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We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of
2.2 K down to 2:9� 0:3 mK using active optomechanical feedback. The lowest observed mode
temperature is consistent with limits determined by the properties of the cantilever and by the
measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or ‘‘squash’’
the optical interferometer intensity noise below the shot noise level.
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Feedback control of mechanical systems is a well-
established engineering discipline which finds applications
in diverse areas of physics, from the stabilization of large
cavity mirrors used in gravitational wave detectors [1] to
the control of tiny cantilevers in atomic force microscopy
[2–6]. Recently, the prospect of cooling a mechanical
resonator to its quantum ground state has spurred renewed
interest in the damping of oscillators through both active
feedback [7,8] and passive backaction effects [9–12].
Motivated by the ability to make ever smaller mechanical
devices and ever more sensitive detectors of motion, re-
searchers are pushing towards a regime in which collective
vibrational motion should be quantized [13]. In combina-
tion with conventional cryogenic techniques, the cooling of
a single mechanical mode using feedback may provide an
important step towards achieving the quantum limit in a
mechanical system. Here, we demonstrate the feedback
cooling of an ultrasoft silicon cantilever to below 5 mK
starting from a base temperature as high as 4.2 K. Starting
from this temperature, the vibrational mode of the oscil-
lator is cooled near the level of the measurement noise,
which sets a fundamental limit on the cooling capacity of
feedback damping [7,14]. In the future, minimizing such
noise may be key to achieving single-digit mode occupa-
tion numbers.

We study the fundamental mechanical mode of two
120� 3� 0:1-�m single-crystal Si cantilevers of the
type shown in Fig. 1(b). The ends of the levers are designed
with a 2� 15-�m mass which serves to suppress the
motion of flexural modes above the fundamental [15].
Cantilevers 1 and 2 have resonant frequencies of 3.9 and
2.6 kHz, respectively, due to the difference in mass of the
samples which have been glued to their ends. The sample
on cantilever 1 is a 0:1-�m3 particle of SmCo while the
sample on cantilever 2 is a 50-�m3 particle of CaF2

crystal. Both samples are not related to the work presented
here aside from the added mass which they contribute. The
oscillators’ spring constants are both determined to be k �
86 �N=m through measurements of their thermal noise
spectra at several different base temperatures. Each canti-
lever is mounted in a vacuum chamber (pressure <1�

10�6 torr) at the bottom of a dilution refrigerator which has
been isolated from environmental vibrations. The motion
of the lever is detected using laser light focused onto a
10-�m-wide paddle near the mass-loaded end and re-
flected back into an optical fiber interferometer [16]. One
hundred nW of light are incident on the lever from a
temperature-tuned 1550-nm distributed feedback laser di-
ode [17]. The interferometric cantilever position signal is
sent through a differentiator circuit and a variable elec-
tronic gain stage back to a piezoelectric element which is
mechanically coupled to the cantilever, as shown schemati-
cally in Fig. 1(a). The overall bandwidth of the feedback
was limited to 300 Hz–15 kHz by bandpass filters. For
negative gain, this feedback loop has the effect of produc-
ing a damping force on the cantilever proportional to the
velocity of its oscillatory motion.

For frequencies in the vicinity of the fundamental mode
resonance, the motion of a cantilever is well approximated
by

−
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FIG. 1. (a) Schematic diagram of the experimental setup
and (b) scanning electron micrograph of a representative Si
cantilever.
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 m �x� �0 _x� kx � Fth � g�0� _x� _xn�; (1)

where x�t� is the displacement of the oscillator as a func-
tion of time, �0 is its intrinsic dissipation, k � m!2

0 is its
spring constant, m is the oscillator’s effective mass, !0 is
its angular resonance frequency, Fth�t� is the random ther-
mal Langevin force, and xn�t� is the measurement noise on
the displacement signal. The dissipation can be written in
terms of m, !0, and the oscillator’s intrinsic quality factor
Q0 according to �0 � m!0=Q0.

Given the equation of motion in (1) and considering
frequency components of the form F̂th�!�e

i!t and
x̂n�!�e

i!t, the frequency response of the oscillator is
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For random excitations where Fth�t� and xn�t� are uncorre-
lated, we can then determine the spectral density of both
the oscillator’s actual displacement x,
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and of its measured displacement x� xn,
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Here, Sxn is the spectral density of the measurement noise
xn, and SFth

is the white spectral density of the thermal
noise force Fth. According to the fluctuation-dissipation
theorem, the noise force SFth

depends on the cantilever
dissipation and is given by SFth

� 4�0kBT, where we are
using a single-sided convention for the spectral density.

We define the mode temperature of the cantilever ac-
cording to the equipartition theorem as Tmode � khx2i=kB
and calculate hx2i according to hx2i � �1=2���R
1
0 Sx�!�d!. Using (3) and assuming that Sxn is indepen-

dent of !, we find

 Tmode �
T

1� g
�

k!0

4kBQ0

�
g2

1� g

�
Sxn ; (5)

where T is the bath temperature and kB is the Boltzmann
constant. This equation is similar to a result derived for the
energy of an oscillating mirror coupled to a cavity mode by
radiation pressure feedback in Ref. [14].

In the limit of small gain (g� 1), the effect of mea-
surement noise on the oscillator displacement can be
ignored and the oscillator power spectrum is obtained by
simply subtracting the measurement noise floor from the
measured spectrum: Sx�!� � Sx�xn�!� � Sxn . The same is

true for large gain as long as the noise is well below the
measured displacement power (more precisely, Sxn �
Q2

0

g2k2 SFth
). In both cases, the mode temperature is propor-

tional to the integrated area between the measured spec-
trum and the noise floor and reduces to the familiar
Tmode �

T
1�g [7]. Increasing the damping gain lowers the

mode temperature leading to ‘‘feedback cooling’’ or ‘‘cold
damping’’ of the oscillator.

The feedback cooling of cantilever 1 from a base tem-
perature of 295 K falls in this limit and is shown in Fig. 2.
At this temperature Q0 � 16 000. As the gain increases,
the mode temperature decreases down to Tmode � 670�
70 mK for g � 462. Even at the highest gain, the mea-
surement noise is well below the observed thermal noise.
Therefore, the temperature of the fundamental lever mode
is well determined by the area between the observed peak
and the noise floor. The mode temperatures shown in Fig. 2
are equal within the error whether they are calculated by
simply integrating the area under the observed spectra or
whether the spectra are fit using (4) and the extracted
parameters are substituted in (5). The fits, which are shown
as solid lines in Fig. 2, involve three free parameters:!0, g,
and Sxn .

When we cool cantilever 1 by feedback from a base
temperature of 4.2 K, where Q0 � 44 200, this approxima-
tion is no longer valid. Starting at g ’ 300, the values of
Tmode calculated from simple integration of the spectrum
above the noise floor begin to deviate from the more ac-
curate values given by (5). Increasing the gain further, as
shown in Fig. 3, pushes the observed thermal noise spectra
down to the level of the measurement noise and beyond.

The two spectra showing a dip below the white noise
floor are clear deviations from the low gain, low noise
approximation; calculating the mode temperature through
integration would result in unphysical negative values.
Here, the feedback loop counteracts intensity fluctuations

FIG. 2 (color). Measured spectral density Sx�xn of cantilever 1
for different feedback gains g as it is cooled from a base
temperature T � 295 K. Colored data points correspond to the
mode temperatures (with an error of �10%) and gains of the
same color shown to the right. Solid lines are fits to the data
using (4).
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in the light field by exciting the cantilever rather than by
damping it. In our experiment, these intensity fluctuations
are due to the shot noise of the laser field; i.e., we are
operating in the limit where Sxn is dominated by the photon
shot noise. Neither the piezoelectric drive element nor the
feedback electronics add any observable noise to the mea-
sured spectral density. From fits to the spectra, we find�������
Sxn

p
’ 10�2 �A=

������
Hz
p

. When Sxn is limited by shot noise, as
in our case, its suppression by feedback is known as
intensity noise ‘‘squashing’’ inside an optoelectronic loop
[18–20].

In the high gain regime (g > 300) of Fig. 3, we must
consider the full effect of measurement noise on (3) and (4)
in order to extract the actual motion of the lever. As shown
in Fig. 4, the actual vibrational spectrum of lever 1 deviates
from the measured spectrum as it approaches the measure-
ment noise. Here, the limits of feedback cooling have been
reached as measurement noise sent back to the piezoelec-
tric actuator acts to heat the lever’s vibrational mode.

We observe similar behavior from cantilever 2 starting at
a lower base temperature. In this case, the experimental
apparatus is cooled to 250 mK. Measurement of the lever’s
thermal noise spectrum, however, reveals that its base
temperature reaches only 2.2 K with Q0 � 55 600. This
discrepancy is due to heating of the Si cantilever through
the absorption of light from the interferometer laser. As
shown in Fig. 5, by applying feedback cooling at this base
temperature, we achieve a minimum fundamental mode
temperature of 2:9� 0:3 mK before Tmode starts increasing
as a function of g.

As implied by (5) and shown in Fig. 6, the measurement
noise floor sets a minimum achievable mode temperature
for g	 1:

 Tmode;min �

�������������������
k!0T
kBQ0

Sxn

s
: (6)

For cantilever 2 at T � 2:2 K, we calculate Tmode;min �

2:6 mK, which is close to the observed minimum tempera-
ture of 2:9� 0:3 mK. A more complex expression could
be written for Tmode;min if the techniques of optimal control
were used to cool the lever rather than simple velocity-
proportional damping [4,5]. For our experimental parame-
ters, optimal control does not provide any further reduction
in Tmode;min. We calculate, however, that in the low noise
limit (

�������
Sxn

p
< 10�4 �A=

������
Hz
p

), it could achieve lower mode
temperatures than velocity-proportional damping.

The minimum temperature in (6) immediately implies a
minimum mode occupation number Nmode;min �

1
@
�����������������

kkBT
!0Q0

Sxn
q

. In our case, the lowest achieved mode occupa-

tion is N ’ 2:3� 104 and Nmode;min � 2:1� 104. Since for
a cantilever k

!0
/ t2w

l , where l,w, and t are its length, width,

and thickness, Nmode;min / t
�������������
wT
lQ0
Sxn

q
. Therefore, if low oc-

cupation numbers are to be achieved by feedback cooling,
the cantilevers employed should be long and thin, have
high quality factors, and the measurement should be done

FIG. 4. Suppression of the thermal noise of cantilever 1 down
to and below the measurement noise. Gray points represent the
observed interferometer signal Sx�xn with the lever at a base
temperature of T � 4:2 K, solid lines are fits to this data using
(4), and dashed lines are the corresponding spectra of the actual
cantilever motion Sx as defined in (3).

FIG. 5 (color). Measured spectral density Sx�xn of cantilever 2
for different feedback gains g as it is cooled from a base
temperature T � 2:2 K. Colored data points correspond to the
mode temperatures (with an error of �10%) and gains of the
same color shown to the right. Solid lines are fits to the data
using (4).

FIG. 3 (color). Measured spectral density Sx�xn of cantilever 1
for different feedback gains g as it is cooled from a base
temperature T � 4:2 K. Colored data points correspond to the
mode temperatures (with an error of �10%) and gains of the
same color shown to the right. Solid lines are fits to the data
using (4).
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at low base temperature with low measurement noise. The
geometry of our ultrasoft cantilevers is well suited to
minimize Nmode;min. It appears, therefore, that the most
likely way to achieve further reductions in Nmode;min is to
reduce the measurement noise, either by using better opti-
cal interferometry or by employing a detector of cantilever
motion with intrinsically higher resolution, such as a single
electron transistor (SET). SETs have recently achieved�������
Sxn

p

 10�5 �A=

������
Hz
p

[10,21,22]. High-frequency doubly
clamped resonators cooled cryogenically below 50 mK
have achieved occupation numbers down around 25 with-
out feedback [10,22].

It is worth noting that the type of feedback cooling
discussed here may be applicable to nanoelectromechan-
ical systems in sensing applications. It was shown recently
that as nanomechanical resonators shrink in size, their
linear dynamic range decreases [23,24]. The linear dy-
namic range is defined as the ratio of the maximum oscil-
lator amplitude before onset of nonlinearity to the
amplitude of the thermal noise. The loss of linear dynamic
range in small oscillators occurs for two reasons: (1) the
onset of nonlinearity occurs at smaller amplitudes for
smaller resonators; (2) as mechanical resonators are uni-
formly scaled to smaller dimensions, the spring constant
decreases, leading to larger thermal noise amplitude. With
feedback damping, the thermal noise is suppressed, allow-
ing larger linear dynamic range. For the cooling presented
here (2.2 K to 2.9 mK), the associated increase in dynamic
range is 29 dB.

Finally, optimized feedback cooling may find use in the
realization of a type of magnetic resonance force micros-
copy which detects nuclear magnetic resonance at the
Larmor frequency [25]. Such a scheme strongly couples

the cantilever thermal noise to the nuclear spins and has the
side effect of dramatically increasing the nuclear spin
relaxation rate. Feedback cooling could be used both to
control this lever-induced relaxation and to dramatically
reduce the temperature of the nuclear spin system.
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FIG. 6 (color). Tmode of our Si cantilevers as a function of
feedback gain g. Solid lines show Tmode in (5) for the experi-
mental parameters and the points represent Tmode extracted from
three-parameter fits of (3) to spectra including those shown in
Figs. 2–5. Lines and points are color coded to correspond to the
colored base temperature labels. The dashed line indicates
Tmode;min � 2:6 mK for cantilever 2 at T � 2:2 K.
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