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Digital feedback controller for force microscope cantilevers
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We present a fast, digital signal processor (DSP)-based feedback controller that allows active motion
damping of low-k, high-Q cantilevers in magnetic resonance force microscopy. A setup using a
piezoelement attached to the cantilever base for actuation and a beam deflection sensor for tip
motion detection is employed for controller demonstration. Controller parameters, derived
according to stochastic optimal control theory, are formulated in a simple form readily implemented
on a DSP, and extensions to other detection and actuation schemes are indicated. The controller is
combined with an automated calibration scheme allowing for adaptive parameter adjustment. With
the digital device operating at a sampling rate of 625 kHz and 16 bits of dynamic range, we were
able to obtain closed-loop quality factors Q<5 for cantilevers with Q=10 000 and resonance
frequencies up to 15 kHz. This corresponds to an increase in bandwidth of >10° at undiminished
signal to noise, and reduces response time and vibration amplitude by the same factor. © 2006

American Institute of Physics. [DOI: 10.1063/1.2183221]

I. INTRODUCTION

Fast feedback control of resonating microscale cantilever
beams constitutes a crucial component of modern force mi-
croscopes. Active control of cantilever vibrations allows to
vary the system bandwidth independently, and has, for ex-
ample, been used to increase acquisition speed of atomic
force microscopy (AFM) images or to reduce the force im-
pact on the imaged material (Q control).'”

For applications where maximum force sensitivity is re-
quired, such as for measurements of the tiny attraction be-
tween spin magnetic moments and a ferromagnetic particle
in magnetic resonance force microscopy (MRFM), cantile-
vers with low spring constants and high quality factors must
be employed.‘l_7 The same properties are, however, con-
nected to large oscillation amplitudes, small system band-
widths, and long response times, all of which are prohibitive
for a precise, stable, and reasonably fast operation. Further-
more, thermal motions of the cantilever—when
uncontrolled—limit the spatial resolution well above the
atomic scale. It has been shown that in this situation, active
feedback allows to eliminate all these drawbacks without
significantly affecting the signal-to-noise ratio of the force
measurement,®” enabling to reach all goals simultaneously.

Feedback controllers can be realized in several different
ways. For frequency modulated AFM, analog and digital
implementations based on a phase-locked loop have been
presented.l’lo Here we consider the slightly different problem
of a cantilever driven by the signal force itself and the task is
to reduce the amplitude of the induced vibrations. Due to the
low spring constant of the cantilevers, the controller must
consider not only the effect of the external force but also the
random thermal motions of the cantilever.*’
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In this contribution we present an accurate, versatile
digital feedback controller based on a digital signal processor
(DSP) for active feedback damping of vibrating cantilevers.
The use of a DSP eliminates many disadvantages of analog
implementations, such as start-up delays, temperature drifts,
aging, limited reproducibility, and low ﬂexibility.“ Further-
more, digital controllers are well suited for remote operation
that can be combined with automated calibration schemes for
adaptive control. On the other hand, the lack of fast DSP’s
and accurate, high-speed analog-digital converters have in
the past prevented a wider application of digital controllers.
In this respect, MRFM is not very demanding due to the
relatively low oscillator frequencies involved (typically
<10 kHz), compared to the stiff, high frequency cantilevers
(10—1000 kHz) widely used in standard AFM. The applica-
tion of a DSP-based feedback controller in the context of
MRFM has indeed been described recently.12

Our instrument is designed for systems where cantilever
motions are controlled through base shifts using a
piezoactuator.13 Base piezoactuation benefits from simple
technical realization, is easy to calibrate, and can be used
with any cantilever. For motion detection, we consider a
beam deflection sensor where the excursion of the cantilever
tip is measured indirectly by the bending of the beam.' It is
clear that controller dynamics will be affected when using
different actuation and detection schemes. Nevertheless, con-
troller characteristics are expected to be the same, and
merely the actual parameters must be modified for different
implementations. Following the work of Garbini et al..} we
give a derivation of the stochastic optimal controller that
applies for our implementation, and provide analytical ex-
pressions that can be generalized to other actuation/detection
combinations.

© 2006 American Institute of Physics
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FIG. 1. Experimental setup. The dashed shape shows the cantilever position
in rest and displays the role of xgy, Xpaeer and Xpgp.

Il. THEORY
A. System

The response of the cantilever to a small force f acting
on the tip can be described in terms of a damped harmonic
oscillator with the associated Laplace transfer function,

 Xapls) w,

Gls) = F(s)/k  s*+ s(w,/Q) + wi

; (1)

where x, is the positiowf the cantilever tip, w,= \J’% the
natural frequency, Q=\km/b the quality factor, k the spring
constant, m the effective mass, and b the friction.

Tip response to small control displacements of the base
Xpase 18 governed by8

Xiip(s) s(w,/Q) + wi
Ga(s) = = 2 2
Xbase(s) N + s(wn/Q) + wn

2)

i.e., the control dynamics of tip and base actutation are gen-
erally not the same."”

Motions are detected by an optical deflection sensor that
measures cantilever bending by the shift of a reflected laser
beam captured by a position sensitive (quadrant)
photodiode14 (PSD) (cf. Fig. 1). The shift of the laser spot on
the PSD is given by Xpsp=Xijp—Xpase» OMitting the deflective
amplification factor, = with the associated transfer function,

Xpsp(s) _
Xbase(s)

Notice that measured quantity (xpgp) and controlled quantity
(xp) are not the same.

Consequently, the respective closed-loop response of x;,
and xpgp to a force acting on the cantilever tip (i.e., the force
signal) is given by

Gyls) = G,(s)-1. 3)

Xtip(s) _ G(S)
F(s)lk  1+G,(s){H(s)/[1+H(s)]}

Gir(s) = (4)

and
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FIG. 2. Schematic representation of the control system.

Xpsp(s) _ G(s)
F(s)lk 1+ Gy(s)H(s)

Gcl(s )= (5)
where H= X,,,../ Xpsp is the controller transfer function.

Noise is modeled by a process force noise component
w(r) (in general Brownian noise) and a measurement dis-
placement noise component 1(f) (predominantly photodiode
shot noise), as shown in Fig. 2.3'° Noise is always assumed
to be white and uncorrelated, (w(t)w(t'))=(u(t)u(t'))=8t
—t") and (w(r)u(r))=0, respectively. Other noise sources,
though present, are neglected for the derivation of the con-
troller but will be mentioned below. We can further attribute
power spectral densities S,, and S, to w(r) and (r), respec-
tively, in order to obtain expressions for the open- and
closed-loop photodiode output signal in the presence of
noise,

Sop(s) =[G()[*(S,, + ) + S, (6)

_|G)P(S, +S) +5,
Sl = G HG)P

. (7

where S is the spectral density of the external force f(1), i.e.,
the quantity of interest. S,,(s) and S(s) are used to deter-
mine cantilever parameters experimentally (see below).

B. Optimal controller

Because the noise sources for this problem are well
known, stochastic optimal control theory can be used to tai-
lor a controller response H,.(s) that gives optimal perfor-
mance. H,(s) has itself the form of a harmonic oscillator,®

_ Xbase(s) _ KOC(S + ZOC)
XPSD(S) S2 + s(woc/ro) + wgc ,

Hoc(s) (8)
where parameters K., Z,., ®. and Q.. depend on cantilever
characteristics and control power. A separate derivation (see
Appendix) shows that the particular case where beam deflec-
tion is used for detection and base shifts for actuation re-
quires different parameter values than, e.g., an interferometer
detection,8
1 2/Q(1 + a?12) + (1 — alQ)(a + B +2/Q)

K,.=—-w,«a
ocC n )
2

1-a/Q

9)
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1 (a+4/Q-2a/0%)(B+2/Q)-4(1 - a/Q)
Zoe =2 W, . (10)
27" (a+B+2/0)(1 - alQ) +2/0(1 + &?/2)
(1+a*2)(1+ BIQ + B*/2)
Woe = W, , (11)
1-a/Q
o V(1 = a/Q)(1 + a%2)(1 + BIQ + B¥2) 12)
T (a+ B+ 1/0) +(112)aB(a+ B+2/Q) - a*Q(1/12 + BIQ + B2)’
[
where a,; =2¢T cos wT, (17)
2 2
O, 4 —2a
a:\/%+2§c—2—éand§§:1+—x’ﬂp—, (13) ay=—e>7, (18)
Q Q 0i,base
bo = 0, (19)
B \/1+2g P a2 g (14)
= e 0 — — an ° = -,
Q? 0 . Koc| 20c®  _ur
by=—| =5 (1-¢“" cos wT)
respectively. o‘iﬁp/ a'ibase denote the ratio of the variances of W |
tip and base excursions, and S,,/S, the ratio of respective za
excitation and measurement noise spectral densities. The val- + (1 — )e‘“T sin w7 |, (20)
ues of a and B thus reflect how much control and input @oc
filtering is applied, respectively. %
In practice, the controller parameters (9)—(12) are calcu- by=—% [ g(e‘hﬂ— e cos wT)
lated on the basis of experimentally determined values of w,, Woc
0, and S,,/S, that can be determined, e.g., by fitting the open za
loop noise spectral density of the cantilever S.,(s). The - (1 - (ZCZ )e’“T sin T |. (21)
oc

fourth quantity, the ratio critip/ of’base, is left as a free param-
eter to reach the desired level of feedback damping. Alterna-
tively, it is often more convenient to express the amount of
feedback by the closed-loop quality factor Q., which deter-

mines « according to
a= S LNE+2Q - 212 - 0N 2107- 21, 15)
cl

where 2=1-1/(20%).

C. Digital controller

A digital controller is conventionally described by the
z-transform response function forming the discrete time
equivalent to the Laplace transform used for time-continuous
systems.”’18 Through the strict correspondence between a z
function H(z) and its Laplace equivalent H(s)—that is, they
are originating from the same time domain function—the
former can be easily derived.'®"

The z function of the controller depends on the details of
the sampling process. We use zero-order-hold (zoh)
sampling,”’18 where the appropriate z function is given by
H®M(2)=(1-z"")Z[H(s)/s]. Here, Z indicates the z corre-
spondent of the enclosed Laplace function. Applying this re-
lation to the optimal controller H,(s), the desired z function
is found to be

bo+ bz + by

HOC(Z) = 1

, (16)

1 - CZIZ_ - a2Z_2

where

Here, T is the clock sampling time, a=w,./2Q the inverse
ring-down time, and w’=w? —a® the (damped) controller
resonance frequency. The implementation of the controller
on a digital signal processor based on these coefficients is
straightforward and depicted in the block diagram in Fig.
3(a).

Digital controllers require a finite time for computation
of the output signal. The delay of the response can lead to
unwanted effects and deteriorate the performance of the con-
troller. A direct consequence of a time lag are phase shifts in
the frequency response that grow linearly with frequency and
effectively limit the bandwidth of the device. It is therefore
often beneficial to include a digital compensating element in
the controller response function that corrects the phase
distortion.*’ Noticing that a time delay has a Laplace re-
sponse e~ ™, a particularly simple choice for a compensator is
(1+ 7s) that corrects the phase shift to first order in 7s. Add-
ing this compensator to the controller H,.(s) results in

Koo(s + zo0) (1 + 75)
2+ (00 Qoc)s + w2

H.(s) = (22)
Note that although (1+ 7s) does not conserve amplitude and
even though more sophisticated compensators are available®
the simple form allows us to use the same z-transfer function
(16) without requiring additional higher order coefficients
(n>2), which would in turn increase the delay. The modified
a, b, for the compensated controller become

aj=ay, (23)
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FIG. 3. (a) Block diagram of the computation flow in the digital controller. Quadratic boxes represent either multiplications by a parameter or a register shift,
i.e., a unit time delay 7. A new output value is calculated according to y[n]=bgx[n]+bx[n—1]+b,x[n—2]-a,y[n—1]-a,y[n-2] on the basis of the last few
input and output values x[n—i], y[n—i], respectively. See, e.g., Ref. 17 for further details. (b) Interconnection scheme. The input side consists of an
amplifier/filter stage (A), the A/D converter (B), and a galvanic isolation (C). On the output side [(E)-(G)] similar elements are used in reverse order. A/D and
D/A converters have an analog range of 5 V at 16 bit digital resolution and are clocked by the DSP(D) at 625 kS/s. The DSP operates at a core clock speed
of 80 MHz and uses a 32 bit floating-point arithematic. Communication with the DSP was enabled over USB (for programming) and RS-232 (for controller
parameter update during measurements), respectively. A typical controller parameter update required ~100 ms. All elements [(A)—(G)] are availabe from

Analog Devices Inc.

as=a,, (24)
0= Ko (25)
bi=b + T%[(ZOC —a)e T sin wT
—w(e™cos wT+1)], (26)
b5=b,- 7f[(zOC —a)e T sin wT — we™7 cos wT7.
(27)

As a final remark we note that the operation principle of a
digital controller represented by a transfer function of the
form of Eq. (16) is very flexible. Provided bandwidth and
dynamic range of the digital circuit are sufficient, virtually
any (single-input/single-output) process can be controlled by
the instrument by simply choosing different values for the
coefficients a,,,b,,.

IlIl. IMPLEMENTATION
A. Controller

The implementation of the controller is depicted in Fig.
3(b). A combination of 16 bit digital resolution and 625 kS/s
sampling speed is chosen, capable of handling ~96 dB of
dynamic range at a predicted bandwidth of >10 kHz (Ref.
21). In order to suppress noise, analog and digital circuit are
electrically isolated, and separate power supplies are used for
analog to digital (A/D) and digital to analog (D/A) convert-
ers and the DSP, respectively. Computation required
3.5 clock cycles (5.6 ws). The effective input/output delay
time was 7~7.5 us (see Fig. 4). The bandwidth of our
implementation is limited by the maximum sampling rate of

the D/A converter, and could be increased by employing
faster converters or a parallel arrangement, possibly at the
cost of a lower dynamic range.

B. Cantilever system

Controller performance was demonstrated on a home-
built probe assembly22 sketched in Fig. 1. Commercially
available silicon-nitride cantilevers (Veeco Inc.) with spring
constants k=0.01-0.5 N/m and resonance frequencies
w/27=0.4-40 kHz (lower frequencies accessed by tip load-
ing) were employed. An =3 X 2 X 1 mm? sized piezoactuator
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FIG. 4. (a) Cutaway of a sawtooth wave form generated by the DSP and
measured in 20 MHz (1) and 50 kHz (2) bandwidths, respectively. Voltage
resolution is 78 uV and sampling time per data point is 1.6 us. (b) Com-
putation delay made visible by connecting a 50 kHz square wave signal to
the controller input (upper curve), producing the output shown below. The
delay equals in average 4 (=3.5+0.5) clock cycles ~6.4 us. Taking input
filter (160 kHz, dashed line) into account results in effective delay time of
~7.5 ws. The same value is obtained from phase response analysis (see Fig.
5).
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(Staveley NDT Technologies) with 235 pF capacitance and
420 pm/V transductance served for base control. A linear
expansion characteristic neglecting hysteresis or creep ef-
fects is assumed. Actuation voltages for thermal noise damp-
ing were typically around 10 mV,; when substantial control
was applied.

C. Automated calibration protocol

The digital controller can be combined with an auto-
mated calibration protocol, which allows for a self-acting
update of controller parameters. Our calibration scheme in-
volved the following steps.

(1) Controller output is disabled.

(2) Cantilever parameters w,, Q and the noise ratio S,/S,
are determined by noise analysis, e.g, by fitting the open
loop spectral density of the photodiode S,,(s) [Eq. (6)]
or using similar techniques.23 24

(3) Controller parameters a,, b, are calculated according to
Egs. (9)-(12), (15), (14), and (23)—(27). In addition to
,, 0, and S,,/S,, the following parameters are required:
a desired closed loop quality Q, the controller compu-
tation delay 7, and the sampling time 7.

(4) The DSP is updated and output enabled.

(5) Step 2 is repeated to characterize/verify the correct
closed-loop behavior.

IV. PERFORMANCE TESTS

In a first step dynamic range and timing resolution of the
controller were examined. The digital resolution was demon-
strated by generating a sawtooth wave form by the DSP and
recording the analog output as depicted in Fig. 4(a). The least
significant bit corresponds to an analog resolution of 78 uV.
Timing characteristics are evaluated in Fig. 4(b), where the
input of the controller operating in feedthrough mode [i.e.,
all coefficients in Eq. (16) are zero except by=1] is con-
nected to a square wave.

Next it was verified that the controller reproduces the
desired transfer characteristics. In Fig. 5 the theoretical re-
sponse function H,(s) [Eq. (8)] is compared to the experi-
mentally measured controller response based on the param-
eters {a,,b,} associated with H,.(s). While the agreement of
the amplitude response is virtually perfect, the linearly grow-
ing phase deviation associated with the computation delay
can be observed in the phase response. Repeating the mea-
surement using the delay compensated parameters {aj,,b}}
shows that the phase distortion can be efficiently reduced in
the desired frequency range.

To demonstrate feedback control of the cantilever, the
controller output was connected to the piezobase actuator of
the AFM and the photodiode signal was fed into the control-
ler input. Two aspects were considered: the damping of ther-
mal cantilever motions, and the dynamic behavior when an
external driving force—that is, a signal—is present.

Figure 6 depicts a representative experiment where the
controller was used to damp the thermal motions of the can-
tilever. Part (a) shows the measured open-loop noise spectral
density together with a fit to S, [Eq. (6)]. An additional 1/f
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FIG. 5. Transfer function of the controller based using the set of parameters
given in the caption of Fig. 6. Experimental amplitude and phase response
(crosses) were recorded with a lock-in amplifier. The solid line shows the
theoretically calculated transfer function H,.(s). Including a delay compen-
sator significantly improves phase response (circles). Uncompensated, the
phase at 5 kHz lags already 13.5° behind, while the deviation stays below
10° up to 21.6 kHz, when the phase is corrected (inset).

measurement noise component, attributed to fluctuations in
the laser beam intensity, was included for fitting. Part (b)
depicts the result of a second measurement after enabling
DSP output using the appropriate controller parameters as
given in the caption. Notice that in contrast to (a), the closed-
loop spectral density S (solid line) in (b) was calculated
entirely from cantilever parameters and contains no adjust-
able parameters, thus the theoretical model is confirmed
rather accurately.

Damping of thermal noise was examined using several
different cantilevers with resonance frequencies ranging be-
tween 0.4 and 40 kHz. Below 15 kHz, an arbitrary level of
damping could be applied without observing any deviations
from the theoretically predicted behavior. Higher frequencies
were still controllable for moderate effort (Qy~50 at
40 kHz) but showed distortions if control was further raised.
This is in agreement with sample rate selection rules®! that
recommend a bandwidth of >30X the relevant system fre-
quency, making our instrument applicable for resonance fre-
quencies up to ~10 kHz. Furthermore, additional checks
with low friction cantilevers (Q ~ 100 000, cantilever spring
constant of 0.8 mN/m) suggest that the controller is compat-
ible with higher quality factors and lower spring constants.

In a last step, the dynamic properties of the controlled
and uncontrolled cantilevers were investigated. For this pur-
pose an external force was applied to the tip, and switched
on and off in fixed intervals. Forces on the tip loaded canti-
lever were generated via inductive coupling from a nearby
solenoid coil connected to an amplitude modulated radio-
frequency source.
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FIG. 6. Thermal noise spectral densities of the (a) uncontrolled and (b)
controlled cantilevers. Experimental data are given as crosses (no feedback)
and circles (with feedback), respectively. The solid line in (a) represents a
least-squares fit of S, to the experimental data, while in (b) it depicts the
calculated spectral density S, without any free fit parameter. Relevant ex-
perimental parameters were f,=2287.84 Hz, 0=5400, and k=20 mN/m for
the cantilever, £,=0.0431 (8=0.206) for the noise ratio, and {,=0.121 («
=0.342) for the control ratio. This gives the following controller parameters:
K,.=279.4 rad/s, z,,=—5.139 X 10" rad/s, w,.=14.95% 10* rad/s, and Q..
=1.828.

The result is shown in Fig. 7(a). The increase of system
bandwidth (=Q/Q.~87) upon feedback damping can be
manifested in two respects. First, the controlled system re-
acts almost instantaneously to the external force with a re-
sponse time 7,=20/w,~ 8 ms, while the uncontrolled can-
tilever requires 7,,=20/w,~0.7 s to build up oscillations.
Second, tip excursions are reduced by the same factor. This
reduction also applies to thermal vibrations, although this is
not directly obvious from Fig. 7(a). Due to the very narrow
bandwidth of the open-loop system, measurement noise is
dominated by contributions from the vicinity of the cantile-
ver resonance frequency. For the closed loop system, how-
ever, a wide range of frequencies must be taken into account,
and a much higher relative noise level results. In essence,
this means that the fast response time of the controlled sys-
tem comes at the cost of increased noise. For measurements
exceeding the response time 7, i.e., when the measurement
bandwidth is made smaller than the bandwidth of the uncon-
trolled cantilever, the signal-to-noise ratio of the closed-loop
system approaches that of the open-loop system. This is in-
dicated in Fig. 7(b), depicting the power spectral densities
from the previous figure (Fig. 6). The external signal, visible
as a separate peak, has a reserve of 28 dB on the noise level
irrespective of feedback control. Moreover, the signal-to-
noise is not affected by working off-resonance, because ther-
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FIG. 7. (a) Dynamic response of the open- and closed-loop systems to an
external tip force applied on-resonance (f,=1377 Hz), measured by a
lock-in amplifier with time constant 7~ 7. Bandwidth is enhanced by the
ratio of the quality factors Q=3000 and Q.=35, respectively, while vibra-
tions and response times are scaled down by the same amount. Note that the
ratio between the two amplitude scales is Q/Q,;. (b) Corresponding spectral
density plots. The force was applied 15 Hz below f, for better visibility.
Signal-to-noise ratio is ~28 dB, and unaffected by feedback control. The
peak marked by an asterisk stem from residual mechanical vibrations
present in the experimental setup.

mal noise and force signal are subject to the same frequency
response [Eq. (6)]. Notice, however, that both findings are
only valid as long as cantilever thermal noise is substantially
larger than the noise of the position sensor, otherwise the
signal-to-noise is degraded indeed.

V. DISCUSSION

A fast, high-resolution digital feedback controller for
motion damping of low-k, high-Q cantilevers has been con-
structed. The controller operates at a sampling rate of
625 kHz combined with fully resolved 16 bits (96 dB) of
analog/digital dynamic range. Computation delay is on the
order of ~7 us and digitally compensated for cantilever
resonance frequencies up to 20 kHz. Performance evaluation
showed that (i) the controller reproduces the theoretical re-
sponse, (ii) thermal motions of cantilevers can be efficiently
damped down to the optical detection limit, reaching closed-
loop quality factors in the order of Q. =3, and (iii) the
signal-to-noise ratio of an external force signal is unaffected
by the feedback.
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Parameters characterizing controller dynamics have been
derived according to stochastic optimal control. The param-
eters are specific for the present cantilever system—where
base shifts through a piezoelement and laser beam deflection
are used for actuation and detection, respectively—but are
easily extended to other setups. Expressions that connect
these parameters to the coefficients of the digital controller
were provided and can be readily implemented on most
DSP’s. An automated calibration scheme for adaptive param-
eter adjustment was presented. Further progress in micro-
electronics will allow to implement digital controllers oper-
ating at a much higher rates, in particular, with regard to high
frequency mechanical oscillators employed routinely in
atomic force microscopy.
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APPENDIX: CONTROLLER DERIVATION

This Appendix gives a compact derivation of the steady-
state optimal feedback controller for a base-actuated cantile-
ver with beam deflection motion detection, in order to pro-
vide Ko, Zoes Woer and Q.. [Egs. (9)-(12)]. We follow the
procedure and notation outlined by Garbini et al.® and refer
to Refs. 25 and 26 for further details.

Consider the steady-state system,

x(t) = Ax(?) + Bu(?) + Gw(z), (A1)

y(r) = Cx(z) + Du(z) + v(r), (A2)

where x(7) is the state variable subjected to control, y(z) the
observed variable, and u(z) the control variable. w(z) and v(z)
denote white and uncorrelated excitation and measurement
noise processes.

For the specific case of a base actuated cantilever with
deflection detection,

Lt(l) = xbase(t) + xbase(t)/(an) s (A3)

(1) = X4ip (1) = Xpase (1), (A4)

thus (A1) and (A2) are explicitly

(1) (o0 ~ed(th) (100,
Xiip 1 0 /\xgp ,/Q

2
w
+< ")w(t), (A5)
0
Uip
y(@)=(1 0)( )—u(t)+v(t), (A6)
xlip
where an altered form of the tip velocity vt’ip=vﬁp

—(w,/ Q)xpyse 1s introduced.
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According to the separation principle,25 the problem of
finding an optimal controller can be divided into the two
subproblems of constructing an optimal regulator and an op-
timal estimator.

1. Optimal regulator

The steady-state optimal control u(z) for a given state
x(1) is generated by the control law,

u(r) =-Kx(1), (A7)

where the Kalman gain matrix is given by K=REIBTS, with
S (a symmetric 2 X 2 matrix) as the solution of the steady-
state Riccati equation,

0=SA +ATS - SBR.'BTS + Q.. (A8)

A suitable choice for the weighing matrices Q. and R, are
the maximum variances in the tip and base displacements,
o’ and o? respectively,8

x,tip x,base’

0 0 )
Q.= 0 1/02,@ and R. = 1/Ux,base'

X

(A9)

The analytical expression for K is obtained by solving the
three independent equations contained in (A8) (cf. Ref. 26, p.
347 for an example),
2
12+ al
Ko (g, a, w) ,
w, 1-alQ
where « is given by (13).

The closed-loop properties are found by inspecting the
characteristic equation,

sI- A +BK|=0, (A11)

from which the closed-loop frequency w, and quality Q can
be determined,

(A10)

1+a%/2
W) = Wy, s (A12)
1-alQ
/ 2
1+ a22)(1 - @)
Qc1= Q . (A13)

1+aQ-a*2

2. Optimal observer

The optimal observer is needed to reconstruct the actual
state X(¢) from the incomplete information provided by the
measured system output y(£). “Optimal” means that the de-
viation of X(#) from the exact state x(7) is minimized. Given
the differential equation defining the reconstructed state,

X=A%+Bu+L(y- Ck-Du). (A14)

The deviation is smallest if the gain matrix L is selected
according to L=PCTR;" (Kalman-Bucy filter) as implied by
the steady-state Riccati equation of the optimal estimator,

0=AP+PAT-PCR;'C"P+GQ.G". (A15)

Here, the two noise variances Qe=0'fv and Re=a'i represent
the amount of the excitation and measurement noise present.
Solving for P (which is also a symmetric 2 X 2 matrix) simi-
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larly to the optimal regulator problem, the optimal gain ma-
trix is obtained,

2 2
w:/2
. (B " )
Bw,
where B is given by (14). A closer look at Eq. (A15) reveals
that the observer is independent of the control force u; con-
sequently the choice of the beam deflection detection scheme

[manifested by the appearance of the control term in the
detection, Eq. (A6)] has no influence on the gain matrix L.

(A16)

3. Optimal controller

The stochastic optimal controller is obtained by combin-
ing optimal regulator and estimator. Substituting u(z) in
(A14) by (A7), the optimal controller is determined by

=A% - BKR + L(y - C% + DKX). (A17)

In terms of transfer functions, the controller is given as the
ratio of the Laplace transforms U(s) and Y(s) (the control
and output variable), respectively,

(A18)
where A;=A-BK-LC+LDK. Considering Eq. (8), the

“standard form” of H,.(s), the controller parameters can be
identified with

K..=KL, (A19)
K adj(A,)L

Zoc = T s (Azo)

wee = Vdet(A,), (A21)

Qoc = 0o /Tr(A,), (A22)

and using matrix adjugate of A, determinant, and trace.”’

Substituting K, L, and A, then produces the explicit expres-
sions (9)—(12).

The general result (A18) can be adapted for other
actuation/detection schemes. For interferometer detection us-
ing base actuation, the measured system output is equivalent
to tip position y(#)=x,(7), hence A,=A-BK-LC. For tip
actuation, the same substitution applies (for both detection
schemes), and furthermore the Kalman gain K must be re-
placed by8
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a a o
K=(—,—+—), (A23)
w, O 2
with a modified «a,
V- vor-2- L ana 2 4 Taio (A24)
a=1\— -2-—and (. = .
Q2 ‘ Q UJZC,base
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