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Much of the physical world around us can be described in terms of harmonic oscillators in
thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is
important in many aspects of modern physics. Here, we investigate a resonating system subject to a
fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have
constructed a controllable and robust realization of such a system using a macroscopic doubly clamped
string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase
of the resonator’s response function and present a theoretical model that is in excellent agreement with the
experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium
symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most
ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter
in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force
detection to low-energy computing memory units.
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Parametric excitation of resonators plays an important
role in many areas of science and technology. In its best-
known form, parametric excitation describes the modula-
tion of a resonator’s natural frequency at twice the natural
frequency itself [1–4]. In this case, energy is pumped into
or out of the resonator depending on the phase of the
modulation relative to the oscillation. This general concept
can be found in optical, electrical and mechanical reso-
nators. It finds application in a wide range of fields
including signal amplification and noise squeezing
[5–15] with contemporary proposals also including topo-
logical chiral amplifiers [16], generation of quantum
entanglement [17,18], as well as mechanical logic oper-
ations with the so-called parametron [19–22].
The last decade has seen remarkable progress in the

fabrication and control of nanomechanical resonators
which serve as an ideal platform for harnessing parametric
excitations [23–25]. As the resonators scale down, they
attain unprecedented sensitivity towards minute masses,
forces, and magnetic moments [26–28]. At the same time,
they enter a regime where nonlinearities become a defining
characteristic that offers new functionality for parametrical
detectors [24,25,29–31]. Indeed, for sufficiently strong
parametric driving, the effective damping of the linear
resonator becomes negative and the oscillation amplitude is
stabilized by nonlinearities [32].
The negative effective damping regime of the parametric

resonator is particularly interesting because it features two
stable oscillation solutions [4]. These solutions, which we
term “parametric phase states” for the rest of this Letter,
are a result of the double periodicity of the parametric
excitation. They are degenerate in amplitude, but phase
shifted by π, and they are fascinating because they allow for

the study of broken time-translation symmetry and
fluctuation-activated interstate switching in both classical
and quantum systems [33–35]. Recently, it was shown that
an external force can lift the amplitude degeneracy between
the parametric phase states [31]. This degeneracy lifting
becomes pronounced in the presence of nonlinear damping
and leads to a robust double hysteresis in the frequency-
swept response of the resonator, which can be used to
measure small near-resonant forces [31].
In this Letter, we report the first experimental demon-

stration of the double-hysteretic response and show that it is
intimately linked to symmetry breaking between parametric
phase states. As a demonstrator, we use a macroscopic
mechanical resonator that is similar to state-of-the-art nano-
mechanical resonators in terms of nonlinear characteristics
while offering easy tuning and a signal-to-noise ratio that is
rarely attained in nanomechanical devices. We find a com-
plex interplay between driving forces and nonlinearities that
leads tomultistability in amplitude and phase as a function of
driving frequency. In parallel, we present a theoretical model
that accurately describes ourmeasurements and lends insight
into the governing mechanisms. As an outlook, we describe
applications that will profit directly from our study.
Our experimental setup consists of a doubly clamped

steel string, see Fig. 1. The string acts as an Euler-Bernoulli
beam in the high-tension limit [32]. Parametric excitation is
realized by modulation of the position of one clamping
point to change the tension inside the string. The motion of
the string at angular frequency ω is transduced into a
voltage and read out via a lock-in amplifier [36]. The lowest
energy mode of the device satisfies the well-known
equation of motion for a nonlinear, parametrically excited
resonator [32],
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ẍþ ω2
0½1 − λ cos ð2ωtÞ�xþ Γ_xþ αx3 þ ηx2 _x

¼ ðF0=MÞ cos ðωtþ ϕÞ; ð1Þ

where x is the displacement of the resonator and dots
mark differentiations with respect to time t. The modulation
amplitude λ controls the parametric excitation and Γ ¼
ω0=Q is the linear damping coefficient with Q the
mechanical quality factor. The nonlinearities α and η denote
the conservative (Duffing type) and dissipative nonlinear-
ities, respectively. F0 is the amplitude of an applied external
force,M is the effective mass of the resonator, which here is
equal to half the total mass, and ϕ is a phase difference
between applied force and parametric excitation [36].
We use relatively weak external driving to characterize

the linear behavior of the device. Figure 2(a) shows the
response of the lowest mechanical mode to driving voltages
Vdrive from 3.15 to 215 mV. Optical calibration allows us
to translate measured voltage amplitudes, Vmeas, into
root-mean-square displacement, r, with a conversion factor
of 3.55 × 10−2 m=Vmeas [36]. We estimate the mass to be
M ¼ 6.5 × 10−5 kg from the geometry of the string and
the density of steel, and fit all response curves with
ω0=2π ∼ 325 Hz and Q ¼ 1800. The response curves have
a purely electrical offset which grows in proportion to
Vdrive. For small displacements, the peak response is
proportional to Vdrive. This allows us to extract a linear
relationship between driving voltage and applied force
as F0 ¼ 4 × 10−5 N=Vdrive.
To access the nonlinear regime of large displacement

amplitudes, we parametrically excite the device. In the
absence of an external driving force, we measure large and
stable vibrations for values of the parametric excitation
voltage Vpara beyond a threshold of 0.6 V, see Fig. 2(b).
Using the relationship between linear damping and the
parametric instability threshold, λth ¼ 2=Q [32], we can

calibrate the modulation amplitude as λ ¼ λthVpara=V th≈
Vpara=540 V. Additionally, we obtain the nonlinear param-
eters α ¼ 2.45 × 1010 m−2 s−2 and η ¼ 1.73 × 106 m−2 s−1
by fitting all response curves with the well-known solution
of the homogeneous case of Eq. (1), with F0 ¼ 0 [32].
Our fitting relies on the fact that the nonlinear response
maps the edges of the so-called “Arnold’s tongue,” i.e., the
instability boundaries of the linear parametric resonator, see
the dashed lines in Fig. 2(b).
A striking interplay unfolds when parametric excitation

and external driving act simultaneously. In Fig. 2(c), the
measured displacement amplitude for an upward frequency
sweep exhibits a single jump (at the boundary between
domains III and IV), akin to the jump expected in standard
externally driven Duffing resonators in the absence of
parametric excitation. However, for downward frequency
sweeps, a double hysteresis appears and the response
displays two consecutive jumps (at the III-II and II-I
boundaries, respectively). While the jumps (III-IV) and
(III-II) describe the typical hysteresis for externally driven
Duffing resonators, the second jump (II-I) is a novel feature
that stems from an interplay with parametric excitation and
has not been seen before in an experiment. The same
hysteretic responses are more prominent in the measured
oscillation phase θmeas, see Fig. 2(d).
For a detailed investigation of these features seen in the

amplitude and phase measurements, we solve (1) using
the approach discussed in Ref. [31]. Going beyond our
previous work [31], we show here that the double hysteresis
arises due to a fundamental symmetry breaking between the
parametric phase states. We note that Eq. (1) can be written
as two coupled first-order differential equations. Close to the
first instability tongue, we transform to a rotating frame
characterized by the driving frequency ω and obtain the
following equations of motion for the displacement ampli-
tude, r, and phase, θ, averaged over one period of themotion:

_r ¼ −
αrωð4Γþ ηr2Þ þ 2αkλr sin 2θ þ 4F0α sin ðθ − ϕÞ

8ωk
ffiffiffiffiffiffiffi

αM
p ;

ð2Þ

_θ ¼ ω0

2ω

�

3αr2

4k
þ 1 −

ω2

ω2
0

−
λ

2
cos 2θ −

F0

kr
cos ðθ − ϕÞ

�

;

ð3Þ

where k ¼ Mω2
0. The steady state response is obtained by

setting _r ¼ _θ≡ 0. Solving the resulting coupled equations,
we obtain the basins of attraction of the system in terms of
u ¼ r cosðθÞ and v ¼ r sinðθÞ. In the presence of both
drives, the number of physical solutions varies from one
to five depending on ω [31]. Similar equations were studied
in the context of driven van der Pol oscillators, albeit with
negative Γ and for α ¼ 0 [38]. Using the experimentally
extracted values for the resonator parameters, we find that the

2ω
ω V  (2ω)para

V  (ω)drive

V  (ω)meas

x

FIG. 1. Experimental realization of a parametric resonator based
on a doubly clamped steel string (0.23mm×0.23mm×0.36m).
Direct driving at frequency ω and parametric excitation at
frequency 2ω rely on ac currents through coils induced by voltages
Vdrive and Vpara acting on the weakly magnetized steel wire and on
a neodymium magnet (yellow element), respectively [36]. The
force acting on the magnet slightly displaces the right clamping
point of the string. This displacement changes the tension in the
string and generates a parametric modulation. The string position
is read out from thevoltageVmeas that is induced in a pickup coil by
the vibrating and weakly magnetized string.
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model results, which are shown in Figs. 2(c) and 2(d), are in
excellent agreement with the experiment and allow an
unambiguous interpretation of the measured phenomena.
In Fig. 2(e), we plot the calculated ω-dependent stability

diagram of the system. It shows the basins of attraction of
the system for domains I–IV along with the evolution of
stable attractors and unstable saddle points. One can see
clearly how, as a function of ω, the total number of
stationary solutions increases (decreases) due to generation
(annihilation) of pairs of stable-unstable solutions at
bifurcation points (see grey spheres in the figure).
Correspondingly, in each domain, we have a different
number of solutions, i.e., a single solution in I, three in
II, five and three in III (three in the small frequency range
between the two bifurcation points), and one in IV.
Following the evolution of the stable solutions with
increasing or decreasing ω reveals the origin of the second
hysteretic jump in both amplitude and phase.

It is instructive to compare the stability diagram in
Fig. 2(e) to its two limiting cases, namely, the system in
the presence of purely external driving or purely para-
metric excitation. The corresponding stability diagrams
are shown in Figs. 2(f) and 2(g), respectively. Intuitively,
we can construct the full stability diagram from the
purely parametric case by regarding the external drive
as a perturbation. As a consequence of this perturbation,
the parametric phase states are no longer symmetric and
the trivial solutions (r ¼ 0) seen in Fig. 2(g) are shifted
toward finite amplitudes. Importantly, an opposite phase is
imprinted on the stationary solution by the external drive
in regions I and IV. As a combined result of these two
effects, for opposing directions of frequency sweeps, a
different parametric phase state is chosen and the double
hysteresis is seen.
The central observation of the theoretical analysis above

is that the amplitude degeneracy and phase symmetry of
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FIG. 2. Device response to the various drives. (a) Linear response with weak external drive amplitudes Vdrive ¼ 3.15, 7.33, 17.1, 39.7,
92.0, and 215 mVand with Vpara ¼ 0. The background increase is due to direct electrical coupling between the drive and detection coils.
(b) Response to parametric excitation with Vdrive ¼ 0 and Vpara ¼ 0.6–1.0 V in steps of 0.05 V. Curves are vertically offset by 10 mV for
better visibility and instability boundaries are traced by gray dashed lines. Inset shows onset of instability for Vpara ¼ 0.6 V≡ V th.
Black dots denote experimental data and all theoretical fits (red solid lines) use Q ¼ 1800, α ¼ 2.45 × 1010 m−2 s−2 and
η ¼ 6.8 × 106 m−2 s−1. (c),(d) First experimental demonstration of double-hysteretic response: (c) mean displacement and (d) oscillation
phase as a function of ω for both upward sweep (black line-dots) and downward sweep (red line-dots). Four domains (I–IV) of the
response appear. Here, Vdrive ¼ 0.1 V, Vpara ¼ 0.8 V and ϕ ¼ −45°. Theory curves are gray dashed lines, cf. Eqs. (2) and (3). (e) For the
fitted parameters, representative calculated stability maps of the system in the four domains at ω ¼ 0.9997ω0 in I, ω ¼ 1.0ω0 in II,
ω ¼ 1.0003ω0 in III and ω ¼ 1.0006ω0 in IV. Stable solutions (dark red lines) and unstable solutions (bright yellow lines), as well as the
bifurcations (grey spheres) as a function of ω are also shown. In (f) and (g), the corresponding solutions for purely external (λ ¼ 0,
F ≠ 0) or parametric drives (λ ≠ 0, F ¼ 0) are shown. The range of u ¼ r cosðθÞ and v ¼ r sinðθÞ axes corresponds to �0.65 mm for
(e) and (g), and �0.065 mm for (f).
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parametric phase states are broken by the external driving
force. In order to verify this claim, we experimentally probe
the stability diagram of the resonator in domain II, see
Fig. 3(a). We prepare the resonator at a fixed frequency and
with low amplitude using a small external drive. The phase
of the external drive, or, equivalently, the phase difference
ϕ, determines the starting position of the resonator on the
inner circle (∼1 mV). Upon activating the parametric
excitation, the resonator rings up and settles around one
of two attractors, corresponding to one of the perturbed
phase states. Clearly, the phase of the starting point
determines which attractor is chosen. A red dashed line
visualizes the separatrix stemming from the saddle point
associated with the unstable branch, i.e., the boundary
between starting points leading to one or the other attractor.
Since the imprinted initial phase ϕ determines which
parametric phase state is chosen, the double hysteresis is
visible only for an appropriate range of ϕ. This is
systematically explored in the Supplemental Material [36].
To show the one-to-one correspondence between the

pure and perturbed parametric phase states, we prepare the
resonator in one of the pure phase states with only para-
metric excitation, see Fig. 3(b). When the external drive is
added, the resonator solution shifts away from—and settles
on a ring around—the center of the plot. Again, the final
position on the ring depends on ϕ. Apart from the fact that
the perturbed attractors can be mapped onto the original
parametric phase states, this experiment also demonstrates
that the perturbed phase states are stable for all values of ϕ,
even if the system would preferably select the opposite
phase state [as shown in Fig. 3(a)].

The double hysteresis may allow ultrasensitive and
relatively straightforward force detection deep in the non-
linear regime of motion (Ref. [31]). In addition, the double
hysteresis opens up new possibilities to control the para-
metron, a digital storage element that utilizes the parametric
phase states to encode bits [19]. Optical and mechanical
manifestations of coupled parametrons, where each phase-
state doublet plays the role of an artificial spin, are being
developed to emulate and solve Ising Hamiltonians [39,40].
In conventional computing, the parametron is a candidate
for low-energy consumption memory [20]. As we visualize
in Fig. 4 for the example of a nanomechanical resonator, the
double hysteresis allows for switching between phase states
in a controlled manner without changing amplitude, fre-
quency, or phase of the external drive tone (applied at
ωdrive) and the parametric drive tone (applied at 2ωdrive).
Parametric state switching is performed by changing the
resonance frequency of the nanomechanical resonator with
a small dc voltage. The parametron resides in one of the two
phase states whenever domain II of the resonator overlaps
with ωdrive. Which phase state is selected depends entirely
on whether the resonator was previously prepared in
domain I or IV. Each parametron can thus be fully
controlled by changing a single dc voltage instead of
requiring two independent ac voltages, which greatly
simplifies the large-scale implementation of many such
devices, for instance on an integrated chip. For the device
used in Ref. [20], a dc voltage of ∼0.2 V would be enough
to tune the resonator, while the AC drive voltages would be
in the μV range.
The analysis that we present here is valid for any

nonlinear resonator subject to a combination of parametric
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FIG. 3. Role of relative phase ϕ between drives. Pulse sche-
matics at the bottom illustrate the order of driving or excitation
voltages as a function of time for the two experiments. (a) We
prepare the resonator at low amplitude r with Vdrive ¼ 0.1 V at a
fixed frequency in domain II (inner ring). When switching on
Vpara ¼ 0.8 V, the resonator rings up to one of the attractors
[cf. Fig. 2(e)]. Different trajectories use different values of ϕ.
Radial scale is logarithmic. Inset in upper left schematically
indicates frequency. (b) Reversing the order of (a), we prepare the
resonator with Vpara ¼ 0.8 V in a pure parametric phase state,
then switch on Vdrive ¼ 0.1 V with varying ϕ. Here, scale is
linear. A green frame in (a) indicates the approximate coordinate
range of the experiment in (b).
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FIG. 4. Proposed new parametron control sequence enabled by
double hysteresis. (a) Schematic parametric NEMS device with
electrodes for drive tones and control voltage. Vpara, Vdrive, and
Vdc refer to a parametric drive tone applied at 2ωdrive, an external
drive tone at ωdrive, and a dc control voltage, respectively. (b) In
the proposed control sequence, the driving frequency ωdrive and
the relative phase ϕ remain fixed, whereas the resonance
frequency of the resonator is tuned by Vdc. Whenever ωdrive
coincides with domain II, the resonator switches to one of the
parametric phase states “0” or “π” (shaded regions). Which state
is chosen depends on the domain in which the resonator was
prepared previously.
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excitation and external driving. Such resonators are actively
studied in many modern fields of physics, with examples
including levitating nanoparticles [41], coupled photonic
microcavities [42], nanomechanical resonators and opto-
mechanics, and quantum electrodynamics [43], and more
recently even in the generation of superconductivity in
strongly correlated light-matter systems [44,45]. Future
directions include generalization of our results to dynamic
quantum many-body systems and coupled resonators in the
presence of noise.
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