

• METHOD is a string that specifies which 3D-integration method to use, and ACCURACY

determines

– METHOD=’fix’: Sample the cross section on a fixed grid of points uniformly

distributed in φ-space. If this option is chosen, 2*ACCURACY(1)+1 points are

sampled along φ1 and φ2, and 2*ACCURACY(2)+1 along φ3 (vertical direction).

– METHOD=’mc’: 3D Monte Carlo integration. The cross section is sampled in

1000*ACCURACY randomly chosen points, uniformly distributed in φ-space.

Output arguments: See output arguments for ConvRes.m.

Vectorization: See vectorization of ConvRes.m.

32

Dependencies: To properly function ConvResSMA.m requires the following m-files from

ResLib: ResMatS.m, ResMat.m, StandardSystem.m, GetLattice.m, GetTau.m, star.m,

scalar.m, modvec.m, CleanArgs.

The user-supplied single mode cross section sqw is defined in a separate m-file. It must

have the form: function [w0,S,HWHM]=sqw(H,K,L,p). The input arguments are as those

for the cross section function for ConvRes.m. See SMADemo.m for an example. For Nm

modes and N data points the output arguments are Nm ×N matrices. For mode m at i-th

reciprocal-space point (H(i),K(i),L(i)), s(m,i) is the mode intensity, w0(m,i) is its energy

in meV, and HWHM(m,i) is its Lorenzian energy half-width. If HWHM(m,i)=0, the mode is

assumed to have a δ-function energy profile at this point.

33

VIII. LEAST-SQUARES FITTING OF CONVOLUTED CROSS SECTIONS

A. FitConv.m

This function provides Levenberg-Marcquardt least squares fitting of convoluted cross

secions to experimental data. The algorith is exactly as in NR 15.5. Analytic derivatives

are not supported in the current version. This function calls ConvRes.m for convolution

calcualtions at each iteration step. An example of use is given in FitDemo.m. The function

call has the following form:

function [pa,dpa,chisqN,sim,CN,PQ,nit,kvg,details] =

FitConv(H, K, L, W, EXP, Iobs, dIobs, sqw, pref, pa, ia, METHOD, ACCURACY,

nitmax, tol, dtol)

Input arguments:

• ’sqw’, ’pref’, METHOD and ACCURACY are exactly as in ConvRes.m.

• H, K, L, W, EXP are vectors that contain the wave vector components, energy transfers,

and experimental conditions for each experimental data point. They all must be of

the same length or scalars. See ConvRes.m for more details.

• Iobs, dIobs are vectors of the same length as H–EXP, and contain the observed scat-

tering intensities and error bars for each data point, respectively.

• pa is the initial guess for parameter values. This should be a 1-dimensional array of

the form accepted as the parameter p by the sqw and pref functions.

• ia (optional) - a list with zero elements corresponding to fixed parameters and ones

for parameters that should be varied. This array should be of the same size as pa.

The default value is ia=ones.

• nitmax (optional)- the maximum number of iterations allowed before the program

exits. The default value is nitmax=20.

• tol (optional)- the convergence criterion: convergence declared when χ2 decreases by

a relative amount less than tol. The default value is tol=0.001.

34

• dtol (optional)- parameter for relative change in numerical derivatives, default

dtol=1e-5.

Output arguments:

• pa, dpa - refined parameters and error bars.

• chi2N - χ2 normalized by degrees of freedom.

• CN - normalized correlation matrix - includes varying parameters only (in order).

• PQ - probability that χ2 exceeds that observed.

• nit - number of iterations to convergence.

• kvg - convergence flag:

– kvg= 0 did not converge due to too many iterations nit≥nitmax

– kvg= 1 converged normally

– kvg= 2 questionable convergence (final λ > 1 · 10−3))

• sim - (optional) fitted value of convoluted cross section at input points

• details - optional output structure with fields:

– chisq -raw χ2

– DF -degrees of freedom

– Ndata -number of data points

– Npar -total number of parameters

– Nvar -number of parameters varied

– C -raw covariance matrix

– final lamda -final value of λ used in the fitting process

– yf -fitted values of function at input points

Dependencies: To properly function FitConv.m requires the following m-files

from ResLib: ConvRes.m, ResMatS.m, ResMat.m, GetTau.m, StandardSysem.m, star.m,

modvec.m, scalar.m,CleanArgs.

35

B. FitConvSMA.m

This function is very similar to FitConv.m, but uses single-mode cross sections as in

ConvResSMA.m. The function call has the following form:

function [pa,dpa,chisqN,sim,CN,PQ,nit,kvg,details] =

FitConvSMA(H, K, L, W, EXP, Iobs, dIobs, sqw, pref, pa, ia, METHOD,

ACCURACY, nitmax, tol, dtol)

Input arguments:

• ’sqw’, ’pref’, METHOD and ACCURACY are exactly as in ConvResSMA.m

• Other parameters as in FitConv.m.

Dependencies: To properly function FitConvSMA.m requires the following m-files

from ResLib: ConvResSMA.m, ResMatS.m, ResMat.m, GetTau.m, StandardSysem.m, star.m,

modvec.m, scalar.m,CleanArgs.

C. FitConvBoth.m

This function fits a sum of a ”standard” and single mode-type cross sections to the data.

This is very useful when the scattering contains both a singular and a diffuse part. The

function call has the following form:

function [pa,dpa,chisqN,sim,CN,PQ,nit,kvg,details]=

FitConvBoth(H, K, L, W, EXP, Iobs, dIobs, sqw, pref, sma, smapref, pa, ia,

METHOD, ACCURACY, SMACCURACY, nitmax, tol, dtol)

Input arguments:

• ’sma’, ’smapref’, METHOD, and SMACCURACY are exactly as in ConvResSMA.m.

• ’sma’, ’pref’, and ACCURACY are as in ConvRes.m.

• Other parameters as in FitConv.m.

Dependencies: To properly function FitConvBoth.m requires the following m-files from

ResLib: ConvResSMA.m, ConvRes.m, ResMatS.m, ResMat.m, GetTau.m, StandardSysem.m,

star.m, modvec.m, scalar.m,CleanArgs.

36

IX. GRAPHIC REPRESENTATIONS OF RESOLUTION ELLIPSOIDS

It is often very helpful to visualize resolution ellipsoids for each point in an inelastic

scan, see how they change from one point to the next, and try to understand how they are

oriented relative to the dispersion surface in the system under investigation. Also, while

the resolution matrix contains all the information on the instrumental resolution at a given

point, parameters such as resolution volume, projected energy width, Bragg peak width,

etc., are much more useful in planning actual measurements. ResLib provides two routines

for visualizing resolution ellipsoids and calculating the most relevant resolution parameters.

A. ResPlot.m

This function plots projections and sections of resolution ellipsoids for a user-defined

scan, and calculates a bunch of relevant resolution characteristics for the center-point of

the scan. As an option, it also plots the dispersion relation calculated from a user-supplied

single-mode cross section function, of the type used by ConvResSMA.m. The projection and

section planes for resolution ellipsoids are defined by the orienting vectors specified in EXP.

By changing these one can get projections and sections with any desired reciprocal-space

planes. An example of use can be found in PlotDemo.m.

function ResPlot(H,K,L,W,EXP,SMA,SMAp)

Input arguments:

• H, K, L, W, EXP are vectors that contain the wave vector components, energy transfers,

and experimental conditions for each experimental data point. They all must be of

the same length or scalars. See ConvRes.m for more details. ResPlot.m is designed

to work with a single scan, measured in a particular experimental setup. Therefore,

calculations for all scan points will be performed using experimental conditions for the

center-point of the vector EXP (center of scan).

• SMA (optional) is the name of an single-mode cross section function to be used for

plotting the dispersion relation.

• SMAp (optional) - parameters to be passed to the cross section function SMA.

37

1.4 1.45 1.5 1.55 1.6 1.65

Qx (units of [1 0 0])

1.5 1.55 1.6 1.65 1.7

0

5

10

15

20

Qx (Å−1)

E
 (

m
eV

)

−0.1 −0.05 0 0.05 0.1

Qy (units of [0 0 1])

−0.1 −0.05 0 0.05 0.1

0

5

10

15

20

Qy (Å−1)

E
 (

m
eV

)

1.4 1.45 1.5 1.55 1.6 1.65

−0.1

−0.05

0

0.05

0.1

Qx (units of [1 0 0])

Q
y

(
un

its
 o

f [
0

0
1]

)

1.5 1.55 1.6 1.65 1.7
−0.1

−0.05

0

0.05

0.1

Qx (Å−1)

Q
y

(Å
−

1)

Scan center (point # 4):

H=1.52 K=0 L=0 E=10 meV

Projections on principal axes (FWHM):

Qx: 0.08393 Å−1 Qy: 0.141 Å−1 Qz: 0.1087 Å−1

E: 2.127 meV

Bragg widths (FWHM):

Qx: 0.02454 Å−1 Qy: 0.02265 Å−1 E: 0.2825 meV

Resolution volume:

0.00033563 meV/Å3

Cooper−Nathans prefactor

R0= 6.0581

FIG. 1: Upper left : projection onto the scattering plane (large ellipses) and constant-energy sections

(inner ellipses). Lower left: Qx − E projections and sections. Additional lines (here: parabola)

show the dispersion of the two branches defined in the single mode cross section function. The

Qy and Qz values for this dispersion curve are taken for the mid-point in the scan. Upper right :

Qy − E projections and sections. Additional lines (here: straight lines) show the dispersion of the

two branches defined in the single-mode cross section function. The Qx and Qz values for this

dispersion curve are taken for the mid-point in the scan.

Output: All the information is sent to the current figure. A typical output looks like

this:

Dependencies: To properly function ResPlot.m requires the following m-files

from ResLib: ResMatS.m, ResMat.m, GetTau.m, StandardSysem.m, star.m, modvec.m,

scalar.m,CleanArgs.

B. ResPlot3D.m

This function is similar to ResPlot.m but plots a very neat 3D representation of resolution

ellipsoids, projections and dispersion surfaces. See Plot3DDemo.m for an example of use.

function ResPlot3D (H,K,L,W,EXP,RANGE,EllipsoidStyle,XYStyle,XEStyle,

38

YEStyle, SMA, SMAp, SXg, SYg)

Input arguments:

• H, K, L, W, EXP are as in ResPlot.m.

• RANGE defines the range of momentum and energy transfer to use in the plot. RANGE

must be of the form [Qxmin, Qxmax, Qymin, Qymax, Emin, Emax], in Å−1 and meV,

respectively.

• EllipsoidStyle (optional) is the color of resolution ellipsoids in the plot. Default is

EllipsoidStyle=’red’.

• XYStyle (optional) - line style to use for the projection onto the scattering plane, in

the format used with MatLab’s plot command (something like ’r--’ for a red dashed

line). Use the value ’none’ to suppress projections.

• XEStyle (optional) - line style to use for the projection onto the Qx − E plane, in

the format used with MatLab’s plot command. Use the value ’none’ to suppress

projections.

• YEStyle (optional) - line style to use for the projection onto the Qy − E plane, in

the format used with MatLab’s plot command. Use the value ’none’ to suppress

projections.

• SMA and SMAp (both optional) are as in ResPlot.m.

• SXg and SYg (both optional) define the 2D grid of Qx and Qy values for plotting the dis-

persion surfaces. They must be of the same form as used in MatLab’s surf command,

and as generated by meshgrid. A good example of use is given in Plot3Ddemo.m.

If omitted, the dispersion surface is plotted of a 40 × 40 grid within the boundaries

specified by the first 4 elements of RANGE.

Output: All the information is sent to the current figure.

Dependencies: To properly function ResPlot3D.m requires the following m-files

from ResLib: ResMatS.m, ResMat.m, GetTau.m, StandardSysem.m, star.m, modvec.m,

scalar.m,CleanArgs.

39

FIG. 2: A typical image generated by ResPlot3D.m.

X. MISCELLANEOUS FUNCTIONS

A. CleanArgs.m

Reshapes input arguments to be row-vectors and makes sure they are same length.

function [N,X,Y,Z,..]=CleanArgs(x,y,z,..)

Arguments: N is the length of the longest input argument. If any input arguments is a

scalar, they are replicated to produce vectors of length N. In any case,the output arguments

X, Y,.. are row-vectors of length N.

Dependencies: CleanArgs.m is a stand-alone function that does not rely on any other

components in ResLib.

B. GetTau.m

Returns τ -values (2π/d) for common monochromator crystals.

function TAU=GetTau(tau)

Arguments: If tau is numerical, it is simply copied to the output argument TAU. If tau

40

is a string such as ‘PG002’ or ‘Si111’, the returned value is the reciprocal vector of the

corresponding monochromator crystal.

Dependencies: This is is a stand-alone function.

C. Rebin.m

A simple routine to rebin, average and merge data sets.

function [yb,dyb,x1b,x2b...]=Rebin(y,dy,x1,x2,...,[b1,b2...])

Input arguments: Vector y is the data set (dependent variable),vector dy contains

the standard deviations (error bars), vectors x1,... are the independent variables, and the

scalars b1,.. are the bin sizes for each independent variable. All vectors must be of the same

length or scalars.

Output arguments: Vector yb is the binned data (dependent variable),vector dyb

contains the corresponding standard deviations (error bars), and vectors xb1,... are the

independent variables in the binned data set.

Dependencies: Rebin.m is a stand-alone function that does not rely on any other

components in ResLib.

D. SpecGoTo.m

Calculate the shaft angles of a 3-axis spectrometer for a given momentum and energy

transfer.

function [M1,M2,S1,S2,A1,A2]=SpecGoTo(H,K,L,E,EXP)

Input arguments:H, K, L, E, EXP contain the wave vector components, energy transfer,

and experimental conditions, as described above.

Output arguments: M1 and M2 are the rotation and scattering angle for the monochro-

mator crystal in radians. S1 and S2 are the rotation and scattering angle for the sample.

A1 and A2 are the rotation and scattering angle for the analyzer crystal.

Vectorization: Input arguments can be vectors of the same length or scalars. The

output arguments will then be vectors, accordingly.

Dependencies: To properly function SpecGoTo.m requires the following m-files from

ResLib: CleanArgs.m, R2S.m, StandardSystem.m, GetLattice.m, GetTau.m.

41

E. SpecWhere.m

Calculate the energy and momentum transfer in a 3-axis spectrometer given the shaft

angles.

function [H,K,L,E,Q,Ei,Ef]=SpecWhere(M2,S1,S2,A2,EXP)

Input arguments: EXP is as in SpecGoTo.m. M2 is the scattering angle for the

monochromator crystal. S1 and S2 are the rotation and scattering angle for the sample.

A2 is the rotation and scattering angle for the analyzer crystal. All angles are in radians.

Output arguments: H, K, L, E Q, Ei, Ef are the wave vector components, energy

transfer, wave vector transfer, incident energy and final energy.

Vectorization: Input arguments can be vectors of the same length or scalars. The

output arguments will then be vectors, accordingly.

Dependencies: To properly function SpecWhere.m requires the following m-files from

ResLib: CleanArgs.m, S2R.m, StandardSystem.m, GetLattice.m, GetTau.m.

F. Spurions.m

This function is used to detect potential spurious scattering and false peaks in the neutron

data. The normal scattering process involves neutrons of initial energy Ei, scattered from

the sample with the momentum transfer (h, k, l) and energy transfer h̄ω, and detected at

a final energy Ef . In practice, the following spurious processes will also contribute to the

detector counts:

• Higher-order scattering in the monochromator crystal adds neutrons of energies 4Ei,

9Ei, etc., to the incident beam. Similarly, the detector will also detect neutrons

with energies 4Ef , 9Ef , etc. Any combination of these incident and final energies, if

scattered by the sample, will be detected as spurious scattering. The danger of this

happening is particularly large if the process corresponds to elastic scattering in the

sample (e.g., 4Ei = 9Ef , Ei = 4Ef , etc.).

• A inelastic scattering event may occur due to phonons in the monochromator or ana-

lyzer (thermal diffuse scattering). Though very weak, such events will produce strong

spurious scattering or sharp false peaks, if by accident the beam gets scattered elasti-

cally in the sample.

42

• Both mechanisms described above can be realized by powder scattering from an Al

sample holder, rather than the sample itself. Beware!

Spurions.m calculates momentum and energy transfer at sample position for each type of

spurious scattering scenarios. The result is displayed on the screen.

function Spurions(H,K,L,E,EXP)

Input arguments:H, K, L, E, EXP contain the wave vector components, energy transfer,

and experimental conditions.

Output arguments: None.

Vectorization: This function is not vectorized.

Dependencies: To properly function Spurions.m requires the following m-files

from ResLib: SpecWhere.m, SpecGoTo.m, CleanArgs.m, S2R.m, R2S.m, GetTau.m,

StandardSystem.m, GetLattice.m.

43

XI. NEW FEATURES IN RESLIB 3.4

ResLib 3.4 is fully backward compatible with any code written for ResLib 3.1. The

new features in version 3.4 are:

• User-supplied background functions can be used in the fitting process. See ConvRes.m.

• Support for arbitrary monochromator scattering direction in ResMat.mand its deriva-

tives.

• Support for beam collimation defined by neutron guides. See ResMat.m.

• New crystallographic functions: gtensor.m, angle.m, angle2.m, reciprocate.m,

vector.m, GetLattice.m.

• Two new functions for easy conversion between reciprocal-space and cartesian coordi-

nates R2S.m and S2R.m.

• New function Rebin.m for bining data sets.

• New spectrometer “positioning” and “where” functions SpecGoTo.m and SpecWhere.m.

• New function Spurions.m helps detect spurious peaks.

Changes to the manual since version 3.1 and 3.2 are shown in dark blue and dark red text,

respectively.

XII. DOWNLOADS, PACKAGING, INSTALLATION AND FEEDBACK

A. File download

The most recent version of all ResLib files are available here for download as a .zip archive

from http://nsmc1.ssd.ornl.gov/∼zhelud/reslib/.

B. Packaging

• ResMat.m - calculate Cooper-Nathans resolution matrices.

44

• ResMatS.m - same thing, in a coordinate system defined by the scattering vector.

• ConvRes.m - convolute a user-defined cross-section function with the resolution.

• ConvResSMA.m - convolute a user-defined single-mode cross-section with the resolution.

• FitConv.m - fit convoluted cross section to experimental data.

• FitConvSMA.m - fit convoluted SMA cross section to experimental data.

• FitConvBoth.m - fit convoluted sum of ”standard” and SMA cross sections to experi-

mental data.

• ResPlot.m - 2-D visualization of resolution ellipsoids and dispersion.

• ResPlot3D.m - 3-D visualization of resolution ellipsoids and dispersion.

• scalar.m - scalar product of vectors defined by fractional cell coordinates or Miller

idexes.

• modvec.m - length of vectors defined by fractional cell coordinates or Miller indexes.

• star.m - calculate reciprocal-lattice parameters, unit cell volume and reciprocal vol-

ume.

• StandardSystem.m - calculate components of standard sample-centered orthonormal

basis set.

• MakeExp.m - Example of setting up a structure that contains details on experimental

conditions for use with ResMat, ConvRes and other functions.

• SqwDemo.m - example of a user cross section function for use with ConvRes.

• SMADemo.m - example of a user single-mode cross section function for use with

ConvResSMA.

• PrefDemo.m - example of a ”slowly prefactor” function for use with ConvRes, SqwDemo,

ConvResSMA and SMADemo.

• ConvDemo.m - a demo script of the convolution routines.

45

• FitDemo.m - a demo script of the fitting routines.

• PlotDemo.m - a demo script of ResPlot

• Plot3DDemo.m - a demo script for ResPlot3D

• Demo.dat - an actual data set used in FitDemo

• ResLib.m - list of functions supplied in ResLib for use with the MatLab help command.

• Manual.pdf - this file.

• ResLib.jpg -ResLib logo in JPEG format.

C. Installation

Uncompress the archive to a separate new directory and add it to your MatLab path by

using the addpath command. Run the ConvDemo script to see that ResLib works on your

system. Run the PlotDemo and Plot3DDemo scripts to get some nice graphics. Change to

the directory where the files are installed (to have Demo.dat in the current directory) and

try FitDemo.

D. Feedback

The author welcomes any comments, questions, suggestion and bug reports sent by

e@mail to zhelud@bigfoot.com.

XIII. CREDITS

Many ideas and entire code fragments are borrowed from IDL routines written at Johns

Hopkins University by Collin L. Broholm and Igor Zaliznyak (now at BNL). Levenberg-

Marquardt algorithm based on C Numerical Recipies, as adapted for MatLab by Stephen E.

Nagler (ORNL). Voigt function by A. N. Maurellis. The library was originally developed at

Brookhaven National Laboratory, but is now maintained at Oak Ridge National Laboratory.

46

XIV. DISCLAIMER

There obviously is no guarantee that the above routines work right. 3-axis resolution

calculations are a tricky business and have on many occasions led to incorrect interpretation

of experimental data, outright wrong publications, and destruction of glorious careers of

young neutron scatterers. Use these m-files freely... at your own risk.

[1] M. J. Cooper and R. Nathans, Acta Cryst. 23, 357, (1967).

[2] N. J. Chesser and J. D. Axe, Acta Cryst. A29, 160, (1972).

[3] M. Popovici, Acta Cryst A31, 507 (1975).

[4] G. E. Bacon and R. D. Lowde, Acta Cryst. (1948).

[5] S. M. Shapiro, N. J. Chesser, Nucl.Instr.& Meth. (1972).

[6] T. Riste and K. Otnes, Nucl. Instr.& Meth. (1969); B. Dorner and A. Kollmar, J.Appl. Cryst.

(1974).

[7] I. Zaliznyak, private communication.

[8] S. A. Werner and R. Pynn, J. Appl. Phys. 42, 4736, (1971).

[9] J. Humlicek, J. Q. Spec. Rad. Transfer 27, 437 (1982); F. Schreier,J. Q. Spec. Rad. Transfer

48, 743 (1992).

[10] Including this option in the calculation was proposed by Krunoslav Prsa.

47

