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When probing nuclear spins in materials on the nanometer scale, random fluctuations of the spin
polarization will exceed the mean Boltzmann polarization for sample volumes below about �100 nm�3. In
this Letter, we use magnetic resonance force microscopy to observe nuclear spin fluctuations in real time.
We show how reproducible measurements of the polarization variance can be obtained by controlling the
spin correlation time and rapidly sampling a large number of independent spin configurations. This allows
significant improvement in the signal-to-noise ratio for nanometer-scale magnetic resonance imaging.
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Magnetic resonance signals detected in conventional
magnetic resonance imaging (MRI) experiments origi-
nate from the slight alignment of nuclear spins induced
by an external magnetic field. This thermal equilibrium
(‘‘Boltzmann’’) polarization gives rise to a mean fractional
spin polarization that is typically quite small, �N=N <
10�4. For the large ensembles of nuclear spins detected in
MRI experiments, usually N > 1015 spins, the Boltzmann
polarization is the dominant source of spin alignment.
However, as new techniques, such as magnetic resonance
force microscopy (MRFM) [1,2], push detectable volumes
below �100 nm�3, another type of polarization becomes
increasingly important: the ‘‘statistical’’ polarization.

Statistical polarization arises from the incomplete can-
cellation of randomly oriented spins. The instantaneous
polarization, i.e., the difference �N between spin-up and
spin-down populations, can be either positive or negative
and will fluctuate on a time scale that depends on the
random flip rate of the spins (for example, due to spin-
lattice relaxation). For a random ensemble of spin-1=2
nuclei, it follows from the properties of the binomial
distribution that the statistical fluctuations have variance
�2

�N � N�1� ��N=N�2�, where the overbar indicates
mean value. In the limit of small mean polarization, which
is representative of most experiments, the variance simpli-
fies to �2

�N � N. The existence of statistical polarization
was pointed out by Bloch in his seminal paper on nuclear
induction [3] and has been observed experimentally by a
number of techniques, including superconducting quantum
interference devices [4], conventional magnetic resonance
detection [5–7], optical techniques [8], and MRFM [2,9].

As detection volumes enter the nanometer-scale regime,
the standard deviation of the polarization fluctuations ��N

can easily exceed the Boltzmann polarization �N �
N�B=kBT, where � is the magnetic moment of the spin,
B is the polarizing magnetic field, and T is the tempera-
ture [10]. The dominance of statistical polarization, as de-
fined by ��N > �N, occurs for sample volumes V <
��B=kBT��2��1

N , where �N � N=V is the spin number

density. Assuming conditions representative of high-field
MRI microscopy of protons in water (B � 10 T, T �
295 K, and �N � 7� 1028 m�3), the volume corresponds
to ��230 nm�3. For MRFM detection of 19F nuclei in
calcium fluoride, as considered in this Letter (B � 2:9 T,
T � 4:5 K and �N � 5� 1028 m�3), the volume for sta-
tistical polarization dominance is ��37 nm�3.

Given that statistical polarization is such a strong feature
of nanoscale nuclear spin detection, it is worthwhile to
consider efficient methods to harness it for imaging appli-
cations. In order to generate a signal that is proportional to
the spin density, it is natural to consider using the variance
as the ‘‘signal.’’ If the polarization �N is measured for n
independent configurations of the spin ensemble, the sam-
ple variance s2

�N is estimated as

 s2
�N �

1

n� 1

Xn
j�1

��Nj ��N�2: (1)

(The symbol �2 is used to denote the true or theoretical
variance, while s2 is the estimated or ‘‘sample’’ variance.)

The variance estimate s2
�N is subject to some uncertainty

since only a limited number of independent spin configu-
rations can be sampled. Textbooks on statistics, e.g.,
Ref. [11], show that the standard error of s2

�N is

 �s2
�N
�

�
2

n� 1

�
1=2
�2

�N 	

�
2

n� 1

�
1=2
N: (2)

If this ‘‘spin noise’’ is the only noise present, the overall
signal-to-noise ratio (SNR) for the variance determination
depends only on n,

 SNR 

�2

�N

�s2
�N

�

�
n� 1

2

�
1=2
: (3)

This equation reveals a basic strategy for statistical spin
detection: one should rapidly sample as many independent
spin configurations as possible. Independent spin configu-
rations can be obtained by periodically rerandomizing the
ensemble.
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The above analysis of the SNR represents an idealized
case. In real experiments, the spin polarization is measured
via an intermediate quantity, such as the magnetic force,
and the measurements are corrupted by noise. In our ex-
periments, the measurement noise, including the cantilever
thermal noise, is significant, and the spin signals have a
finite correlation time. These factors must be taken into
account when analyzing the signal statistics.

As shown in Fig. 1, we observe the nuclear spin polar-
ization using an ultrasensitive cantilever to detect the
attonewton magnetic force between spins in the sample
and a nearby magnetic tip [1,12]. The cantilever mechani-
cal resonance is driven by cyclic adiabatic spin inversions
induced by rf frequency sweeps, and by thermal noise. A
fiber-optic interferometer monitors the resulting cantilever
motion and the cantilever oscillation signal is synchro-
nously detected by a two-channel lock-in amplifier. The
phase of the lock-in amplifier is set so that the spin signal
plus thermal noise appear in the in-phase (X) channel,
while only thermal noise is present in the quadrature (Y)
channel. The lock-in signals are digitized and low-pass
filtered in software so as to control the overall measure-
ment bandwidth. Since the spin signal and the measure-
ment noise are statistically independent, the variance of the

in-phase channel is given by �2
X � �2

spin � �
2
noise. The

quadrature channel measures only noise, so �2
Y � �2

noise.
The spin portion of the variance is then given by �2

spin �

�2
X � �

2
Y .

In the experiment, the in-phase and quadrature channels
are recorded for a time �total and the spin signal variance
s2

spin is estimated from the measured sample variances
according to s2

spin � s2
X � s

2
Y . We now seek an expression

for the SNR associated with s2
spin that is similar to Eq. (3),

but also includes measurement noise. To obtain statistically
independent spin configurations, the spins are periodically
randomized at intervals separated by time �r using a burst
of ��=2� rf pulses. The spin polarization remains essen-
tially constant between randomizations if �r � �m, where
�m is the correlation time of the naturally fluctuating spin
polarization [13]. In order to keep the analysis simple we
assume that the X and Y channels are filtered using
convolution-type filters that average the signals in the
intervals between the periodic randomizations. The actual
experiment used first order low-pass filters instead of the
assumed averaging filters, resulting in a slight reduction of
SNR performance [14].

The output of the averaging filters is assumed to be
sampled synchronously with the randomizations, resulting
in the measurement sequences Xi and Yi, where i �
1; . . . ; n and n � �total=�r are the number of independent
spin configurations. From these samples, the variances s2

X
and s2

Y are calculated as in Eq. (1). The associated standard
errors are �s2

X
� �2=�n� 1��1=2�2

X and �s2
Y
� �2=�n�

1��1=2�2
Y . The standard error of s2

spin is then given by

�s2
spin
� ��2

s2
X
� �2

s2
Y
�1=2, or �s2

spin
�f 2

n�1���
2
spin��

2
noise�

2�

��2
noise�

2�g1=2. The SNR can then be written as

 SNR 

�2
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�

�
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�
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�

1� 2
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�4
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�
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:

(4)

Note that in the absence of measurement noise, (4) is
consistent with the previous result in (3).

To finish the analysis, we need to know how �2
noise

depends on the randomization interval �r. For a convolu-
tion filter that averages the signal over the randomization
interval �r, the power transfer function is jG�f�j2 �
sin2��f�r�=�

2f2�2
r , which has an equivalent noise band-

width of �f � 1=2�r (single-sided with units of Hz). The
noise variance is given by �2

noise � Snoise�f � Snoise=2�r,
where Snoise is the single-sided power spectral density of
the measurement noise in each channel. We assume this
spectral density to be independent of frequency within the
bandwidth of the filter. This is the case in our experiments,
where the cantilever thermal noise has a relatively broad
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FIG. 1 (color online). (a) Experimental setup. A �4 �m�3 CaF2

particle attached to the end of a single-crystal Si cantilever (fc �
2:6 kHz, kc � 86 �N=m, and Q � 18 500) is positioned 80 nm
above a FeCo-magnetic tip and placed in a static external field
B0 � 2:85 T (B0jjz). 19F spins are excited by an rf magnetic
field B1 � 4 mT (B1jjy), generated by passing current I�t�
through a microwire situated directly under the tip [16]. All ex-
periments are carried out at 4.2 K and in high vacuum. (b) Pro-
tocol used for spin detection and randomization. Repetitive rf
frequency sweeps with a center frequency of 114.8 MHz invert
the spins adiabatically twice per cantilever cycle [17,18]. For
spin randomization, the rf field is interrupted at fixed intervals �r
by a burst of �=2 pulses. Spin polarization is completely un-
correlated before and after randomization pulses. (c) Signal
processing protocol as described in the text.
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spectrum since the cantilever is strongly damped by feed-
back. The SNR can thus be written as

 SNR �
�
�total=�r � 1

2

�
1=2
�

1�
Snoise

�r�
2
spin

�
S2

noise

2�2
r�

4
spin

�
��1=2�

:

(5)

From the above equation, the SNR is found to be maxi-
mized when the randomization period is �r �

Snoise=
���
2
p
�2

spin, which is equivalent to choosing a random-
ization rate and associated filter bandwidth such that
�2

noise � �2
spin=

���
2
p

. With this choice of �r and assuming
that �total 
 �r, we find

 SNR max �

� �2
spin�total

2�
���
2
p
� 1�Snoise

�
1=2
: (6)

We have experimentally demonstrated the advantage of
periodic spin randomization while measuring statistical
polarization of 19F in a CaF2 single-crystal sample. In
Fig. 2(a) we show a typical 60 s duration record of X�t�
from the lock-in amplifier as the spins are cyclically in-
verted by rf frequency sweeps. This output contains con-
tributions from both the spins and the thermal noise, while
the quadrature channel signal Y�t�, shown in Fig. 2(b), is
predominantly just thermal noise. The X channel variance
is 0:32 �A2, which corresponds to a force variance of ap-
proximately 450 aN2. The Y channel variance is much
smaller, about 0:055 �A2, which corresponds to a thermal
force variance of 78 aN2. Based on an estimated lateral
field gradient of 106 T=m, the observed spin fluctuations in
the X channel correspond to an rms statistical polarization
of about 1500 19F spins.

The spin fluctuations in Fig. 2(a) can be seen by inspec-
tion to have long correlation times, on the order of seconds.
By calculating the autocorrelation function associated with
this and other similar time records, the autocorrelation was
found to be well fit by an exponential decay with a corre-
lation time of �m 	 3:5 s [Fig. 2(d), Ref. [13]). If only a
single 1 min waveform, such as in Fig. 2, is used to
estimate the variance of X�t�, the error is large, approxi-
mately 35%, since the number of independent samples n �
�total=�m � 17 is relatively small.

The signal X�t� obtained with periodic spin randomiza-
tion is shown in Fig. 2(c), where the randomization is
achieved by periodically interrupting the cyclic adiabatic
frequency sweeps by a burst of �=2 pulses, as shown in
Fig. 1(c). For this example we use the randomization
period �r � 351 ms, which corresponds to a �=2-pulse
burst every 500th adiabatic inversion. The burst consists
of 20 pulses of 2 �s duration with center frequencies
uniformly distributed over the same frequency range as
the adiabatic sweeps. Judging from the autocorrelation
function of the randomized fluctuations, the spins are
very effectively scrambled by this protocol [Fig. 2(d)].

As expected, the autocorrelation function falls linearly
and reaches zero at �r.

The periodic randomization allows us to make an im-
proved estimate of the spin signal variance. Based on a
randomization repetition period �r � 351 ms and the same
total measurement time of 60 s, the number of independent
measurements is now �total=�r � 171, which results in an
uncertainty in the variance of about 11%, an improvement
of more than a factor of 3.

To more concretely illustrate the impact of periodic
randomization on the SNR, we show in Fig. 3(a) a one-
dimensional lateral imaging scan over the CaF2 object.
Each point represents the estimated spin signal variance
from a 1 min data record. Two overall signal maxima are
visible that result from the two lobes of the imaging point
spread function [15]. For the scan with natural spin ran-
domization, the large uncertainty in the variance results in
large scatter in the scan data over regions where the spin
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FIG. 2 (color online). Cantilever tip oscillation amplitude as a
function of time. (a) In-phase signal X�t� in the presence of the
19F spins fluctuating naturally with a spin signal correlation time
of �m 	 3:5 s [13]. (b) Quadrature signal Y�t� due to thermal
fluctuations of the cantilever. The observed thermal noise corre-
lation time (� 	 200 ms) is set by cantilever and filter band-
widths. (c) Same as (a), but spins are periodically rerandomized
every �r � 351 ms. (d) Normalized autocorrelation function of
spin signals obtained by analysis of an 8 min long record and
after subtracting the measurement thermal noise autocorrelation
function.
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signal is highest. The periodic spin randomization, per-
formed with �r � 113 ms results in dramatic reduction of
the data scatter, especially for the points with the largest
spin signal [Fig. 3(a), lower image]. The slightly larger
noise in the regions where there is no spin signal is due to
increased measurement noise that results from the larger
measurement bandwidth needed to accommodate the
shortened spin correlation time.

As indicated by Eq. (5) and shown in Fig. 3(b), we can
vary �r in order to optimize the SNR. Here we measure the
spin fluctuations at a position of large spin signal [the 670-
nm position of the lateral scan shown in Fig. 3(a)]. To
determine each SNR data point, 50 one-minute data re-
cords were acquired. The sample variance s2

spin from each
record was calculated and the SNR was determined by
SNR � s2

spin=ss2
spin

, where s2
spin and ss2

spin
are the mean and

the standard deviation of the variances, respectively. As
shorter randomization intervals are used, the SNR in-
creases until it reaches a maximum around �r � 50 ms.
The SNR then drops for the shortest �r value tested, as
expected, since the large associated measurement band-
width is admitting more measurement noise than is opti-
mal. Obtaining results for even shorter �r was hampered by
the finite response time (�12 ms) of the cantilever.

Figure 3(b) also plots the theoretical SNR according to
Eq. (5) using the following parameters determined from
the experiment: �2

spin � 900 aN2 and Snoise � 66 aN2=Hz.
The theory predicts an optimal SNR of roughly 13 for a
one-minute measurement time when �r � 52 ms, in good
agreement with the experimental results. Overall, the SNR

values obtained experimentally are just slightly lower than
predicted by Eq. (5) [14].

In conclusion, we have shown that noise inherent in
the measurement of small, statistically polarized spin en-
sembles can be mitigated by rapid rerandomization of the
spins. Beyond the fundamental interest in the control and
measurement of spin ensembles in the nanometer regime,
the practical impact on nanoscale magnetic resonance
imaging is significant: the demonstrated 6� improvement
in SNR allows a 36� increase of imaging speed.
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FIG. 3 (color online). (a) One-dimensional image scans in the
x direction of the calcium fluoride sample. The points are the
measured variances of the spin force and the solid lines are
guides for the eye. Scatter of the data points in the top image is
due to the uncertainty of the variance estimates. Much improved
SNR is seen in the lower image where the spins are periodically
randomized at �r � 113 ms. (b) Data points showing SNR for
1 min measurements as a function of the randomization interval
�r. The solid line represents the expected SNR based on Eq. (5)
using known experimental parameters (no free fit parameters).
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