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Quantum sensing with arbitrary
frequency resolution
J. M. Boss,* K. S. Cujia,* J. Zopes, C. L. Degen†

Quantum sensing takes advantage of well-controlled quantum systems for performing
measurementswith high sensitivity and precision.We have implemented a concept forquantum
sensing with arbitrary frequency resolution, independent of the qubit probe and limited only
by the stability of an external synchronization clock.Our conceptmakes use of quantum lock-in
detection to continuously probe a signal of interest. Using the electronic spin of a single
nitrogen-vacancy center in diamond, we demonstrate detection of oscillating magnetic fields
with a frequency resolution of 70 microhertz over a megahertz bandwidth.The continuous
sampling further guarantees an enhanced sensitivity, reaching a signal-to-noise ratio in excess
of 104 for a 170-nanotesla test signal measured during a 1-hour interval. Our technique
has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive
signal detection.

Q
uantum sensors with new capabilities are
driving the field of precision metrology
(1, 2). In particular, spin qubits associated
with crystal defects in diamond (3) and
other materials (4–6) have emerged as

highly sensitive probes with nanometer spatial
resolution (7, 8). Because the defect spins are
well isolated from the environment, they can be
controlledwith high fidelity, allowing researchers
to implement sophisticated quantum manipula-
tion protocols.
A particularly important sensing task is the

spectral decomposition of time-varying signals
into their frequency components. Quantum me-
trology employs quantum control techniques to
reach this goal. For example, dynamical decou-
plingmethods—originally developed for protecting

qubits fromdecoherence—have been adapted for
detecting alternating signals with narrow band-
width and high signal-to-noise ratio (SNR) (9–11).
Other, more recent techniques include dressed-
state approaches (12, 13), Floquet spectroscopy
(14), and correlative measurements (15). Crucially,
the spectral resolution of all of these techniques is
limited by the state lifetime of the qubit probe.
For nitrogen-vacancy (NV) centers in diamond,
reported spectral resolutions are a few hertz at
best, even when assisted by a long-lived quan-
tum memory (16).
We introduce a simple concept in which the

frequency estimation is solely limited by the
stability of an external, classical reference clock
and the total available measurement time. Our
method takes advantage of the quantum lock-in

amplifier (9, 10), which is used to stroboscopically
sample the signal of interest. Although the ac-
quired signal is highly undersampled, we show
that the original wideband spectrum can be re-
covered by compressive sampling methods (17).
The periodic sampling further guarantees that
the SNR increases in proportion to the measure-
ment time. We demonstrate our method by re-
cording signal traces for up to 4 hours, reaching a
frequency resolution of 70 mHz and a precision of
260 nHz with SNR > 104.
Our experimental demonstrationmakes use of

a spin qubit formed by the negatively charged
NV center in diamond. The NV center is a suit-
able object for our demonstration because it can
be efficiently initialized, manipulated, and read
out at room temperature by optical and micro-
wave pulses. Furthermore, its sensing technology
is well developed (8) and addresses a broad range
of potential applications in physics, materials
science, and biology (18, 19).
Our approach (Fig. 1) relies on periodic sam-

pling of a signal x(t) in intervals of a sampling
period ts. Each sampling instance consists of
three periods, including a quantum lock-in mea-
surement of duration ta, qubit state readout
during tr, and an additional delay time td to
accommodate for experimental overhead and
adjust the sampling rate. The sampling period
is then ts = ta + tr + td.
To implement the quantum lock-in measure-

ment,weuse aCarr-Purcell-Meiboom-Gill (CPMG)
decoupling sequence (red pulses in Fig. 1). Spe-
cifically, we initialize the qubit to the +X state of
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Fig. 1. Basic concept of continuous sampling.The qubit sensor
stroboscopically probes an ac signal x(t) in intervals of the sampling period ts.
Each sampling instance k consists of sensor initialization (green), a phase
measurement using quantum lock-in detection (red pulses), and sensor
readout (yellow). A sensor output yk is proportional to the quantum phase fk
and to the instantaneous value of x(tk) at time stamp tk (blue dots). A time

trace {yk} of sensor outputs therefore contains the undersampled signal
x(tk) (gray oscillation). In our experiment, the sensor qubit was implemented by
the electronic spin of a NV center in diamond. A laser pulse was used
for initialization and nuclear-spin–assisted optical detection for readout.
Quantum lock-in detection was implemented by a CPMG sequence with
interpulse spacing t and either 16 or 32 p pulses (materials and methods) (30).
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theX basis andmodulate it by a series of p pulses
with interpulse spacing t. This defines the lock-
in detection frequency fLI = m/(2t), where m =
1,3,5,... is the harmonic order. The frequency band-
width of the lock-in is approximately fLI ± 1/(2ta)
(2, 10). For an ac signal x(t) = Wcos(2pfact) with
a frequency fac ≈ fLI within this bandwidth, the
quantum phase accumulated after time ta is

fk ¼ 2ta
p

xðtkÞ ð1Þ

where tk marks the start of the lock-in measure-
ment, and W is the signal amplitude in units of
angular frequency (supplementary text 1). Cru-
cially, although the quantum phase is accumu-
lated over an extended time interval [tk, tk + ta],
its value reflects the instantaneous value of x(t)
at time t = tk. To read out the quantum phase,
the quantum state is measured in the Y basis,
yielding a probability

pk ¼ 1

2
ð1� sinfkÞ ≈

1

2
ð1� fkÞ ð2Þ

to find the system pointing along the −Y direc-
tion. The approximation is for small jfkj≪p=2
within the sensor’s linear range (20). Optical
readout finally converts the projected state into a
photon number yk. Because state projection and
optical readout are stochastic processes, yk is a
random variable

yk ¼ Pois½Cð1� DBn½pk�Þ� ð3Þ
where Bn is a Bernoulli process, which takes the
value 1 with a probability of pk and the value 0
with probability 1 − pk, and Pois is a Poisson pro-
cess that reflects the photon shot noise. C is a
variable readout gain and D is the optical contrast.
By collecting a time trace of N measurement

outputsfykgNk¼1 at sampling times tk = kts, we can
sample the signal x(t) at a sub-Nyquist rate fs =
1/ts. Hence, a Fourier transform of the time trace
reveals a discrete undersampled spectrumof x(t).
Crucially, the number of samples N can be made
as large as desired, allowing for a frequency re-
solution df = fs/N that is arbitrarily fine.
To implement our continuous sampling tech-

nique, we used the qubit formed by the mS = 0
andmS = –1 spin sublevels of single NV centers
located in diamond nanopillar waveguides (ma-
terials and methods). At a bias field of 457 mT
applied along the NV symmetry axis, the transi-
tion frequency between these states is 9916MHz.
We initialized the qubit using a 532-nm laser
pulse and a microwave p/2 pulse and detected
the qubit state using a phase-shifted p/2 pulse
followed by optical readout. We used an indirect
readout scheme in which the final qubit state
was first stored in the 15N nuclear spin (I = 1/2),
serving as amemoryqubit, andwe then repetitively
read out the 15N spin state by a nuclear quantum
nondemolition (QND) measurement (21, 22). By
varying the number of QNDmeasurements n, we
could adjust the readout gain C between 0 and
~230 photons. The optical contrast was D ≈ 0:35.
As a first illustration of the continuous sam-

pling technique, Fig. 2, A and B, show a time
trace and spectrum of an amplitude-modulated

(AM) magnetic test signal with carrier frequency
fc = 601.2547 kHz andmodulation frequency fAM=
10 mHz. The test signal had an amplitude of
~170 nT, corresponding toW = 2p × 4.7 kHz, and
was generated by passing an ac current through
a nearby wire. The signal contained three com-
ponents at frequencies fc and fc ± fAM, with a
power ratio of 1:4:1. The frequency resolution
df of the spectrum, obtained from a time trace of
1-hour duration, was df = 1/T = 278 mHz (Fig. 2B,
right inset). Because our signalwas undersampled,
the abscissa in Fig. 2B indicates the detuning
from fc rather than the absolute frequency. The
observedmicrohertz frequency resolution and the
consistent amplitude ratio between the carrier

and side peaks illustrate the capabilities of our
method.
Though our strategy allows for an arbitrary

frequency resolution df, we are more interested
in how precisely we can determine a signal’s line-
width and center frequency in the experiment.
Figure 2C depicts the decrease in the fitted
linewidth parameter g with increasing measure-
ment time T for four signals. Signals (i) to (iii)
were produced by amplitude modulation, as in
Fig. 2B, and had zero intrinsic linewidth, gint = 0.
The linewidth parameter for these signals scaled
with gº T −1, which represents the Fourier trans-
form limit of the continuous sampling method.
The T−1 scaling is expected to continue until the
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Fig. 2. Continuous sampling of ac magnetic signals. (A) A 1.26-s excerpt of a 1-hour time trace
sampled at ts = 4.2 ms. The vertical axis shows photon counts. The telegraph-like behavior results
from the stochastic quantum state projection. (B) Fourier spectrum (power) of the full 1-hour time
trace. Three peaks are visible that correspond to the central and side peaks of the amplitude-
modulated signal. The horizontal axis indicates the detuning from the carrier frequency. The insets
show the noise floor (left inset) and the frequency resolution (right inset) of the spectrum. a.u.,
arbitrary units. (C) Fitted linewidth parameter g as a function of total measurement time T for four
signals. Data points (i) to (iii) originate from coherent signals and data points (iv) from an incoherent
signal with an artificial line broadening of gint = 0.76 mHz. Original spectra are presented in fig. S3.
(D) Uncertainty in the fitted peak frequencies for the different peaks. Solid and dashed lines are
guides to the eye.
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phase noise in the reference clock or the frequency
jitter in the signal generator become dominating.
Signal (iv), on the other hand, was artificially
broadened by frequencymodulationwithGaussian
noise tomimic a nonzero intrinsic linewidth gint>

0. The linewidth parameter for signal (iv) initially
also decreasedwith theT−1 scaling but leveled out
as g approached gint. Figure 2D further shows the
fit errors in the peak frequencies for all signals.
Here an observed T−1.5 scaling reduced to T−0.5

once the intrinsic linewidth became dominating,
as expected for the scaling of the spectral am-
plitude variance (supplementary text 2).
We next examined how the sensitivity of the

sensor can be optimized. To quantify the sensitivity,
we compared the peak amplitude Yjwith the stan-
dard deviation sY of the noise floor in the power
spectrum (Fig. 2B). This defines a power SNR

SNR ¼ Yj

sY
ð4Þ

Assuming that the entire signal power is con-
centrated in a single Fourier component Yj of the
spectrum (i.e., that the linewidth of the signal is
smaller than df ), it follows fromEqs. 2 and 3 that

Yj ≈
1

16
N2C2D2f2max ð5Þ

where fmax = 2taW/p is the signal amplitude ex-
pressed in units of the accumulated phase (sup-
plementary text 3). The approximation is again
for small signals within the linear response of the
lock-in (Eq. 2). The noise sY is the sum of two
contributions: one fromquantumprojection noise
with variance 1

4NC
2D2 and one from optical shot

noise with variance NC 1� D
2

� �
. The SNR becomes

SNR ¼
1
16NC

2D2f2max
1
4C

2D2 þ C 1� D
2

� � ð6Þ

Because N = Tfs, the SNR improves proportional
to the duration of the time record T.
To further optimize the SNR, we adjusted the

phase amplitude fmax and the readout gain C.
We achieved this by varying the sensing time ta
and the readout time tr. First, we increased the
sensing time ta so that the quantumphase covered
the full linear range of the lock-in, typically fmax

~ 0.5. Although larger fmax values are possible, the
response of the lock-in becomes nonlinear (20),
and harmonics are generated in the spectrum.
This complicates the interpretation while pro-
viding little further improvement in the SNR
(supplementary text 1 and figs. S4 and S5). Next,
we turned up the gain C until sensor readout
became dominated by quantumprojection noise.
In our experiment, we could adjust C by varying
the number n of QND measurements of the
nuclear memory qubit, where C(n) ≈ n × 0.105
photons and tr ≈ n × 2.32 ms. Figure 3 plots the
SNR for signal (ii) in Fig. 2C as a function of n.
The SNR increased rapidly for small n until it
saturated around n ≈ 260, which corresponded
to the threshold gain Cthresh ¼ 4=D2 � 2=D ≈ 27,
where shot noise and quantum projection noise
are balanced (2). Increasing the gain beyondCthresh
only marginally improved the SNR and eventually
even degraded it. The degradation at very high
gains was due to the imperfection of the nuclear
quantummemory, which became depolarized un-
der optical illumination (22).
Thus far, all of our measurements reported

relative rather than absolute signal frequencies.
The measurement of absolute signal frequencies
is hindered by the large undersampling. For ex-
ample, in Fig. 2B, a signal of frequency fc∼601 kHz
was sampled at fs = 0.237 kHz, which is about

Boss et al., Science 356, 837–840 (2017) 26 May 2017 3 of 4

Fig. 3. Signal-to-noise ratio (SNR) as a function of the readout gain C. The readout gain is
adjusted via the number of repetitive QND measurements n of the nuclear memory qubit. Blue dots
are the experimental data and represent the mean SNR of six time traces with N = 3.85 × 105

samples. The dashed line represents the ideal SNR predicted by theory (Eq. 6). The solid line, in
addition, takes the depolarization of the nuclear 15N memory qubit into account (supplementary text
3). The filled blue region indicates the standard error of the fit. From our data, we extract a 15N
depolarization rate G ≈ 1.4 × 10−4 per readout. The corresponding optimum SNR (n = 260) for a
1-hour measurement interval is 1.2 × 104 (materials and methods) (30).

Fig. 4. Wideband spectral reconstruction based on compressive sampling. (A) Undersampled
spectra obtained from time records with i = 1,...,7 random chosen sampling rates fs,i. The data
represent records of duration T = 2 s that were averaged for 1.5 hours. (B and C) Reconstructed
wideband spectrum containing l = 7 tones in two subbands.The insets show the individual tones with
frequencies f (i) = fc – 15 Hz, f (ii) = fc, f

(iii) = fc + 15 Hz, and f (iv) = fc + 1000 Hz (where fc = 400.75 kHz),
as well as fðvÞ ¼ fc′� 40 Hz, fðviÞ ¼ fc′, and fðviiÞ ¼ fc′þ 40 Hz (where fc′ ¼ 1202:25 kHz).The noise reflects the
incomplete image rejection of the reconstruction procedure.

RESEARCH | REPORT

 o
n 

M
ay

 2
5,

 2
01

7
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://science.sciencemag.org/


5 × 103 times slower than theNyquist rate.Wenow
discuss a strategy that makes use of compressive
sampling to overcome this limitation. We imple-
mented this strategy by recording a set of time
traces with slightly different sampling rates fs.
Compressive sampling (CS) exploits our prior

knowledge about the sparsity of the wideband
spectrum (17). Suppose the vector X

→
holds the

Fourier components of thedesiredwideband spec-
trum sampled at or above the Nyquist rate, and
the vectors Y

→

i represent a small set of p under-
sampled spectra with i = 1,2,...,p. We can express
our measured undersampled spectra Y

→

i by the
linear system

Y
→

1

Y
→

2

⋮
Y
→

p

0
BBB@

1
CCCA ¼

F1

F2

⋮
Fp

0
BB@

1
CCAX

→ ð7Þ

whereFi are sampling matrices folding the wide-
band spectrum into the bandwidths of the under-
sampled spectra (23). To reconstruct the wideband
spectrum,we solve Eq. 7 forX

→
. Although the linear

system is highly underdetermined, a solution can
be found if X

→
is sparse (i.e., if it is substantially

nonzero for only a few frequencies) and the Fi

are mutually incoherent.
To demonstrate wideband spectral reconstruc-

tion, we implemented a CS scheme to recover
l = 7 tones from a set of p = 7 undersampled
spectra (supplementary text 4). We adjusted the
sampling frequencies fs via the delay time td. To
ensure incoherencebetween the samplingmatrices,
we randomized our choices of td. Figure 4 shows
the undersampled spectra together with the re-
constructedwidebandspectrum.The tones in these
spectra were contained in two 20-kHz-wide fre-
quency bands, one centered at the first harmonic
of the lock-in filter function at 400kHz and one at
the third harmonic at 1200 kHz. Although the SNR
of the reconstructed spectrum is reduced because
of incomplete image rejection, the experiment
clearly demonstrates that the absolute peak fre-

quencies can be unambiguously recovered. The
image rejection can be improved by increasing the
number of spectra p.
Our experiments demonstrate that a quantum

sensor can achieve a frequency resolution far
beyond its intrinsic state lifetime, limited only
by the stability of an external synchronization
clock. Looking forward, quantum sensing with
arbitrary frequency resolution has important ap-
plications in sensitive magnetic and electric field
detection. A high spectral resolution is, for ex-
ample, essential for nanoscale nuclear magnetic
resonance (NMR) imaging experiments (24, 25),
in which minute spectral shifts can be used to
infer atomic positions, internuclear distance vec-
tors, andmolecular connectivity. Spectral addres-
sability is also important for operating large-scale
quantum registers in solid-state quantum sim-
ulators (26). Although NMR spectra are often
broadened by internuclear interactions, a rich
repertoire of line narrowing and isotope dilution
techniques exists for refining the spectral resolu-
tion (27, 28). Ultrahigh-resolution NMR is able to
resolve couplings of a few millihertz (29) under
favorable conditions and achieves <20-Hz line-
widths, even for 1H in dense solid samples (28).
Finally, continuous sampling can provide sen-
sitivity gains when measuring weak, modulated
signals. This is because of the high duty cycle
achievedby continuouslyprobing the signal during
the measurement time T, combined with the
favorable º T scaling of the SNR.
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magnetic field (megahertz bandwidth) with submillihertz resolution. Such enhanced precision 
compared with a highly stable oscillator. This allowed them to measure the frequency of an oscillating
Jordan). They applied a sequence of pulses to the NV center, the timing of which was set by and 

 successfully enhanced this sensitivity by several orders of magnitude (see the Perspective byal.
et and Boss et al.atomic compass needle that is sensitive to tiny variations in magnetic field. Schmitt 

The quantum properties of the nitrogen vacancy (NV) defect in diamond can be used as an
Enhancing quantum sensing
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