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We have combined ultrasensitive magnetic resonance force mi-
croscopy (MRFM) with 3D image reconstruction to achieve mag-
netic resonance imaging (MRI) with resolution <10 nm. The image
reconstruction converts measured magnetic force data into a 3D
map of nuclear spin density, taking advantage of the unique
characteristics of the “resonant slice” that is projected outward
from a nanoscale magnetic tip. The basic principles are demon-
strated by imaging the 1H spin density within individual tobacco
mosaic virus particles sitting on a nanometer-thick layer of ad-
sorbed hydrocarbons. This result, which represents a 100 million-
fold improvement in volume resolution over conventional MRI,
demonstrates the potential of MRFM as a tool for 3D, elementally
selective imaging on the nanometer scale.

MRFM � MRI � nuclear magnetic resonance � molecular structure imaging

Magnetic resonance imaging (MRI) is well-known in med-
icine and in the neurosciences as a powerful tool for

acquiring 3D morphological and functional information with
resolution in the millimeter-to-submillimeter range (1, 2). Un-
fortunately, despite considerable effort, attempts to push the
spatial resolution of conventional MRI into the realm of high-
resolution microscopy have been stymied by fundamental limi-
tations, especially detection sensitivity (3, 4). Consequently, the
highest resolution MRI microscopes today remain limited to
voxel volumes �40 �m3 (5–8). The central issue is that MRI is
based on the manipulation and detection of nuclear magnetism,
and nuclear magnetism is a relatively weak physical effect. It
appears that conventional coil-based inductive detection tech-
niques simply cannot provide adequate signal-to-noise ratio for
detecting voxel volumes below the micrometer size. This sensi-
tivity constraint is unfortunate because MRI has much to offer
the world of microscopy with its unique contrast modalities, its
elemental selectivity, and its avoidance of radiation damage.

Despite the many challenges, there is strong motivation to
extend MRI to finer resolution, especially if the nanometer scale
can be reached. At the nanometer scale, one might hope to
directly and nondestructively image the 3D structure of individ-
ual macromolecules and molecular complexes (9). Such a pow-
erful molecular imaging capability could be of particular interest
to structural biologists trying to unravel the structure and
interactions of proteins, especially for those proteins that cannot
be crystallized for X-ray analysis, or are too large for conven-
tional NMR spectroscopy. Nanoscale MRI, with its capacity for
true 3D, subsurface imaging, its potential for generating contrast
by selective isotopic labeling and its nondestructive nature,
would be a welcome complement to the characteristics of
electron microscopy. The key to pushing MRI to the nanoscale
is detection sensitivity.

Recently, a significant breakthrough in magnetic resonance
detection sensitivity has been achieved by using magnetic reso-
nance force microscopy (MRFM) (9–13), resulting in single spin
detection for electrons (14) and substantial progress in nuclear
spin detection (15–24). Despite the great progress in nuclear spin
MRFM, only one previous nanoscale imaging experiment has
been demonstrated, and it was limited to 90-nm resolution in 2
dimensions for 19F nuclei in an inorganic test sample (25). Here,
we report that MRFM can perform 3D MRI of 1H nuclear spins
(protons) in a biological specimen [tobacco mosaic virus (TMV)

particles] with a spatial resolution down to 4 nm. This capability
is enabled by several key technical advances, including the
generation of magnetic field gradients as high as 4 million Tesla
(T) per meter, detailed understanding of the MRFM point-
spread function, and application of an image-reconstruction
technique capable of converting magnetic force measurements
into a 3D map of proton density.

Principles
MRFM is based on mechanical measurement of ultrasmall
(attonewton) magnetic forces between nuclear spins in a sample
and a nearby magnetic tip. Basic elements of our MRFM
apparatus are shown in Fig. 1. The test sample consists of
individual TMV particles that are deposited onto the flat end of
an ultrasensitive silicon cantilever. The end of the cantilever is
positioned close to a 200-nm-diameter magnetic tip that pro-
duces a strong and very inhomogeneous magnetic field. The
magnetic tip sits on a copper ‘‘microwire’’ that serves to effi-
ciently generate a radiofrequency (rf) magnetic field that excites
NMR (26). Frequency modulation of the rf field induces periodic
inversions of the 1H spins in the sample, resulting in a periodic force
that drives the mechanical resonance of the cantilever. Monitoring
the cantilever oscillation amplitude while mechanically scanning the
magnetic tip with respect to the sample in 3 dimensions provides
data that allow the reconstruction of the 1H density. The imaging
is performed in vacuum and at low temperature (T � 300 mK).

The TMV particles are deposited onto the cantilever in
solution and then air dried. (See supporting information (SI)
Appendix for preparation details.) As shown in Fig. 1B, the
sample consists of both whole virus and smaller fragments. The
TMV particles, which have a rod-like geometry with diameter of
18 nm and lengths up to 300 nm (27, 28), were chosen as test
objects because they are physically robust and have a size suitable
for evaluating our imaging resolution. They also serve to dem-
onstrate that MRFM is capable of imaging native biological
specimens. Approximately 95% of the virus mass consists of
protein, resulting in a 1H density estimated to be � � 4 � 1028

spins per m3. In the future, rapid freezing techniques, such as
used in cryoelectron microscopy, could be used to better pre-
serve the structural integrity of fully hydrated biological samples
(29, 30).

NMR will only occur if the 1H spins in the sample are at the
correct field for satisfying the Larmor resonance condition:
B0(r) � �0/�' Bres, where �0 is the rf field frequency, and � �
2� � 42.57 MHz/T is the proton gyromagnetic ratio. The field
B0(r) '  Bextẑ � Btip(r) is supplied by the combination of the
field from an external superconducting magnet, Bext, and the
field from the magnetic tip, Btip(r), where r is the position with
respect to the tip apex. For an rf center frequency of �0 � 2� �
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114.8 MHz, the resonance condition is met for B0(r) � 2.697 T.
Because the field from the magnetic tip is a strong function of
position, the resonance is confined to a thin, approximately
hemispherical ‘‘resonant slice’’ that extends outward from the tip
(Figs. 1 A and 2). The field gradient at the resonant slice can
exceed 4 � 106 T/m at a distance of 25 nm from the tip, resulting
in a slice thickness that is as thin as a few nanometers. The rf field
is frequency modulated with a peak deviation of ��rf,peak � 2� �
600 kHz in order to drive adiabatic inversions of the protons. The
periodicity of the spin inversion is chosen to match the mechan-
ical resonance of the cantilever (�2.9 kHz). In the presence of
the field gradient from the magnetic tip, the spin inversions
generate a small oscillating force, typically on the order of 10
aN-rms, that excites a slight (subangstrom) vibration of the
cantilever. The vibration is detected by a fiber-optic interferom-
eter and lock-in amplifier.

The spin signal originates from the naturally occurring �N
statistical polarization of the spin ensemble (‘‘spin noise’’),
where N is the number of 1H spins in the measurement volume
(19, 23, 31–33). Using the statistical polarization is advantageous

because its root-mean-square amplitude exceeds the mean
Boltzmann polarization for nanoscale volumes of spins (23).
Statistical polarization is also convenient because there is no
need to wait a spin-lattice relaxation time T1 for the spins to
polarize. Because the statistical polarization can be either pos-
itive or negative, we detect the signal power (i.e., the spin signal
variance), which is proportional to the density of 1H in the
sample. We use the term ‘‘spin signal’’ to mean the estimated
variance of the force that has spin origin, with units of aN2. See
ref. 23 and SI Appendix for additional details of the signal
acquisition.

Three-dimensional imaging of the sample requires 2 steps:
data collection and image reconstruction. First, the spin signal
is measured as the magnetic tip is mechanically scanned with
respect to the sample in a 3D raster pattern, yielding a map of
the spin signal as a function of tip position. Because of the
extended geometry of the resonant slice, however, a spatial scan
does not directly produce a map of the proton distribution in the
sample. Instead, each data point in the scan contains spin signal
contributions from a variety of depths and lateral positions.
Specifically, the map �(rs) of the signal as a function of tip scan
position rs is related to the proton distribution �(r) by the
convolution integral

��rs	 � �
sample
volume

d3r K�rs � r	��r	 , [1]

where K(r) is the 3D point spread function (PSF) associated with
the resonant slice. K(r) is defined as the mean spin signal
generated by a randomly polarized spin in the sample at a
position r with respect to the magnetic tip.

The amplitude of the MRFM point-spread function is set by
2 main factors: one that determines the effectiveness of the spin
inversions and confines the response to the near vicinity of the
resonant slice and one that reflects the strength of the lateral
field gradient at the position of the spin. As discussed in the SI
Appendix, we find that the PSF can be approximated by

K�r	 �

� A�2
G�r	�2�1 � � �B0�r	

�� rf,peak/��
2� for��B0�r	 � 	 �� rf,peak/�

0 for��B0�r	 � 
 �� rf,peak/�

[2]
Here, G(r)' �Btip,z/�x is the lateral field gradient from the tip,
�B0(r) ' B0(r) � �0/� is the off-resonance condition, and
��rf,peak/� � 14 mT is the peak FM modulation converted to
magnetic field units. The proportionality constant A depends on
details of the experiment, such as the correlation time of the spin
inversions and the bandwidth of the detection. G(r) and B0(r)
are key components of K(r), and both require detailed knowl-
edge of the field produced by the magnetic tip. As discussed in
SI Appendix, we calculate Btip(r) using a magnetostatic model of
the tip and then tune the parameters of the model (for example,
tip magnetization and geometry) to be consistent with the
measured scan data. Based on Eq. 2 and our best estimates of the
magnetic tip parameters, we obtain the PSF shown in Fig. 2. At
a distance of 24 nm, where the peak gradient is G � 4.2 mT/nm,
we find the shell thickness (full width at half maximum) to be as
thin as �2��rf,peak/�G � 4.8 nm.

To recover the real-space proton distribution �(r) from the 3D
scan data �(rs), the effect of the PSF must be deconvolved. We
use an iterative Landweber algorithm that starts with an initial
estimate for the spin density of the object, �0(r) and then

Fig. 1. Configuration of MRFM apparatus. (A) Tobacco mosaic virus particles,
attached to the end of an ultrasensitive silicon cantilever, are positioned close
to a magnetic tip. A rf current irf passing through a copper microwire gener-
ates an alternating magnetic field Brf that induces magnetic resonance in the
1H spins of the virus particles. The resonant slice represents those points in
space where the field from the magnetic tip (plus an external field) matches
the condition for magnetic resonance. Three-dimensional scanning of the tip
with respect to the cantilever, followed by image reconstruction is used to
generate a 3D image of the spin density in the virus sample. (B) Scanning
electron micrograph of the end of the cantilever. Individual tobacco mosaic
virus particles are visible as long, dark rods on the 0.8-�m � 1.3-�m-sized
sample platform. (C) Detail of the magnetic tip.
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improves the estimate successively by using the following steps
(34, 35):

��n�rs	 � ��rs	 � �
sample
volume

d3r K�rs � r	�n�r	 , [3]

�n�1�r	 � �n�r	  ��r	 �
scan

volume

d3rs K�rs � r	��n�rs	 , [4]

where �n(r) is the reconstructed spin density after n iterations,
��n(rs) is the difference between the measured and predicted
spin signal maps (the error to be minimized), and �(r) controls
the rate of convergence. Because spin density should always be
� 0, we enforce this condition by setting any negative values of
�n(r) to zero after each iteration step. The iterations typically
proceed for a few thousand steps until the residual error becomes
comparable with the measurement noise. In the future, the
implementation of more sophisticated image reconstruction
algorithms may be advantageous (36).

Results
Fig. 3A shows 3D scan data organized as x–y scans taken at 4
different tip-sample spacings: d � 24, 37, 50, and 62 nm. Each
of the approximately 50-nm � 50-nm scan areas contains 60 �
32 data points acquired with an acquisition time of 1 min per
point. Peak signal strength ranged from �600 aN2 for the closest
scan plane to �90 aN2 at the most distant plane. The uncertainty
of the spin signal estimate (the standard error of the measure-
ment) ranges from �40 aN2 for the d � 24 nm scan plane to �15

aN2 for d � 62 nm. Thus, at the positions of maximum signal, the
signal-to-noise ratio (SNR) varied from �15 for the closest scan
plane to �6 at the most distant plane.

The correlation time �m of the spin signal was estimated from
the signal bandwidth and found to be quite short, on the order
of 20 ms. This is significantly shorter than has been seen in some
inorganic test samples (26), possibly because of a naturally short
rotating frame relaxation time T1�.

An indication of the spatial resolution inherent in the raw data
can be seen in the line scan shown in Fig. 3B. The line scan, taken
with d � 24 nm tip-sample spacing, shows a background spin
signal of �300 aN2, with signal peaks up to �600 aN2. The
leading edges of the peaks are sharp and indicate that the
resolution in the x direction (before deconvolution) is on
the order of 4 nm, which is approximately the thickness of the
resonant slice (Fig. 2B).

Perhaps the most striking aspects of Fig. 3A are the apparent
‘‘double’’ images in each of the x–y scans. This feature doubling
effect is due to the 2-lobed character of the PSF (Fig. 2B). As
expected, the feature pairs are seen to move apart as the
tip-sample spacing decreases.

The signal information from the 4 scan planes (together with
a fifth ‘‘zero’’ plane at d � 75 nm, where no signal was found to
be present) constitutes a 3D dataset that can be deconvolved to
find the real-space image of the spin density. The result of the
deconvolution is displayed in Fig. 3C, which shows the calculated
spin density of the sample as a series of x–y planes at various z
positions. A representative x–y plane is highlighted in Fig. 3D and
clearly shows an assembly of a few individual virus particles
(mostly fragments). Given that the raw MRFM data are spatially
undersampled and have only modest SNR, the quality of the
reconstruction is remarkable. The observation of significant
improvement in image SNR after reconstruction is expected
because most spins contribute force signal to more than one
position in the scan, and the cumulative effect benefits the SNR
of the reconstruction. The resolution appears to be in the 4- to
10-nm range, depending on the direction, with the x direction
having the highest resolution. This resolution anisotropy is
expected because of the directional dependence of the PSF,
which reflects the fact that the cantilever responds only to the x
component of magnetic force.

The fidelity of the MRFM reconstruction is confirmed by
comparing the results in Fig. 3D to the scanning electron
microscope (SEM) image of the same sample region (Fig. 3E).
Excellent agreement is found even down to small details. Note
that the origin of contrast in the 2 images is qualitatively very
different. The MRFM reconstruction is elementally specific and
shows the 3D distribution of hydrogen in the sample. Contrast in
the SEM image is mainly due to the virus blocking the secondary
electrons emitted from the underlying gold-coated cantilever
surface.

The depth resolution that is enabled by the 3D image recon-
struction is illustrated in Fig. 3F, which shows a vertical cross-
section that extends through 2 virus fragments. Interestingly, the
cross-sectional cut reveals that the virus particles sit on top of a
thin layer of proton-containing material that is not visible by
SEM. The presence of this background layer is not surprising
because it is well known that surfaces that have been exposed to
ordinary laboratory air become coated with a thin layer of
adsorbed hydrocarbons and water. It is this proton-rich layer that
is responsible for the 300 aN2 baseline signal in Fig. 3B. Taking
this baseline signal level, combined with knowledge of the
point-spread function and the typical spin density of hydrocar-
bons, one can estimate the layer thickness. Assuming a hydro-
carbon spin density of � � 7 � 1028 spins per m3, the layer
thickness is on the order of a nanometer.

The reconstructions shown in Fig. 3 C, D, and F use no a priori
knowledge of the imaged object, such as the presence of the

Fig. 2. Details of the resonant slice and associated point spread function
(PSF). (A) Three-dimensional representation corresponding to the conditions
Bres � �0/� � 2.697 T and Bext � 2.482 T. The center of the tip apex is assumed
to be at the origin of the coordinate system. The resonant slice is the hemi-
spherical ‘‘shell’’ outlined in red, representing the region of space for which
B0(r) lies within Bres  ��rf,peak/� (here 2.697  0.014 T). Regions to the left and
right of the tip (shaded red) contribute most to the signal because this is where
the lateral gradient G(r) is largest. (B) Cross-sections of the point spread
function at the 4 tip-sample spacings used in the imaging experiment. The PSF
was calculated by using Eq. 2, assuming A � 1. The color scale reflects the force
variance per spin (zN � zeptonewton � 10�21 N). The size of the tip apex
(ra � 100 nm) is indicated by a dotted circle. At z � 24 nm, the PSF lobe
thickness reaches a minimum of �4.8 nm (FWHM). The small left–right asym-
metry is due to a slight (1.7°) tilt of the sample plane with respect to the
magnetic tip.
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adsorbate layer on the sample. We find that the inclusion of this
information into our initial guess of the spin density �0 substantially
improves the result of the reconstruction. For Fig. 3G, we initialize
�0 with a uniform layer of material positioned at the level of the
cantilever surface, just below the virus particle. As seen in the
figure, this modification allows for a much better separation of the
background layer and more clearly resolves the TMV particles.
Such constraints on �0 (or �) offer a general way to systematically
include known structural information about the object.

A second MRFM image reconstruction from a neighboring
sample area is shown in Fig. 4. Again, a clear 3D view of the
hydrogen distribution is seen, including good spatial discrimination
between the virus particles and the underlying adsorbed layer.

Discussion
We believe the present work represents substantial progress in
developing the capability to probe the 3D chemical/elemental
composition of nanostructures. With further progress in resolu-
tion and sample preparation, force-detected MRI techniques
could have significant impact on the imaging of nanoscale
biological structures, even down to the scale of individual
molecules. Achieving resolution �1 nm seems realistic because the
current apparatus operates almost a factor of 10 away from the best
demonstrated force sensitivities (37) and field gradients (38).

Even with a resolution �1 nm, MRFM may allow the basic
structure of large molecular assemblies to be elucidated. One can
imagine enhancing MRFM image contrast beyond the basic

spin-density information by using techniques similar to those
developed for clinical MRI and NMR spectroscopy. Such con-
trast may include selective isotopic labeling (for example, sub-
stituting 1H with 2H), selective imaging of different chemical

Fig. 3. Spin signal scan data and resulting 3D reconstruction of the hydrogen (proton) density distribution. (A) Raw scan data presented as x–y scans of the spin
signal at 4 different tip-sample spacings. Pixel spacing is 8.3 nm � 16.6 nm in x � y, respectively. Each data point represents the spin signal variance obtained
during a 1-min integration. Bext � 2.482 T. (B) A more finely sampled line scan showing 4-nm lateral resolution. The scanned region is indicated by the dashed
line in A. Bext � 2.432 T. (C) Reconstructed 3D 1H spin density. Black represents very low or zero density of hydrogen, whereas white is high hydrogen density.
The image is the result of the Landweber reconstruction, followed by a 5-nm smoothing filter. (D) Horizontal slice of C, showing several TMV fragments.
(E) Scanning electron micrograph of the same region. (F) Cross-section showing 2 TMV particles on top of a hydrogen-rich background layer adsorbed on the
Au surface. (G) Reconstruction is improved if this background layer is included as a priori information by assuming a thin, uniform plane of 1H density as the
starting point of the reconstruction.

Fig. 4. Imaging results for a second sample region. (A) Three-dimensional
reconstruction of 1H spin density for virus particles sitting on adsorbed layer of
hydrocarbons. (B) Representative horizontal slice from the 3D reconstruction
showing the distribution of hydrogen in the plane located 13 nm above the
hydrocarbon layer. Several virus particles are evident. (C) Corresponding
scanning electron micrograph.
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species (like 13C, 15N, or 31P), relaxation-weighted imaging, and
spectroscopic imaging that reflects the local chemical environ-
ment (20, 39). Some techniques, such as cross-polarization and
depolarization between different nuclear spin species, have
already been demonstrated for MRFM on the micrometer scale
(21, 22). At the nanometer scale, the ability to target and locate
specific proteins although selective labeling, for example, could
allow direct 3D imaging of the organization and structure of
multicomponent macromolecular complexes. Such a capability
would be complementary to current techniques, such as cryo-

electron microscopy, and could develop into a powerful tool for
structural biology.
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1. MRFM apparatus 

The MRFM apparatus is located in a small vacuum chamber (p<10-6 mbar) attached to 

the mixing chamber of a dilution refrigerator and cooled to the operating base 

temperature of 300 mK. A spring-based isolation system serves to decouple the 

apparatus from environmental vibrations. The mass-loaded, single-crystal silicon 

cantilever has an overall length of  120 µm, with a flexible shaft that is 3 µm wide and 

100 nm thick (1). The silicon mass located at the end of the cantilever is approximately 

1.3 µm thick. The motion of the cantilever is detected using a fiber-optic interferometer 

(25 nW laser power, λ = 1550 nm). The cantilever has resonance frequency  fc = 2.9 

kHz, intrinsic quality factor  Q  = 30,000  and spring constant k = 86 µN/m. Under 

measurement conditions (i.e., at 2.482 T external field with the cantilever end 

positioned within 30 nm of the magnetic tip), the Q-factor drops to a few thousand. 

Active damping using feedback further lowers the effective Q to about 300 and speeds 

up the cantilever response time to ~30 ms (2, 3). The resulting force noise was in the 

range of 5 – 10 aN/Hz1/2, depending on the specific positioning of the cantilever over 

the magnetic tip. 
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The Cu microwire is 2.6 µm long, 1.0 µm wide, and 200 nm thick. It generates an 
rf field strength  3 mTrfB ≈  at the center frequency  0 2 114.8 MHz/  ω π =  when using 

an rf current of  15 mA. Power dissipation is about 200 µW.  The magnetic tip on the 

microwire is fabricated using electron beam lithography and a lift-off process. The tip 

material is deposited by electron beam evaporation and consists of the stack 15 nm Ti / 

200 nm Fe70Co30 / 15 nm Au. The top Au layer serves to inhibit oxidation of the 

magnetic FeCo layer. Additional details are available in Ref. (4). 

2. TMV sample preparation 

Purified tobacco mosaic virus (TMV) was purchased from ATCC (catalog number PV-

135p) at a concentration of 2,000 µg/ml in a 0.01 M phosphate buffered saline (1x PBS, 

pH 7.2) and then diluted with additional 1x PBS buffer to 400 µg/ml. The mass-loaded 

end of the cantilever was prepared by first using a focused ion beam (FIB) to create a 

flat sample platform about 0.8 µm wide and 1.3 µm high (Fig. 1B). The platform was 

then coated with 10 nm of Si and 30 nm Au by thermal evaporation. The Au film serves 

as an electrostatic shield to minimize force noise and is found to promote the adhesion 

of virus particles. Just before depositing the TMV particles, the cantilever is cleaned by 

UV/ozone (Bioforce Nanosciences ProCleaner) for 20 minutes in order to remove any 

organic surface contamination. UV/ozone cleaning renders the Au surface temporarily 

hydrophilic, which facilitates wetting with the aqueous TMV solution and greatly 

improves virus particle adhesion. We then dip the cantilever tip into a 10 µl droplet of 

TMV solution for 2 minutes, retract it and allow it to air dry. For dipping we use a 

mechanical manipulator stage to approach the cantilever tip vertically towards the 

droplet with the cantilever's shaft oriented normal to the droplet surface. The tip then 

enters the solution about 10 µm deep, such that only the very end of the cantilever is  
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exposed to the virus solution. The cantilever with TMV was stored in a dry nitrogen 

atmosphere for several days before mounting in the MRFM apparatus. 

3. Signal generation and detection 

Key elements of the MRFM signal detection system are shown schematically in Figure 

S1. The virus sample is attached to the end of the cantilever, which is positioned close 

to the magnetic tip. The tip and the integrated microwire are mounted on a piezoelectric 

tube scanner, which scans the magnetic tip relative to the sample in three dimensions. 
The cantilever position ( )cx t  measured by the interferometer (5) is fed into a two-

channel lock-in amplifier in order to detect the in-phase and quadrature amplitudes of 

the cantilever oscillation. The lock-in reference is at the cantilever resonance frequency 

cf  (approximately 2.9 kHz) and synchronized with the rf frequency modulation that 

drives cyclic inversions of the protons in the sample. In order to track changes in 

cantilever frequency during the scan, the cantilever frequency is measured at each scan 

position while briefly “self-oscillating” the cantilever (6). 

 
Figure S1 - Key elements for signal detection. Cantilever motion is monitored via a fiber 
optic interferometer and synchronously detected using a dual-phase lock-in amplifier. The 
lock-in output is filtered and the spin signal ξ  is found by taking the difference of the 
variances of the in-phase and quadrature waveforms. 
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The spins are cyclically inverted using the rf frequency modulation shown in Fig. 
S2. The rf frequency modulation ( ) ( )tt rfrf ωωω Δ+= 0  consists of unidirectional 

frequency sweeps (7, 8) with peak deviation rf, peak 2 600 kHzω πΔ = ×  and repetition rate 

2 cf  (i.e., two spin inversions constitute one full inversion cycle). The sweep duration is 

1/6 of a cantilever cycle. A short duration is advantageous since it results in less phase 

shift in the cyclic inversion for off-resonance spins.  The duration cannot be shortened 

too much, however, without causing problems with adiabaticity. The amplitude of the rf 

field is strongest during the frequency sweep and ramped to zero at the end of the 

sweep. This gives more complete inversions for spins that are not centered in the 

resonant slice and reduces relaxation effects associated with the sudden switching of rf 
frequency (8, 9). The peak amplitude 3 mTrfB ≈  is large enough to satisfy the adiabatic 

condition, 2 2 d / drf rfB tγ ω>> , so that the correlation time of the spins during the 

           

 
Figure S2 – rf modulation waveforms used to cyclically invert the spins. Cyclic 
adiabatic inversion is accomplished by sweeping the rf frequency through magnetic 
resonance twice per cantilever period. 
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manipulation ( 20 msmτ ≈ ) is set by intrinsic spin relaxation effects, and not by the 

details of the rf protocol, at least for the spins centered in the resonant slice. 

The cyclic spin inversions generate an oscillatory attonewton force that excites the 

cantilever at the mechanical resonance frequency. Typical signal vibration amplitude is 

a fraction of an angstrom, which is somewhat smaller than the rms amplitude of 

cantilever thermal vibrations. The lock-in amplifier phase is set so that the spin signal 

appears predominantly in the in-phase channel for on-resonance spins. 

 Since the signal originates from the statistical (random) polarization of the spins, 

the sign of the detected signal can be either positive or negative and fluctuates during 

the course of the measurement, making conventional signal averaging ineffective. 

Instead, as discussed in Ref. (7), the spin signal is detected via its variance.  To estimate 

the spin signal variance and to distinguish the spin signal from cantilever thermal 
vibrations, both the in-phase channel ( )I t  and the quadrature channel ( )Q t  of the lock-

in amplifier are digitized. These signals are then digitally filtered in software using 
second-order Butterworth filters ( 10 mscτ = ), and the variances 2

Is  and 2
Qs  are 

calculated.  

The cantilever thermal noise contributes equally to 2
Is  and 2

Qs , while the spin 

signal predominantly adds to 2
Is . The spin signal variance is thus estimated by the 

difference between the in-phase and quadrature variances (7) 

 ( )
2

2 2
2
eff

,I Q
k s s

Q
ξ = −  (S1) 

where the factor 2 2
eff/k Q  puts the spin signal variance into units of force squared (e.g., 

aN2).  We refer to this detected quantity as the “spin variance signal”, or simply the 

“spin signal”. 
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4. Point spread function 

Knowledge of the point spread function (PSF), denoted by ( )K r , is key to 

understanding MRFM imaging behaviour and central to successful image 
reconstruction. ( )K r  is defined as the mean MRFM signal generated by a randomly 

polarized spin in the sample at a position r  with respect to the magnetic tip. The signal 

strength is determined by two main factors: 1) the tip field gradient /zG B x≡ ∂ ∂  at the 

position of the spin, and 2) the effectiveness of the cyclic spin inversions for driving the 

cantilever vibration.  The effectiveness of the spin inversions depends strongly on the 

position of the spin with respect to resonant slice since spins that are off resonance will 

not undergo full inversions and the inversion process may be less coherent.  

Although a rigorous theory for the point spread function is beyond the scope of 

this paper, reasonable estimates can be made using some simple models. The key is to 

understand the off-resonance behaviour of the spin modulation. We start by considering 

the ideal case where a spin is cyclically inverted by following the effective field in the 

rotating frame. We then examine a somewhat more sophisticated model based on a 

numerical simulation of a cantilever coupled to a spin where the spin dynamics are 

governed by the Bloch equations. 

A. Effective field model 

The simplest model for adiabatic inversion assumes that the spin follows the effective 

field in the “rotating frame” – i.e., the reference frame that rotates synchronously with 

the rf field (10, 11). In our case, the effective field is position dependent and can be 

written as  

 ( ) ( ) ( )eff 0ˆ ˆ, ( ) / ,rf rft B t B tω γ⎡ ⎤= + Δ −Δ⎣ ⎦B r x r z  (S2) 
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where ( )rfB t  is the rotating frame rf field amplitude, ( ) ( )0 0 0 /B B ω γΔ = −r r  is the 

resonance offset, and ( )0B r  is the total static field (tip field plus external field).  During 

the frequency modulation, effB  changes its orientation with time, and the spin will 

follow this orientation if the angular rate of change satisfies the adiabatic condition 

 effd / dtα γ<< B  (S3) 

where  

 ( ) ( )
( ) ( )0

, arctan
/

rf

rf

B t
t

B t
α

ω γ
⎡ ⎤

= ⎢ ⎥
Δ −Δ⎢ ⎥⎣ ⎦

r
r

 (S4) 

Assuming that the spin and effective field are initially aligned or anti-aligned, the 

z component of the spin magnetic moment during the frequency modulation can then be 

written as 

 ( ) ( ) ( )

( )( ) ( ) ( )( )
0

1/22 2

0

/
,

/

rf
z

rf rf

B t
t

B t B t

ω γ
μ μ

ω γ

Δ −Δ
= ±

⎡ ⎤+ Δ −Δ⎢ ⎥⎣ ⎦

r
r

r
 (S5) 

where μ  is the proton magnetic moment. The plus sign signifies alignment between the 

spin and the effective field (“spin locked” case), while the minus sign signifies anti-

alignment (“spin anti-locked”).   

Figure S3A shows waveforms of ( )z tμ  for various values of the off-resonance 

condition 0BΔ , assuming that the frequency and amplitude modulation are that shown 

in Fig. S2. We assume a peak frequency deviation of 600 kHz 
( , / 14 mTpeak rf peakB ω γΔ ≡ Δ = ) and an rf  amplitude modulation that ranges from zero 

to a maximum strength of 3 mT.  For the on-resonance case ( 0 0BΔ = ), the spin 

undergoes very complete inversions and alternates between the spin locked and anti-

locked states.  As the off-resonance condition increases, the waveform shifts in time and 
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Figure S3 – Results from effective field model. (A) Waveforms showing z component of 
magnetic moment calculated using equation (S5) for various off-resonance conditions 

0BΔ . (B) Fourier amplitudes of in-phase (AI) and quadrature (AQ) components 
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 becomes distorted.  Finally, when 0 peakB BΔ > Δ , the spin no longer passes through 

resonance and the inversion ceases. 

Waveforms of the type shown in Fig. S3A have been Fourier analyzed to 
determine their effectiveness for driving a cantilever response. We write ( )z tμ  in terms 

of the fundamental frequency components as ( ) ( ) ( )cos sinz I c Q ct A t A tμ μ ω μ ω= +  and 

plot IA  and QA  as a function of the off resonance condition in Fig. S3B.  For small 

0BΔ , IA  is of order unity and QA  is small. As 0BΔ  approaches peakBΔ , IA  diminishes, 

while QA  grows.  Finally, when 0 peakB BΔ > Δ , both IA  and QA  abruptly drop to zero.  

The above result is for ideal classical spin behavior.  In reality, the spin will undergo 

random spin flips between the spin-locked and anti-locked states, resulting in random 
polarities of IA  and QA .  It is this randomness that necessitates the variance-based 

signal detection defined by equation (S1). Since the in-phase force is given by IG Aμ , 

the variance of the in-phase force for a spin with fluctuating orientation will be 

proportional to 2 2 2
IG Aμ , and likewise for the quadrature force.  Using the definition of 

the MRFM signal in (S1), which is based on the difference between the in-phase and 

quadrature variances, we find that the point spread function can be written as 

 ( ) ( ) ( )( )22
0 ,K A G Bμ η= Δ⎡ ⎤⎣ ⎦r r r  (S6) 

where 

 ( ) ( ) ( )
( )

2 2
0 0

0 2 0
I Q

I

A B A B
B

A
η

Δ − Δ
Δ =  (S7) 

is a function characterizing the off-resonance response (normalized so that ( )0 1η = ). 

A  is an overall constant, typically close to unity, that depends on the correlation time of 
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the statistical spin polarization, the lock-in detection bandwidth and the Fourier 
coefficient of the on-resonance waveform, ( )0IA . 

A plot of ( )0Bη Δ  is shown in Fig. S4.  As expected, ( )0Bη Δ  drops as 0BΔ  

increases, and eventually attains negative values due to the phase shift of the cyclic 

inversion waveform.  One aspect of the model is clearly unphysical: the discontinuous 
jump to zero at   0 peakB BΔ = Δ .  Another deficiency of this model is the assumption that 

the spin follows the effective field even as rfB  diminishes to zero due to the amplitude 

modulation of the rf field.  One would expect the spin-lock assumption to break down 

for small rf field strength.  To address these issues, we developed a second model for a 

cantilever coupled to the spin, where the spin dynamics is governed by the Bloch 

equations.  

 

          

Figure S4 – Normalized spin signal as a function of resonance offset. Solid black 
line is based on effective field model (S5). Data points are simulation results based 
on the equations in (S8). The dashed line is the second-order approximation in (S9). 
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B. Simulation based on the Bloch equations  

 We treat the cantilever as a simple harmonic oscillator coupled to the z component of 

the spin via the gradient G .  The spin dynamics are assumed to be governed by the 

Bloch equations without relaxation. The coupled equations are: 

 

( )
( ) ( )
( )

0

0

2

/

/

/

x y c rf

y z rf x c rf

z y rf

c
c c c c z c

eff

Gx B t

B t Gx B t

B t

x x x G m
Q

μ γ μ ω γ

μ γ μ γ μ ω γ

μ γ μ

ω ω μ

⎡ ⎤= + Δ −Δ⎣ ⎦
⎡ ⎤= − + Δ −Δ⎣ ⎦

= −

+ + =

 (S8) 

The rf field is assumed to be oriented in the x direction in the rotating frame with 
amplitude and frequency modulation specified by ( )rfB t  and ( )rf tωΔ , respectively. 

The parameter 2/c cm k ω=  is the effective mass of the cantilever and the term 

( )0 /c rfGx B tω γ⎡ ⎤+ Δ −Δ⎣ ⎦  represents the z component of the effective field, including 

the effect of the cantilever position, the off resonance condition and the rf frequency 

modulation. These equations were solved step-wise in time using the Runge-Kutta 

method in order to simulate the behaviour of a randomly oriented spin.  

Since the above equations represent the dynamics of an ideal, isolated spin, one 

additional ad hoc assumption was made in the simulation in order to take into account 

the loss of spin lock for small rf field values. It was assumed that the phase of the spin 
(i.e., the orientation of the spin in the x-y plane) is randomized when rfB  falls below a 

minimum value, ,minrfB .  The most appropriate choice for ,minrfB  is not obvious. We 

chose  ,min 0.5 mTrfB =  since we know experimentally that the spin-lock is quite 

ineffective with such low rf field for protons in organic materials, presumably due to the 

effect of dipolar interactions. The overall effect of the phase randomization is minimal 

for spins that undergo full inversions (i.e., for spins that are pointed along the z axis as 
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rfB  goes to zero).  However, for spins not fully inverted as the rfB  goes to zero, the 

effect is significant and leads to additional randomization of the spin orientation. 

Figure S5 shows a typical simulation result where the cantilever position is plotted 

as a function of time.  The cantilever vibration amplitude is seen to fluctuate with a 

characteristic correlation time on the order of 30 ms, similar to that observed 

experimentally.  To determine the spin signal from this time record, the cantilever 

waveform was subjected to a software signal detector equivalent to the hardware 

version depicted in Fig. S1.  Since the spin signal is statistical in nature, the simulation 

was run 100 times with random initial spin orientations in order to determine the mean  

signal.  Each simulation calculated a 0.5 s time record. This process was repeated as a 
function of the off-resonance condition 0BΔ  to obtain the normalized response function 

( )0Bη Δ shown by the points in Fig. S4. 

As evident in Fig. S4, both the spin simulation and the effective field model 
predict that ( )0Bη Δ  is maximum for 0 0BΔ =  and falls to zero when 0 peakB BΔ > Δ . The 

simulation eliminates the unphysical discontinuity evident in the effective field model.  

A simple analytical expression is found to fit the simulation data very well:  

 
( )

2
0

0 02

0

1   for B

0                    for B

peak
peak

peak

BB B
B

B

η
⎛ ⎞Δ

Δ = − Δ < Δ⎜ ⎟⎜ ⎟Δ⎝ ⎠
= Δ ≥ Δ

 (S9) 

We incorporate this approximation into the expression for the point spread function, 

yielding 

 ( ) ( ) ( ) 2
2 02

021     for B

0                                                 otherwise

peak
peak

B
K A G B

B
μ

⎛ ⎞Δ⎡ ⎤⎣ ⎦⎜ ⎟= − Δ < Δ⎡ ⎤⎣ ⎦ Δ⎜ ⎟
⎝ ⎠

=

r
r r  (S10) 

This equation is the basis of the PSF shown in Fig. 2 of the main text.  
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Figure S5 – Typical simulations of cantilever vibration resulting from a proton 
spin manipulated by the rf frequency and amplitude modulation shown in Fig. 
S2.  The off-resonance signal is significantly smaller and has shorter correlation 
time. The simulation parameters closely matched those of the experiment: Qeff = 
300, 86 N/mk μ= , fc = 2.9 kHz, G = 3 MT/m, 3 mTrfB = and ,min 0.5 mTrfB = . 
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5. Magnetic tip model 

The point spread function (S10) requires knowledge of the tip field and the tip field 

gradient. We model the tip as a uniformly magnetized truncated cone with apex radius 

ar , base radius br  and height h . The tip is assumed to be magnetized along the cone 

axis in the z direction with saturation magnetization sM .  On top of the truncated cone, 

we assume there is a non-magnetic surface layer of thickness s, which accounts for the 

protective overcoat (15 nm of gold) plus a possible additional non-magnetic “dead” 

layer. The magnetic field from the tip can be calculated by using standard techniques, 

such as integrating the field from the equivalent surface currents (12). 

The tip is assumed to be centered about the z axis with the topmost (non-

magnetic) layer extending up to the plane 0z = . The magnetic portion of the tip extends 

from the base located at z h s= − −  to the apex located at z s= − . With this geometry, 

the radial and longitudinal field components are then given by 

( )
( )( ) ( )

( ) ( )
( )( ) ( )

( ) ( )
22 2

0
1/ 2 2 22 2

, d
2

s
s

r
h s

R z r z zM z zB r z E q K q z
R z r z zr R z r z z

μ
π

−

− −

⎡ ⎤′ ′+ + −′− ⎢ ⎥ ′= −
⎢ ⎥′ ′⎡ ⎤ − + −′ ′+ + − ⎣ ⎦⎢ ⎥⎣ ⎦

∫
 (S11) 

and 

( )
( )( ) ( )

( ) ( )
( )( ) ( )

( ) ( )
22 2

0
1/ 2 2 22 2

1, d
2

s
s

z
h s

R z r z zMB r z E q K q z
R z r z zR z r z z

μ
π

−

− −

⎡ ⎤′ ′− − −⎢ ⎥ ′= +
⎢ ⎥′ ′⎡ ⎤ − + −′ ′+ + − ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (S12) 

Here ( ) ( )a b
a

r rR z z s r
h
−′ ′= + +  defines the cone radius for z′  from h s− −  to s− . 

( )E q  and ( )K q  are the complete elliptic integrals of the first and second kind: 
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 ( )
/ 2

2 2
0

d
1 sin

K q
q

π θ
θ

=
−

∫  (S13) 

 ( )
/ 2

2 2

0

1 sin dE q q
π

θ θ= −∫  (S14) 

where 

 ( )
( )( ) ( )

2
2 2

4
.

R z r
q

R z r z z

′
=

′ ′+ + −
 (S15) 

The integrals in (S11) and (S12) are easily calculated numerically in order to determine 

( )tipB r . The tip field gradient /zG B x= ∂ ∂  can also be expressed as a one-dimensional 

integral that is easily calculated. The expression is a bit too unwieldy to include here, 

however.  

Table S1 shows parameters used for the tip model. To determine these parameters, 

we first started with the expected saturation magnetization of Fe70Co30  ( 0 2.4 TsMμ = ) 

and with the tip geometry known either from the fabrication process or observed by 

scanning electron microscopy ( 100 nmar = , 175 nmbr = , 200 nmh =  and 15 nms = ). 

The field and field gradient were calculated and then used with equation (S10) to 
determine the point spread function ( )K r . The tip parameters were then refined by 

noting key features of the experimental data, such as the distance between the double 

images in Fig. 3, and comparing them with imaging behaviour expected from the point 

spread function. In addition, we made a separate set of quantitative measurements of the 

tip field as a function of spacing by measuring the onset of the MRFM signal at various 

external fields and tip-sample spacings, as in Ref. (13). 

The resulting optimized tip parameters are shown in Table S1. One significant 

difference between the optimized parameters and the initial parameters is that the 
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saturation magnetization of the tip material is smaller than expected by about 37%. In 

addition, the non-magnetic surface layer appears to be about 26 nm thick, significantly 

larger than expected based on the 15 nm thickness of the protective Au overcoat. The 

reason for these discrepancies is still under investigation. It is likely that these results 

are at least partially due to oxidation or contamination of the FeCo alloy.   

If the tip were operating without these discrepancies, the achievable gradient 

would be increased by a factor of two. This increase would halve the thickness of the 

resonant slice and give a proportionate boost to the MRFM imaging resolution. A 

doubling of the gradient would also quadruple the signal power per spin, which could be 

used to decrease the measurement time by a factor of 16 at the current spatial resolution, 

assuming all other factors were equal. 

Table S1 - Optimized parameters of the magnetic tip 

Geometry Truncated cone magnetized along ẑ  

Apex radius, ar   100 nm 

Base radius, br  160 nm 

Height, h  180 nm 

Non-magnetic surface layer thickness, s  26 nm 

Saturation magnetization, 0 sMμ   1.51 T 

Tilt of sample platform away from tip axis 0° about x̂ , -1.7° about ŷ  

Max. lateral gradient at 24 nm physical 

spacing. (50 nm magnetic spacing.) 
 6

max
/ 4.2 10  T/mzB x∂ ∂ = ×  

Max. vertical gradient at 24 nm physical 

spacing. (50 nm magnetic spacing.) 
 6

max
/ 5.1 10  T/mzB z∂ ∂ = ×  
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6. Image reconstruction using the Landweber algorithm 

Image reconstruction was done numerically using our own Fortran/Labview code 

following the algorithm outlined by equations (3) and (4) in the main text. The scan data 

( )sξ r  is described by a three-dimensional array where the corresponding grid spacing 

was 8.3 nm × 16.6 nm × 12.8 nm in x × y × z.  The spin density ( )ρ r  and point spread 

function ( )K r  are described by three dimensional arrays that have grid spacing that is 

finer than the scan data by factors of 3, 2 and 3 in x, y and z, respectively.  In other 

words, the grid spacing of the arrays for the reconstructed spin density and point spread 

function corresponds to 2.8 nm × 8.3 nm × 4.3 nm in x × y × z.  Considerable freedom is 
allowed with regard to the weighting function ( )α r . Reasonable results are obtained by 

simply setting ( )α r  to a constant value. Some improvement was found by allowing 

( )zα  to increase monotonically with z up to a prescribed maximum value. The 

Landweber iterations continued until the error between experimental scan data and the 

predicted scan data was reduced below 20 aN2-rms (i.e., below the experimental noise 

level). The number of iterations to achieve satisfactory convergence was typically a few 
thousand, depending on the choice for ( )α r . 

 Figures S6A and S7A show the raw experimental scan data ( )sξ r  for the two 

imaging experiments presented in Figs. 3 and 4, respectively.   The figures also show 
the calculated scan data based on the reconstructed spin density ( )nρ ′r . As explained in 

the main text, the calculated scan data ( )n sξ r   is found by computing the convolution 

integral 

 ( ) ( ) ( )3

sample
volume

d .n s s nKξ ρ′ ′ ′= −∫r r r r r  (S16) 
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It is evident that the reconstructions are very effective in producing calculated 

scan data that is in excellent agreement with the measured scan data.  In both cases, the 

difference between experimental and calculated scan data is less than 20 aN2-rms, 

which is comparable to the noise level of the experimental data. This error can be 

further minimized by continuing the iterations of the Landweber reconstruction, but this 

is at the expense of adding noise to the reconstructed object. 
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Figure S6 – Comparison of experimental scan data to the data predicted by the 
reconstruction. (A) Experimental data corresponding to Fig. 3 in the main text. 
Labels indicate the distances between magnetic tip and the virus particles. (B) Data 
predicted from the reconstructed spin density where initial guess in the Landweber 
reconstruction was zero spin density. (C) Same as (B), but with the reconstruction 
initialized assuming a uniform layer of proton spins on the surface.  
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Figure S7 – Comparison of experimental scan data to the data predicted by the 
reconstruction. (A) Experimental data corresponding to Fig. 4 in the main text. Labels 
indicate the distances between magnetic tip and the virus particles. (B) Data predicted 
from the reconstructed spin density where initial guess in the Landweber 
reconstruction was zero spin density. (C) Same as (B), but with the reconstruction 
initialized assuming a uniform layer of proton spins on the surface.   
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Fig. S1. Key elements for signal detection. Cantilever motion is monitored via a fiber optic interferometer and synchronously detected using a dual-phase
lock-in amplifier. The lock-in output is filtered and the spin signal � is found by taking the difference of the variances of the in-phase and quadrature waveforms.
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Fig. S2. rf modulation waveforms used to cyclically invert the spins. Cyclic adiabatic inversion is accomplished by sweeping the rf frequency through magnetic
resonance twice per cantilever period.
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Fig. S3. Results from effective field model. (A) Waveforms showing z component of magnetic moment calculated for various off-resonance conditions �B0 using
Eq. S5 (see SI Appendix). (B) Fourier amplitudes of in-phase (AI) and quadrature (AQ) components.
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Fig. S4. Normalized spin signal as a function of resonance offset. Solid black line is based on effective field model (Eq. S7 in SI Appendix). Data points are
simulation results based on the equations in Eq. S8 in SI Appendix. The dashed line is the second-order approximation in Eq. S9 in SI Appendix.
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Fig. S5. Typical simulations of cantilever vibration resulting from a proton spin manipulated by the rf frequency and amplitude modulation shown in Fig. S2.
The off-resonance signal is significantly smaller and has shorter correlation time. The simulation parameters closely matched those of the experiment: Qeff � 300,
k � 86 �N/m, fc � 2.9 kHz, G � 3 MT/m, Brf � 3 mT, and Brf,min � 0.5 mT.
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Fig. S6. Comparison of experimental scan data to the data predicted by the reconstruction. (A) Experimental data corresponding to Fig. 3 in the main text.
Labels indicate the distances between magnetic tip and the virus particles. (B) Data predicted from the reconstructed spin density where initial guess in the
Landweber reconstruction was zero spin density. (C) Same as B, but with the reconstruction initialized assuming a uniform layer of proton spins on the surface.
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Fig. S7. Comparison of experimental scan data to the data predicted by the reconstruction. (A) Experimental data corresponding to Fig. 4 in the main text.
Labels indicate the distances between magnetic tip and the virus particles. (B) Data predicted from the reconstructed spin density where initial guess in the
Landweber reconstruction was zero spin density. (C) Same as B, but with the reconstruction initialized assuming a uniform layer of proton spins on the surface.
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