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We propose a method for linear detection of weak forces using parametrically driven nonlinear resonators. The
method is based on a peculiar feature in the response of the resonator to a near resonant periodic external force.
This feature stems from a complex interplay among the parametric drive, external force, and nonlinearities. For
weak parametric drive, the response exhibits the standard Duffing-like single jump hysteresis. For stronger drive
amplitudes, we find a qualitatively new double jump hysteresis which arises from stable solutions generated
by the cubic Duffing nonlinearity. The additional jump exists only if the external force is present and the
frequency at which it occurs depends linearly on the amplitude of the external force, permitting a straightforward
ultrasensitive detection of weak forces. With state-of-the-art nanomechanical resonators, our scheme should
permit force detection in the attonewton range.
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I. INTRODUCTION

Research on nonlinear resonators started over a century ago,
motivated by observations in electrodynamics and mechanics
[1]. The fact that novel features are still discovered in nonlinear
resonators today bears witness to their great complexity and
variety. Nonlinear resonators manifest themselves in many
modern fields of physics, e.g., quantum electrical circuits, cold
atoms, levitated nanoparticles, and nanoelectromechanical
systems (NEMS) [2]. They are intimately related to state-of-
the-art metrology platforms used for measurements of weak
external forces corresponding to single charges, spins, or mass
on the atomic scale [3–6].

Interestingly, many of these modern resonators allow
the study of individual modes whose nonlinearities can be
tailored or tuned in situ and on which theoretical concepts,
both classical and quantum, can be tested [7,8]. One such
concept is parametric resonance, where the frequency of the
linear oscillator is modulated in time [9]. The parametrically
driven oscillator boasts a fascinating stability diagram called
“Arnold’s tongues” delineating zones where the oscillator
is stable from those where it is exponentially unstable as
a function of its natural frequency and parametric driving
strength [10]. In the stable regime, parametric resonance
can be used to amplify signals and squeeze noise [9,11,12],
design mechanical logic circuits [13], or generate quantum
entanglement [14,15]. In the unstable regime, the resonator is
driven to a large and stable response, which can be used for
mechanical information storage [16] or signal amplification
through bifurcation topology [17].

Nonlinearities become important as resonators scale down
[18]. This can be attributed to geometric effects, external
potentials, dissipation, or even feedback cooling used to
control the resonator. Nonlinear effects strongly restrict the
dynamic range within which the system operates linearly,
even making it vanishingly small in NEMS, and limit the
scope for applications. However, recent works focus on
directly using nonlinearities to improve the sensitivity of
parametrically amplified detectors [17,19,20]. For instance,
though quartic (Duffing) nonlinearities stabilize the parametric
oscillator, it retains a “memory” of the underlying instability
tongue structure in its frequency dependent response [21]. The

precision measurement of this lobe [19,21] then provides a
very robust and stable way of detecting masses [19]. Still, the
utility of nonlinearities in parametrically driven oscillators for
sensing of external forces remains relatively unexplored.

In this work we obtain a solution for the response of
an externally driven nonlinear parametric resonator below
and beyond the instability threshold. The response features
an unexpected double hysteresis whose position depends
sensitively and linearly on the amplitude of the applied external
force. Using recent experiments as examples, we predict how
the double hysteresis should manifest, and we propose a
method to use it for the detection of weak forces. Importantly,
the force sensor we propose has a linear dependency of signal
on measured force even though it is based on a nonlinear
mechanical resonator.

The article is structured as follows. In Sec. II, we detail
the model describing a general nonlinear parametric oscillator
model. Section III is dedicated to a short description of the
perturbative averaging method used for the analysis of the
model used to obtain a closed equation for the steady-state
positional response. Based on our results for the response, we
present our method for hysteretic force detection in Sec. IV.
In the concluding section, we discuss the application of our
force detection scheme to different experimental systems.
Discussion of the limiting cases and known results are
relegated to the Appendices.

II. MODEL

The equation of motion governing the dynamics of a
parametrically driven nonlinear oscillator of mass m subject
to a periodic external force is

mẍ + mω2
0(1 − λ cos ωpt)x + γ ẋ + αx3 + ηx2ẋ

= F0 cos ωf t, (1)

where ω0 is the unperturbed frequency of the linear oscillator,
γ is the linear damping, and λ and ωp denote the strength
and frequency of the parametric drive. Parametric resonance
occurs whenever the parametric drive frequency satisfies the
condition ωp = 2ω0/n, where n is an integer which labels the
instability zones. The effects of parametric driving are most
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pronounced for n ∼ 1. The nonlinearities are described by the
Duffing parameter α characterizing the quartic contribution
to the oscillator potential, and η denotes the strength of
the nonlinear feedback cooling or nonlinear damping that
is present in generic experimental setups [22,23]. Though
nonlinearities stabilize the regions of instability [1,21], the
nonlinear parametric resonator retains a precise memory of
the instability regions of the parametric linear oscillator (see
Appendix B).

The term on the right-hand side of (1) refers to a periodic
external force of strength F0 and frequency ωf . Equation (1)
generically describes the physics of resonators realized in a
wide range of experimental setups. Though a vast literature
exists on the solutions to this equation in various regimes
[1,24], surprisingly, the impact of a periodically modulated
external force on the full nonlinear problem has not been
studied in great detail. In the following we consider a positive
Duffing parameter α. Our methodology and results can be
straightforwardly extended to the case of negative Duffing
coefficients (as will be discussed later).

The main focus of this work involves studying the response
of a parametric resonator to an external force, F0 �= 0, in the
nonlinear regime. Bifurcations arise in this problem which
essentially change the nature of the associated response.
Equation (1) is a nonautonomous, inhomogeneous, and non-
linear differential equation that does not permit an analytic
solution for generic parameters. In typical experiments, the
focus is on the first parametric resonance of the system, i.e.,
operating around twice the bare frequency of the undriven
oscillator ωp ≈ 2ω0 while the frequency of the external drive
is ωf ≈ ω0. As we will show, approximate analytic solutions
to the frequency-dependent response can be obtained in these
experimentally relevant parameter regimes.

III. RESPONSE FUNCTION

To analyze the equation of motion [Eq. (1)] we use
the perturbative averaging method [25], which replaces the
full time-dependent equation by time-independent averaged
equations of motion. Before that, we redefine time and space
in Eq. (1) according to τ = ω0t and z = x

√
α/mω2

0 . This leads
to the dimensionless equation of motion,

z̈ + γ̄ ż + z3 + η̄z2ż + (1 − λ cos 2�τ )z

= F̄0 cos(�τ + ϑ), (2)

where the dimensionless parameters are defined as
γ̄ ≡ γ /mω0 = 1/Q, η̄ ≡ ηω0/α, � ≡ ω/ω0, and F̄0 ≡
(F0/ω

3
0)

√
α/m3. Using this method, the frequency region

around the first instability lobe is parametrized by setting
ωp = 2ω, with ω ≈ ω0. Additionally, we introduce a detuning
parameter σ = 1 − �2. Furthermore, the frequency of the
external drive is locked at half the value of the parametric
pump frequency ωf = ω, with a relative phase ϑ between the
two drives. With the parameters so defined, Eq. (1) can be
recast as a pair of first-order equations

y = ż , (3)

ẏ + �2z = f (z,y,τ ) , (4)

with

f (z,y,τ ) = −σz − γ̄ y − z3 − η̄z2y + λ cos(2�τ )z

+ F̄0 cos(�τ + ϑ) , (5)

Note that in order for the present perturbative method to be
valid, the detuning σ , linear and nonlinear damping γ̄ and η̄, as
well as the driving strengths λ and F̄0 have to be small. Since
Eqs. (3)–(5) are dimensionless, the true range of forces that
can be studied with this perturbative method depends on the
particular realization of the nonlinear resonator. The next step
consists in bringing Eq. (4) into the so-called standard form
for averaging, i.e., into a form ż = εf (z,y,τ ) with 0 < ε � 1.
This is accomplished using the van der Pol transformation [25]
to variables U and V ,[

z

y

]
=

[
cos �τ − sin �τ

−� sin �τ −� cos �τ

][
U

V

]
. (6)

Substituting (6) into (4) and averaging over the time period
T = 2π/�, we obtain the equations for the slow flow variables
u = U and v = V , which correspond to time-averaged U and
V over the time cycle:

u̇ = − 1

2�

[
γ̄ �u + v

(
σ + λ

2

)
+ 3

4
(u2 + v2)v

+ �
η̄

4
(u2 + v2)u − F̄0 sin ϑ

]
, (7)

v̇ = − 1

2�

[
γ̄ �v + u

(
−σ + λ

2

)
− 3

4
(u2 + v2)u

+ �
η̄

4
(u2 + v2)v + F̄0 cos ϑ

]
. (8)

Despite the perturbative nature of the averaging method, it
is valid for a surprisingly large range of values of the drive
amplitude λ as well as for substantial detuning � [26].
However, to access the full range of the system parameters
as well as more complex nonlinearities, one would need to do
a full numerical study.

The coupled slow flow Eqs. (7) and (8) remain analytically
insolvable. However, from the perspective of measurements,
one only needs to know the frequency response of the oscillator

¯|X| = (u2 + v2)1/2. This is a property of the steady state and
does not require knowledge of transients. Consequently, in the
steady state, we set u̇ = v̇ = 0 in Eqs. (7) and (8), and we
find that the response |X|2 satisfies the following polynomial
equation:

¯|X|2
[(

γ̄ � + η̄

4
� ¯|X|2

)2

−
(

λ

2

)2

+
(

σ + 3

4
¯|X|2

)2
]2

= F̄ 2
0

[(
γ̄ � + η̄

4
� ¯|X|2

)2

+
(

λ

2

)2

+
(

σ + 3

4
¯|X|2

)2

+λ

(
σ + 3

4
¯|X|2

)
cos 2ϑ + λ

(
γ̄ �+ η̄

4
� ¯|X|2

)
sin 2ϑ

]
.

(9)

Equation (9) determines the response in a finite frequency
interval ω around ω0. Obtaining the response for arbitrary ω
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FIG. 1. Trajectories of the nonlinear parametric resonator in slow
variables u and v, obtained by numerically integrating Eqs. (7) and
(8). The parameters chosen correspond to the unstable regime of
the unforced linear parametric resonator: λ = 5 × 10−2, F̄0 = 1 ×
10−3, γ̄ = 1 × 10−2, η̄ = 3 × 10−1, ϑ = 0, and � = 1.03. The green
circles denote stable solutions, while red squares unstable ones.

requires a nonperturbative approach or the retention of higher-
order corrections.

IV. RESULTS

A. Response

As will be shown below, the interplay among the periodic
external force, parametric drive, and nonlinearities leads to two
qualitative different behaviors for the response depending on
the position in parameter space. The solutions to the fifth-order
polynomial [Eq. (9)] can be stable or unstable. The stabilities
can be directly inferred from the basins of attraction for this
equation, plotted in Fig. 1. We find that typically one has three
stable solutions (I, III, and IV) marked by green dots and two
unstable solutions (II and V) denoted by the red squares.

For small amplitudes of the parametric drive λ pertaining to
the stable regime [see inset in Fig. 2(a)], the response shown in
Fig. 2(a) is dominated by the external force and resembles that
of the Duffing oscillator [25]. Here the stable solutions I and IV
become degenerate and the response has two stable branches (I
and III) and one degenerate unstable branch (II). As λ increases
and one crosses over to the unstable regime of the underlying
linear oscillator [see inset in Fig. 2(b)], the degeneracies of
both stable and unstable solutions are broken corresponding
to the three stable attractors and two saddle points shown in
Fig. 1. This generates a qualitatively different response as
shown in Fig. 2(b), with an enhanced Duffing-type response
encompassing an islandlike structure. This is due to a complex
interplay among the cubic nonlinearity, the external force, and
the parametric drive. We reiterate that this response cannot be
obtained without the periodic external force. The splitting takes
place even in the absence of noise-activated switching between
the stable solutions, in contrast to previous studies [27].

As F0 increases, the island is raised and shifted to larger
frequencies. A sufficiently strong F0 wipes out the internal
island and the resulting frequency response is external force
dominated and appears to be Duffing-like. In the limit F0 → 0,
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FIG. 2. Typical frequency responses of the system described
by Eq. (1). The insets show the first instability region (Arnold
tongue) of the unforced linear parametric resonator (α = η = F0 =
0) (continuous lines) and the chosen values of λ (dashed lines).
(a) λ = 1.8 × 10−2 below the instability threshold (dashed line in
inset); (b) λ = 5 × 10−2 above the instability threshold (dashed
line in inset). Stable branches are indicated by whole lines, while
unstable branches by dashed lines. The parameters F̄0 = 1 × 10−3,
γ̄ = 1 × 10−2, η̄ = 3 × 10−1, and ϑ = 0 are the same in both (a)
and (b).

we recover the response shown in Appendix B, where I and IV
(II and V) coalesce to a single stable (unstable) branch. The
presence of F0 thus leads to a splitting of the stable (unstable)
branch into two stable (unstable) branches.

We now analyze the dependence of this novel response
on the various tunable parameters in the system. The driving
strength λ strongly affects both the maximal amplitude of the
response as well as the frequency at which the intermediate sta-
ble branch originates. As λ increases, the intermediate branch
dips further towards lower frequencies though the maximal re-
sponse increases. Linear damping γ , on the other hand, simply
shifts the stability boundaries of the linear parametric oscillator
away from the λ = 0 axis [see inset in Fig. 2(a)]. As a result,
for the response, it plays a role akin to the inverse of the driving
strength λ, i.e., the larger the damping, the smaller the response
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and the origin of the intermediate branch is pushed to higher
frequencies. For sufficiently large damping γ , one enters the
parameter region where the linear oscillator is stable and we
recover the typical response of Fig. 2(a). Importantly, nonlinear
damping η caps the response when ω increases, but it preserves
the intermediate stable branch and the islandlike structure.

B. Force detection

We will now show that the amplitude of the near resonant
periodic external force can be directly extracted from the
qualitatively new response discussed earlier. The presence of
stable and unstable branches in the response is expected to lead
to hysteretic behavior during upward and downward sweeps
of the frequency ω across ω0. Consider the response for weak
parametric driving plotted in Fig. 2(a). For upward sweeps of
the frequency across ω0, the response will gradually increase
along branch I all the way to the maximal value where it
hits the upper bifurcation and will then abruptly drop to the
value of the lower stable branch III [green arrow pointing
downwards in Fig. 2(a)]. For downward sweeps, the response
slowly increases along branch III and then jumps abruptly to
the stable branch I (red arrow pointing upwards). This is very
similar to the standard Duffing-like hysteresis seen in many
systems both in the presence and absence of an external force
[1,25]. The sizes of the hysteretic jumps depend on many
parameters, including F0. It is highly nontrivial to extract the
amplitude of the force from this hysteresis curve.

For λ in the unstable regime of the linear oscillator [cf.
Fig. 2(b)], the presence of additional branches in the response
leads to a new kind of hysteresis curve. For upward sweeps
across the resonance frequency, the response will gradually
increase all the way along branch I to the maximal value where
it hits the upper bifurcation and will then abruptly drop to the
value of the lower stable branch III. For downward sweeps, the
response will increase very slowly across branch III until it hits
the first bifurcation where it will abruptly jump to the stable
branch IV of the island. It will then decrease further until it
hits another bifurcation of the island at a frequency �∗ where
it will jump to the stable branch I. In short, the presence of
stable solutions in the island results in two consecutive jumps
in the downward sweeps.

The hysteretic jumps expected for the two response func-
tions in the stable and unstable regimes are indicated in Fig. 2.
Figure 2(b) shows a double jump hysteresis, whereas Fig. 2(a)
shows the standard single jump hysteresis. The second jump
in Fig. 2(b) is a direct manifestation of the intermediate stable
branch discussed above and exists only when the amplitude
of the external force F0 is nonzero. The second jump is lost
for high values of η as the island shifts to higher frequencies.
This feature provides a promising new method to detect weak
forces. The force F0 can be extracted either from the magnitude
of the second jump or from the frequency �∗ at which it occurs.

We find that �∗ depends linearly on F0 for a wide range of
forces, allowing for a new and simple force detection scheme
(see Fig. 3). The slope of �∗ versus F̄0 (�∗ = ω∗/ω0) defines
a dimensionless sensitivity κ̄ which can be translated into

physical units through the relation κ = κ̄

ω2
0

√
|α|
m3 . The jump

frequency, and thus the sensitivity, also depend on the relative

FIG. 3. Jump frequency �∗ as a function of the strength of the
external force for ϑ = π/4 (red dashed line) and averaged over a
uniformly distributed phase ϑ (blue solid line). The parameters are
given by λ = 0.016, γ̄ = 10−3, ᾱ = 7 × 10−3, η̄ = 5 × 10−3. The
inset shows the phase dependence of the jump frequency �∗ for a
fixed value of the external force (F̄0 = 1 × 10−5).

phase between the periodic drive and the external force, as
shown in the inset of Fig. 3. In the following, we consider the
two cases that will be most relevant for experiments. On the
one hand, if the phase ϑ of F0 is stable and can be controlled,
one can reach the maximum sensitivity κmax that corresponds
to ϑ ∼ π/4 (red dashed line in Fig. 3). On the other hand,
if the phase of F0 is fluctuating, then one effectively obtains
a phase-averaged measurement with sensitivity κmean (blue
solid line in Fig. 3). In Fig. 4, we plot the phase-averaged
dimensionless sensitivity of the device (κ̄mean) as a function of
λ and η̄. It is worth noting that as long as the parametric drive
λ is beyond the instability threshold, the sensitivity increases
with decreasing λ. We present values for both κmax and κmean

for typical experimental systems in the following section.
We note that a similar double jump hysteresis is expected for

a system with negative Duffing parameter α where the response
tilts towards the left (spring softening) [1]. In this case, �∗ de-
creases linearly with increasing F0 but the sensitivity, given by
the magnitude of the slope, is expected to be the same as that for
positive α. In other words, regardless of the sign of α, a direct

FIG. 4. Sensitivity κ̄ as a function of the strength of the parametric
drive λ and nonlinear damping η̄. The force range F̄0 is from 5 × 10−4

to 1 × 10−3, and γ̄ = 10−2. The other parameters are kept fixed.
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measurement of the hysteresis curve in the nonlinear regime of
the parametrically driven resonator permits a straightforward
extraction of the amplitude of the external force.

Importantly, from an experimental perspective, one needs
a nonlinear oscillator with well-characterized Duffing non-
linearity and with tunable parametric modulation as well as
nonlinear feedback cooling. The latter is particularly useful in
generating a sizable second hysteretic jump. The device should
first be calibrated, i.e., its sensitivity κ should be obtained via
a series of measurements of �∗ for different values of known
force amplitudes F0. Once the sensitivity is known, the device
can be used to measure the amplitude of an unknown external
force.

V. DISCUSSION

We now discuss the magnitudes of the forces that can be
detected via the double hysteresis scheme. We consider an
external force to be in principle detectable when the frequency
shift of the second hysteresis is larger than the frequency noise
present in the system, that is, if

κF0 � σf , (10)

where κ is the sensitivity of the device in physical units of
angular frequency per force and we use σf to denote the total
(angular) frequency noise expected during a measurement. The
minimum detectable force is then given by Fmin = σf /κ .

We present estimates for the range of forces which can
be detected with two different resonators. We first consider
a laser-trapped nanoparticle in high vacuum [28] with a
very high quality factor and a negative Duffing coefficient
α. This system allows for a wide manipulation of the
system parameters with small thermal noise. The system
parameters are m ≈ 3 × 10−18 kg, ω0 ≈ 2π × 1.25 × 105 s−1,
Q ≈ 108 (controlled through the air pressure), and |α| ≈
1.8 × 107 kg m−2 s−2. The nonlinear damping due to feedback
cooling can be tuned in a range around η ≈ 14 kg m−2 s−1

and the amplitude of the parametric drive we use is λ =
10−4, which is well inside the available modulation range.
Calculating κ̄ from solutions of Eq. (9) and then transforming
into physical units, we obtain κmean = 4 × 1019 Hz/N and
κmax = 5.6 × 1019 Hz/N. For a sweep duration of typically
a few seconds, the frequency noise can be expected to be in
the range of 2π kHz in units of angular frequency [23], which
gives a minimum detectable force of about 110 aN and 160 aN
for κmax and κmean, respectively. Please note that the frequency
noise used here is largely dominated by laser intensity noise
and could in principle be decreased substantially.

The lightest nanomechanical resonators available today are
made of individual carbon nanotubes. These resonators have
pronounced nonlinearities and can be driven parametrically
with high modulation depth [29]. Typical parameters are [22]
m ≈ 10−20 kg, ω0 ≈ 2π × 5 × 107 s−1, Q ≈ 103, η ≈ 103 kg
m−2s−1, |α| ≈ 4 × 1011 kg m−2s−2, and λ = 2.5 × 10−3.
With these parameters, we get κmean = 4.5 × 1020 Hz/N and
κmax = 7 × 1020 Hz/N. From the linewidth of the frequency
sweep in Fig. 4 of Ref. [22], we estimate an upper bound
for the frequency noise of 2π × 5 kHz in units of angular
frequency, which result in minimum detectable forces of 45 aN
and 70 aN for κmax and κmean, respectively. The quality factor

we use here is quite conservative. Values of up to Q = 5 × 106

have been measured more recently [30]. The same study also
demonstrated significantly reduced frequency noise. However,
it is not clear how the device will behave when driven into the
nonlinear regime.

We expect weak thermal fluctuations to broaden the
response and modify the size of the hysteretic jumps but
leave �∗ effectively unchanged. As a result, thermal noise
will not have any qualitative impact on our detection scheme
for devices with very high Q factors. Generically, we expect
the force to be detectable as long as the second jump is visible
above the background noise. This should hold true as long
as the system parameters as well as noise are such that one
avoids activation of degenerate states or higher energy states.
Note that the combination of driving, nonlinearities, and noise
could lead to phenomena similar to stochastic resonance in the
present context, but the study of these aspects is beyond the
scope of the present work.

To conclude, we have presented a new paradigm for sensi-
tive detection of forces using nonlinear parametric resonators.
Though based on the nonlinear dynamics of the resonator,
our measurement scheme is inherently linear. NEMS with
relatively large Duffing nonlinearity α are good candidates
for our force detection scheme. For state-of-the-art devices,
our scheme might allow the detection of forces in the 10- to
100-aN range. Furthermore, the high sensitivities associated
with our detection scheme can potentially be exploited in the
context of techniques such as nano-MRI aiming at great spatial
resolution [31,32].
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APPENDIX A: LINEAR PARAMETRIC OSCILLATOR

The response of the linear parametric oscillator in the
presence of a periodic external force has been analyzed in
Ref. [9]. In Eq. (1) we set α = η = 0. In this case, we obtain
the stability diagram with Arnold tongues shown in Fig. 5.

For the first instability lobe, this response can easily be
calculated from the slow flow equations [cf. Eqs. (7) and (8)]
and has the form

|X̄| =
√

(γ̄ �)2 + σ 2 + (
λ
2

)2 + λ(σ cos 2ϑ + γ̄ � sin 2ϑ)

(γ̄ �)2 + σ 2 − (
λ
2

)2 ,

(A1)

where γ̄ ≡ γ /mω0 and � ≡ ω/ω0. Here we have chosen
ωp = 2ω and ωf = ω with ω ≈ ω0, and we introduced the
detuning parameter σ = 1 − �2.

The typical response for different regimes are plotted in
Fig. 6(a). Here we see that parametric driving enhances
or reduces the response depending on the relative phase
between direct and parametric drives. For instance, for ϑ =
π/4 (respectively, ϑ = 3π/4) we have a remarkable increase
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FIG. 5. First two instability regions (Arnold tongues) of the
parametrically driven oscillator (continuous lines). The dashed box
depicts the parameter region addressed in this work [cf. insets in
Fig. 2].

(respectively, decrease) of the gain [see Fig. 6(b)]. Gain is here
defined as G = |X̄|λ �=0/|X̄|λ=0.

FIG. 6. (a) Typical frequency response for the usual harmonic
oscillator (dashed line) and the parametric oscillator (continuous
lines). For the red (lower) line ϑ = 3π/4 the response is suppressed,
while for the green (upper) line ϑ = π/4 the response is enhanced.
In (b) we show the gain for the same two phases.

FIG. 7. Typical frequency response for an unforced nonlinear
parametric oscillator with nonlinear damping η �= 0 (blue) leading
to a smaller response and without nonlinear damping η = 0 (orange)
leading to a stronger response.

APPENDIX B: HOMOGENEOUS NONLINEAR
PARAMETRIC OSCILLATOR

We now discuss the response of the nonlinear parametric
oscillator in the absence of an external driving force. This will
help clarify the effect of nonlinearities, both Duffing type as
well as feedback cooling, on the shape of the response curves.
In the absence of an external force F0 = 0, the steady-state
response has a trivial solution |X̄| = 0 as well as nontrivial
solutions satisfying the equation(

γ̄ � + η̄

4
� ¯|X|2

)2

−
(

λ

2

)2

+
(

σ + 3

4
¯|X|2

)2

= 0 . (B1)

1. Zero feedback cooling (η = 0)

The nontrivial solutions for α �= 0 and η = 0 are given by

|X̄|2 = 4

3

(
−σ ±

√(
λ

2

)2

− (γ̄ �)2

)
. (B2)

The presence of the Duffing nonlinearity effectively sta-
bilizes the parametric oscillator and allows us to explore the
previous unstable region of parameter space. The oscillator
displacement does not increase exponentially but saturates to
a fixed amplitude. The frequency response of such a system
(cf. Ref. [33]) is plotted in Fig. 7. It is characterized by three
distinct regions with a different number of solutions each. In
the first zone below A there is a single stable solution. The
second zone between A and B has a high-amplitude stable
solution and a zero-amplitude unstable one. The third zone
beyond B has two stable solutions: a zero-amplitude and a
high-amplitude one, as well as an unstable solution between
the two stable branches. The extent of the second region, which
is delimited by the occurrence of pitchfork bifurcations [21], is
determined by the following equation (γ̄ �)2 = (λ/2)2 − σ 2.
This corresponds exactly to the equation for the first instability
tongue [26]. The positive Duffing coefficient α results in a
rightward tilt of the response, reflecting the effective hardening
of the spring constant. Note that a negative Duffing term would
result in a tilt towards the left, reflecting the softening of the
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spring constant. This response has been measured in torsional
Micro-electromechanical systems [34].

2. Feedback cooling (η �= 0)

It is straightforward to assess the effect of nonlinear damp-
ing (η �= 0) on the above response. The resulting response
(cf. Ref. [24]), which is shown is Fig. 7, is qualitatively
similar to the one obtained for η = 0. Nonlinear damping
does not affect the bifurcations discussed earlier, but it
principally limits the growth of the response as the frequency ω

increases.
The detection of the width AB of the second region, which

corresponds to tracing out the width of the Arnold tongue,

was proposed as a way to do high-precision mass sensing
[19]. High precision is expected because of the sharp changes
in the response amplitude at the boundaries of parametric
resonance.

In both cases, the presence of stable and unstable solutions
and a Duffing-like response is expected to lead to hysteretic
behavior during upward and downward sweeps of the fre-
quency ω across ω0. For upward sweeps across the resonance
frequency, the response will gradually increase all the way to
the maximal value where it hits the upper bifurcation and will
then abruptly drop to the value of the zero-amplitude stable
branch. For downward sweeps, the response corresponds to
the zero-amplitude stable branch until it hits the bifurcation
point B, where it will abruptly jump to the outer stable branch
of the response.
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