
www.sciencemag.org/content/356/6340/837/suppl/DC1 

 

 

 

 

 

Supplementary Materials for 
 

Quantum sensing with arbitrary frequency resolution 

 J. M. Boss,* K. S. Cujia,* J. Zopes, C. L. Degen† 
 

*These authors contributed equally to this work. 

†Corresponding author. Email: degenc@ethz.ch 

 

Published 26 May 2017, Science 356, 837 (2017) 

DOI: 10.1126/science.aam7009 

 

This PDF file includes: 

 

Materials and Methods 

Supplementary Text 

Figs. S1 to S5 

References  

 



2

Materials and Methods

Experimental setup

Experiments were performed with a custom-built confocal microscope equipped with a green 532 nm exci-
tation laser and a single photon detector, as well as microwave and radio frequency sources to control the
NV center spin and the 15N nuclear spin, respectively. The NV centers were created by 15N+ ion implan-
tation at an energy of 5 keV and subsequent annealing at 850◦ C. We chose the 15N species to discriminate
implanted NV centers from native (14N ) NV centers. However, the isotope species played no role for the
present experiments. We etched nano-pillars into the diamond surface (31, 32) to increase the photon col-
lection efficiency by a factor of 10 to 15 compared to a non-structured diamond surface. The continuous
wave (CW) photon count rate was between 400 and 700 kC/s.

Microwave pulses were synthesized on an arbitary waveform generator (Tektronix AWG5012C) and up-
converted to ∼ 10 GHz using a local oscillator (Hittite HMCT2100) and a single-sideband mixer (IQ0618,
Marki microwave). Radio-frequency pulses were synthesized on a second arbitrary waveform generator (NI
5421, National Instruments). Microwave and radio-frequency pulses were amplified separately and then
combined using a bias T. The pulses were delivered to the NV center using a coplanar waveguide (CPW)
deposited on a quartz cover slip in a transmission line geometry. The transmission line was terminated by
an external 50 Ω load.

A cylindrical permanent magnet was used to create a magnetic bias field of 450 − 500 mT at the location
of the NV center. At this high bias field repolarization of the 15N nucleus under optical illumination (33)
is greatly suppressed. This allowed for a large number (n > 1000) of repetitive nuclear spin readouts to be
performed. The magnetic field direction was aligned with the NV symmetry axis by adjusting the relative
location of the permanent magnet. The alignment was optimized by maximizing the CW photon count rate
and by minimizing the depolarization of 15N nuclear spin states under repetitive readout. The magnetic
field drifted by typically a few Gauss over the course of an experiment, corresponding to a variation in the
EPR frequency of ∼ 1 MHz. Because the drifts were slow, we could continuously track the EPR resonance
during a measurement and adjust the microwave excitation frequency. In this way, the detuning between the
EPR resonance frequency and the microwave frequency could be reduced to < 100 kHz.

Sensing sequence

A schematic of the sensing sequence is shown in Fig. S1.

To arm the sensor, we initialized both the electronic and the 15N nuclear spins. The electronic spin was
initialized by means of a ∼ 1.5 µs laser pulse. The nuclear 15N spin was initialized by a sequence of
two c-NOT gates followed by a laser pulse to reset the electronic spin. The initialization efficiency was
not measured, but is expected to be > 80% for the electronic spin (34) and > 70% for the nuclear spin
(35), respectively. The first (electronic) c-NOT gate included a selective microwave π pulse on the lower
hyperfine resonance (∼ 9922.22 MHz) of the electronic mS = 0 ↔ mS = −1 transition. The second
(nuclear) c-NOT gate included a selective radio-frequency π pulse on the higher frequency hyperfine reso-
nance (∼ 1.97 MHz) of the nuclear mI = −1/2 ↔ mI = +1/2 transition. The duration of the selective
microwave pulse was ∼ 290 ns and the duration of the selective radio-frequency pulse was ∼ 40 µs.

Quantum lock-in detection was implemented by a Carr-Purcell-Meiboum-Gibbs (CPMG) sequence of pe-
riodic microwave π pulses. The sequence consisted of K pulses with an interpulse delay τ . The interpulse
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delay was chosen to approximately match the expected a.c. signal frequency fac as fac ≈ m/(2τ), where
m = 1, 3, 5, ... is the harmonic order of the sequence. The value of τ can be determined either by a prior
knowledge about fac, or by scanning a range of τ values. The total duration of the CPMG sequence was
ta = Kτ . To optimize the sequence, we adjusted the number of pulses K so that the maximum phase
pick-up was ∼ 0.5.

The readout of the final NV state was performed indirectly via a repetitive quantum non-demolition mea-
surement of the 15N nuclear spin (35). For this purpose, the final electronic spin state was stored in the
15N spin state using a nuclear c-NOT gate and a laser pulse for resetting the electronic spin state. Next,
the nuclear spin state was read out using an electronic c-NOT gate followed by a short (600− 800 ns) laser
pulse. The nuclear read-out was repeated n times (with n up to 2,000). The duration of one nuclear readout
was tr ≈ 2.32 µs. The total readout duration was n × 2.32 µs. The integrated counts over n repetitive
readouts correspond to a single sample record yk.

The sensing sequence incorporated an additional delay time td. This delay time was used for initialization
and for accommodating a separate short pulse sequence to continuously track the NV resonance frequency
and correct for drifts. The delay time was also used to adjust the sampling time ts = ta + tr + td in the
compressed sampling experiment.

Experimental parameters

The following tables give the parameters that went into the measurements shown in Figures 2, 3, and 4.

Parameters for Figure 2A-B

B field 546.59 mT

NV initialization laser pulse 2 µs

Repetitive readout laser pulse 600 ns

Selective electronic pulse duration 290 ns

Selective nuclear pulse duration 30 µs

CPMG pulses K 32

CPMG duration ta 26.622 µs

Sampling period ts 4.21152 ms

Number of repetitive readouts n 1000

We have evaluated the amplitude of the a.c. magnetic field detected in this experiment. The CPMG duration
ta was chosen such that the amplitude of the probability was ∼ 0.25. According to Eq. (2), the amplitude
of the phase was ∼ 0.5. According to Eq. (1), the amplitude of the signal Ω was ∼ 2π × 4.7 kHz. The
amplitude of the a.c. magnetic field was Ω/γe ∼ 170 nT, where γe = 2π × 28 GHz/T is the electron
gyromagnetic ratio.
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Parameters for Figures 2C-D and Figure S3

B field 456.54 mT

NV initialization laser pulse 1 µs

Repetitive readout laser pulse 800 ns

Selective electronic pulse duration 290 ns

Selective nuclear pulse duration 40 µs

CPMG pulses K 16

CPMG duration ta 6.654 µs

Sampling period ts 1.31524 ms

Number of repetitive readouts n 498

Parameters for Figure 3

B field 456.54 mT

NV initialization laser pulse 1 µs

Repetitive readout laser pulse 800 ns

Selective electronic pulse duration 290 ns

Selective nuclear pulse duration 40 µs

CPMG pulses K 16

CPMG duration ta 6.654 µs

Sample records N 385263

Sampling period ts 1.31524 ms (for datapoints where n ≤ 498)
Sampling period ts 5.16468 ms (for datapoints where n > 498)

We have used this experiment to determine the optimum SNR for a one-hour measurement interval. In
the plot, the SNR at the threshold gain of Cthresh = 27 (n = 260) was 1.0 · 103. The duration of this
measurement was T = Nts = 294 s, where N = 3.85 · 105 was the number of samples and ts = 0.763 ms

was the sampling period. According to Eq. (6), this converts to an SNR of 1.0 · 103 × (1 h)/T = 1.2 · 104

for a one-hour interval.

Parameters for Figure 4

B field 456.69 mT

NV initialization laser pulse 1 µs

Repetitive readout laser pulse 800 ns

Selective electronic pulse duration 290 ns

Selective nuclear pulse duration 40 µs

CPMG pulses K 16

CPMG duration ta 19.965 µs

Number of repetitive readouts n 498
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The following table gives the sampling rates f (i)
s for the spectra shown in Fig. 4A:

i f
(i)
s (Hz)

1 752.6719855487
2 750.7507507508
3 749.4454103963
4 747.6747315848
5 746.0904858541
6 743.7819826253
7 742.6772027806
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Supplementary Text 1: Details of the quantum lock-in protocol

Our implementation of the quantum lock-in protocol is based on a Carr-Purcell-Meiboum-Gibbs (CPMG)-
type sequence of K periodic π-pulses. Assuming the qubit is in the |0〉 state (the mS = 0 spin state) at the
beginning of the sequence, the first (π/2)Y -pulse rotates it into the |+X〉 = 1√

2
(|0〉+ |1〉) state, where |1〉

corresponds to the mS = −1 spin state. The qubit then evolves under a series of π-pulses with inter-pulse
delays τ . At the end of the CPMG sequence, the resulting state is rotated again by π/2 but this time around
the X axis. This leaves the qubit in the superposition state

|ψ〉 ≡ sin

(
φ

2
+
π

4

)
|0〉 − cos

(
φ

2
+
π

4

)
|1〉 , (S1)

where we omit a global phase. φ is the phase acquired by the qubit during the decoupling sequence. The
readout projects the qubit onto either |0〉 or |1〉. The probability p for projection onto |1〉 is

p = |〈1|ψ〉|2 =
1

2
(1− sinφ) . (S2)

Next we consider how the phase φ relates to the a.c. signal. We assume that the a.c. signal is given by the
oscillating field

x(t) = Ω cos(2πfact+ α), (S3)

where Ω is the amplitude (in units of angular frequency), fac the frequency, and α the initial phase of the
signal at time t = 0 after the first π/2 pulse was applied. For the specific situation of our experiment, where
the qubit is an electronic spin, the a.c. signal is generated by a magnetic field,

x(t) = γeBz cos(2πfact+ α) , (S4)

where Bz = Ω/γe represents the magnetic field component along the qubit’s quantization axis, and γe =

2π × 28 GHz/T is the electron gyromagnetic ratio. For simplicity, we in the following assume that α = 0

because we always measure a relative time. The phase acquired by the qubit is then given by

φ(t) =

∫ ta

0
dt′x(t+ t′)g(t′) , (S5)

where g(t′) = (−1)[t′/τ ] is the modulation function (2) of the CPMG sequence (see Fig. S2). For an even
number of pulses K, the phase accumulated under the modulation function of the CPMG sequence is (2)

φ(t) = − 8

2πfac
Ω cos

(
2πfac

[
t+

1

2
Kτ

])
sin
(
2πfac

Kτ
2

)
sin (2πfacτ)

sin
(

2πfac
τ

4

)2
sin
(

2πfac
τ

2

)
. (S6)

When the inter-pulse delay τ is approximately adjusted to the frequency of the a.c. signal, τ ≈ m/(2fac)

(where m = 1, 3, 5, ... is the harmonic order), the above general formula simplifies to

φ(t) = (−1)q
2ta
mπ

Ω cos(2πfact) = (−1)q
2ta
mπ

x(t), (S7)

where q = m−1
2 . As a result, the phase φ(t) is directly proportional to the instantaneous value of the signal

x(t). Thus, by using a series of quantum lock-in measurements, we can record how the ac signal x(t)

evolves with time.
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To calculate the transition probability, we insert φ(t) into Eq. S2,

p(t) =
1

2

(
1− sin

[
(−1)q

2ta
mπ

x(t)

])
=

1

2
(1− sin [φmax cos(2πfact)]) . (S8)

φmax is the amplitude of the a.c. signal expressed in units of the accumulated phase,

φmax = (−1)q
2taΩ

mπ

m=1
=

2taΩ

π
, (S9)

where the last expression (m = 1) represents our experimental situation.

For small φ, the sine term is linear in φ and the probability is

p(t) ≈ 1

2
(1− φmax cos(2πfact)) , (S10)

When several signals are present, the probability p(t) simply is a linear combination of the individual
contributions, as long as the maximum phase φ is within the linear range of the sine.

Conversely, when φmax & 1, the response of p becomes nonlinear (20). Specifically, for a single signal with
frequency fac and amplitude φmax,

p(t) =
1

2
−
∞∑
k=0

(−1)kJ2k+1(φmax) cos [(2k + 1)2πfact] , (S11)

where Jk(φmax) is the Bessel function of first kind. The probability p(t) now contains harmonics at 3fac,
5fc, etc. of the original signal frequency fac whose amplitudes are given by Bessel functions. Fig. S4A
shows simulated spectra for values of φmax between 0.5 and 14. Fig. S4C further shows that the combined
power of all harmonic peaks, given through

∑∞
k=0 J

2
2k+1(φmax), saturates as φmax & 1 and approaches

0.25 as φmax →∞.

Finally, if several signals are present with φmax in the nonlinear regime, frequency mixing occurs (Fig. S4B).
Because of the harmonic generation and frequency mixing, spectra acquired in the nonlinear regime are
difficult to interpret and it is advantageous to stay in the linear range of the sensor.

To confirm the theoretical analysis above, we recorded spectra for different values of φmax exceeding the
linear regime. Fig. S5A shows these measurements. We assigned the peaks in the spectra to their corre-
sponding harmonic order. Thereby, we find harmonics up to the order 2k + 1 = 21 for the measurement of
the strongest signal where φmax = 21.6. Furthermore, in Fig. S5B, we fitted the the peak height for the first
4 harmonics to their Bessel functions squared, finding good agreement with Eq. (S11).



8

Supplementary Text 2: Scaling of frequency estimation

In Fig. 2E of the main text we investigate the scaling of the uncertainty of the estimated center frequency
with increasing total measurement time T . We find that the uncertainty scales as T−1.5 if the intrinsic
linewidth parameter γint of the signal is smaller than the frequency resolution δf = 1/T , and that it scales
as T−0.5 if γint is larger than δf . This section serves to motivate these two scaling laws.

We first consider the situation where the intrinsic linewidth of the spectral peak is larger than the frequency
resolution, γint > δf . This situation leads to a T−0.5 scaling for the uncertainty in the center frequency.
We estimate the uncertainty by a least-squares fit to a Lorentzian. Let hβ(f) be the model function for
the Lorentzian where β = (fc, γ) are the model parameters, fc the center frequency, and γ the linewidth
parameter. The variance of the estimated parameters β̂i (i = 1, 2) can be estimated via the covariance
matrix,

Σ =
(
JTJ

)−1
σ2

res , (S12)

where

J =

(
∂hβ̂ (fj)

∂βi

)
j,i

(S13)

is the Jacobian matrix of the model function at the estimated parameter values for the measured frequencies
fj and

σ2
res =

1

N − 2

N∑
j=1

(
hj − hβ̂(fj)

)2
(S14)

is the variance of the residuals (noise variance), respectively. N = T/ts is the number of samples and ts is
the sampling time. The variances of the individual model parameters are then the diagonal elements of the
covariance matrix. Thus, the uncertainty in the estimated center frequency is given by the square root of the
first diagonal element of the covariance matrix,

σfc =
√

Σ11 =

√[
(JTJ)−1

]
11
σ2

res . (S15)

Since the SNR saturates for peaks whose intrinsic linewidth is well resolved (γint > δf ), we know that the
variance of the residuals stays constant for longer measurement times (see Eq. (S38)). However, the number
of resources (number of frequency points in the spectrumN ) used for the fit increases linearly together with
the measurement time T .

To find the scaling of the uncertainty, we have to evaluate the first diagonal element of
(
JTJ

)−1 in the limit
of a well resolved linewidth,

(
JTJ

)−1
=

 ∑N
j=1

(
∂
∂fc
hβ̂(fj)

)2 ∑N
j=1

(
∂
∂γhβ̂(fj)

)(
∂
∂fc
hβ̂(fi)

)
∑N

j=1

(
∂
∂γhβ̂(fj)

)(
∂
∂fc
hβ̂(fj)

) ∑N
j=1

(
∂
∂γhβ̂(fj)

)2

−1

. (S16)
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Since we assume γint > δf , we can approximate the sums with their corresponding integrals. For the first
diagonal entry, we find

[(
JTJ

)−1
]

11
=

fs
2N

(∫ fs
2

0

(
∂

∂fc
hβ̂(f)

)2

df

)−1

︸ ︷︷ ︸
=u(β̂)

=
fs
2N
× u(β̂) , (S17)

where the factor u(β̂) is assumed to be approximately constant, since the estimated parameters β̂ are at a
minimum. Hence, the uncertainty of the center frequency scales as

σfc ∝ N−0.5 ∝ T−0.5. (S18)

In the situation where the intrinsic linewidth is smaller than the frequency resolution, γint < δf , the ap-
proximation in Eq. (S17) is not valid. Furthermore, the number of resources for fitting the center frequency
is not increasing with longer measurement times. We are given only three points in the spectrum to estimate
the center frequency value: The point in the spectrum carrying most of the power and the two neighboring
points left and right to that center peak. However, the SNR increases linearly and thus the relative noise
variance decreases linearly. Therefore, the T−1 scaling of the frequency resolution given by the Fourier
transformation is boosted by T−0.5 due to the SNR scaling, resulting in a overall uncertainty scaling of

σfc ∝ T−1.5 . (S19)
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Supplementary Text 3: Details of signal-to-noise ratio derivation

This section provides the theoretical background for the signal-to-noise ratio (SNR) presented in Eqs. (4-6)
of the main manuscript. We repeat here Eq. (4) for reference,

SNR ≈ Yj
σY

. (S20)

Yj is the height of a signal peak at frequency fj in the power spectrum, and σY is the standard deviation of
the baseline noise evaluated in a frequency range where no signal is present. In the following we calculate
the expectation values for Yj and σY based on Eqs. (2,3) of the main manuscript. This will lead us to Eq. (6)
of the main manuscript.

In a first step, we calculate the expected signal that appears in the power spectrum for a time trace {yk}N−1
k=0

of photon counts, where yk was sampled at times tk = kts, ts is the sampling period and N is the number
of samples. To compute the power spectrum we first perform a discrete Fourier transform (DFT) of the time
trace and then calculate the absolute square of the individual components. The individual components of
the power spectrum are given by

Yj = |ŷj |2 =

∣∣∣∣∣
N∑
k=1

yke
−2πikj

∣∣∣∣∣
2

. (S21)

Note that our definition of the DFT does not include any normalization by the number of points, i.e. , we
do not normalize the DFT by N or

√
N . Therefore, the power in each component grows with the square of

N . The expected power in component Yj is

E [Yj ] =
N−1∑

k=0,l=0

E [ykyl] e
−2πikje2πilj (S22)

=

N−1∑
k=0,l=0

E [yk] E [yl] e
−2πikje2πilj +

N−1∑
k=0,l=0

cov [yk, yl] e
−2πikje2πilj (S23)

= |E [ŷj ]|2︸ ︷︷ ︸
signal contribution

+
N−1∑
k=0

var(yk)︸ ︷︷ ︸
noise contribution

. (S24)

The last equation holds because any two samples at different times are independent. We find that the power
contained in component Yj is the sum of two contributions, one by the a.c. signal (first term) and one by the
noise (second term). The expected noise contribution is given by

N−1∑
k=0

var(yk) = Nσ2
y (S25)

where σ2
y = var(yk) for any k. This term represent the noise floor in the spectrum that is unrelated to the

a.c. signal. In particular, as we will show below, this noise floor is present at any frequency, and has no
frequency dependence, i.e. , the noise floor is flat.

Next, we determine the noise entering the SNR. The noise is given by the standard deviation of Yj ,

σY = std (Yj) . (S26)
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To calculate σY , we consider a power spectrum of a random stationary process without any additional a.c.
signal, i.e. , we assume p(tk) = 0.5. We indicate quantities corresponding to this signal by a tilde, e.g.
{ỹk} would be its time trace of measurement outcomes. Let R̃j and Ĩj be the real and imaginary parts of
ˆ̃yj = R̃j+iĨj . Then, for largeN , the central limit theorem implies that R̃j and Ĩj have a normal distribution
with zero mean and variance σ̃2, where σ̃2 is unknown. R̃j and Ĩj are independent and identically distributed
for j < N

2 . We now write the power as sum of the power in the two quadratures

Ỹj =
∣∣∣ˆ̃yj∣∣∣2 = R̃2

j + Ĩ2
j . (S27)

Furthermore, we realize that

1

σ̃2
Ỹj =

1

σ̃2
R̃2
j +

1

σ̃2
Ĩ2
j ∼ χ2(2) (S28)

is χ-square distributed with two degrees of freedom. This implies that

std
(
Ỹj

)
= E

[
Ỹj

]
, (S29)

i.e. , the standard deviation of the noise floor equals the expectation value of the noise floor. Using Parseval’s
theorem and again omitting a static offset, the standard deviation of the noise floor can also be related to the
noise in the time trace,

std
(
Ỹj

)
= E

[
Ỹj

]
=

N−1∑
k=0

var(ỹk) ≈
N−1∑
k=0

var(yk) = Nσ2
y . (S30)

To obtain the SNR, we divide the expected signal |E [ŷj ]|2 by the noise standard deviation Nσ2
y ,

SNR =
|E [ŷj ]|2

Nσ2
y

=
E [Yj ]−Nσ2

y

Nσ2
y

=
E [Yj ]

Nσ2
y

− 1 ≈ E [Yj ]

Nσ2
y

=
E [Yj ]

σY
, (S31)

where the approximation is for large SNR, which was the case in our measurements. This corresponds to
Eq. (4) in the main manuscript.

In a next step, we explicitly calculate the SNR that applies to our detection scheme. The expected a.c. signal
contribution is given by

|E [ŷj ]|2 =

∣∣∣∣∣E
[
N−1∑
k=0

yke
−2πikj

]∣∣∣∣∣
2

(S32)

=

∣∣∣∣∣
N−1∑
k=0

E [yk] e
−2πikj

∣∣∣∣∣
2

(S33)

=

∣∣∣∣∣
N−1∑
k=0

Cε p(tk)e
−2πikj

∣∣∣∣∣
2

(S34)

=

∣∣∣∣∣
N−1∑
k=0

Cε
1

2
φke
−2πikj

∣∣∣∣∣
2

(S35)

=
1

4
(Cε)2

∣∣∣φ̂j∣∣∣2 , (S36)
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where we have omitted static offsets in Eq. (S34) and Eq. (S35) that only contribute to the j = 0 component.
Here, φ̂j are Fourier components of the phases φk acquired by the quantum lock-in instances. We find that
the signal power is proportional to the square of the readout gain C and the square of the optical contrast ε.

The noise variance σ2
y is calculated from Eq. (3) in the main manuscript, which includes two random pro-

cesses, a Bernoulli process associated with the quantum state projection and a Poisson process associated
with the photon shot noise. Both processes contribute to the noise variance. To compute the contribution by
the Bernoulli process, we assume that the state probability p(tk) is oscillating closely around the p = 0.5

bias point. Then, the variance in p is 1
4 and the corresponding variance in yk is 1

4(Cε)2. The contribution
by the Poisson process has a variance that is equal to the mean of yk, which is 1

2C(1− ε/2). The total noise
variance σ2

y is then

σ2
y =

1

4
C2ε2 + C

(
1− ε

2

)
. (S37)

This yields the explicit expression for the SNR,

SNR =
1
4(Cε)2|φ̂|2

N
[

1
4(Cε)2 + C(1− ε

2)
] =

1
4(Cε)2 N

1
4(Cε)2 + C(1− ε

2)
|φ̂j/N |2 . (S38)

This SNR applies to a general Fourier component of the spectrum Yj . If the spectrum has very narrow
peaks, such that the entire signal power is concentrated in a single Fourier component Yj , we have

|φ̂j/N |2 =
1

4
φ2

max . (S39)

This situation corresponds to the case where the intrinsic linewidth γint of the signal is smaller than the
frequency resolution δf , which is the typical situation for our experiments. In this situation, the SNR is

SNR =
1
16(Cε)2 Nφ2

max
1
4(Cε)2 + C(1− ε

2)
. (S40)

This is Eq. (6) of the main manuscript. If the signal has only one frequency component and the lock-in is
tuned to that frequency, φmax = 2taΩ/π (see Eq. (S9)).

Eq. (S40) represents the SNR for an ideal read-out process. In our experiments, the read out was compro-
mised by the limited robustness of the nuclear 15N quantum memory. With each quantum non-demolition
(QND) measurement of the memory qubit, there is a finite chance of depolarizing the qubit and losing the
stored information. Although this effect is rather weak in our case, with a spin flip probability per QND
measurement of Γ . 0.1%, it needs to be considered for large QND repetitions n.

Because the depolarization probability is small, we can restrict ourselves to the following two cases: Either
there are zero nuclear spin flips during readout, or there is a non-zero number of spin flips. In the first
case, the original state is detected during the entire readout and we gain the correct information about
the transition probability p(tk). By contrast, in the second case, the information is lost along the readout
process. The probability distribution of photon counts yk is given by

f (yk|p (tk)) = e−Γn f (yk| p (tk) ∧ no flip ) + (1− e−Γn)f̃ (yk| flip ) . (S41)

where n is the number of QND repetitions. We note that the probability distribution function f̃ (yk| flip )

in the case of a non-zero number of spin flips is independent of the transition probability p(tk). Similar to
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Eq. (S36), we can compute the expected power in the spectrum as

|E [ŷj ]|2 =
1

4
(Cε)2 e−2Γn

∣∣∣φ̂j∣∣∣2 , (S42)

This yields a modified SNR given by

SNR =
1
16(Cε)2 Ne−2Γnφ2

max
1
4(Cε)2 + C(1− ε

2)
. (S43)

We have used this equation to fit the data in Fig. 4 of the main text and to extract values for the readout gain
C, the optical contrast ε and the spin flip rate Γ.
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Supplementary Text 4: Details of the compressive sampling protocol

Due to the nature of the lock-in measurement and the long sampling period ts, we acquire sample records
{yk} at rates fs = 1/ts that are far below the Nyquist rate for the a.c. signals. This means that our
continuous sampling strategy enables an arbitrarily fine frequency resolution only in a narrow bandwidth,
and does not reproduce the absolute signal frequency. To reconcile the absolute signal frequency, we record
the same a.c. signal several times with slightly different sampling rates fs. In our detection scheme, we can
adjust fs by adding a small extra delay to the delay time td. We then reconstruct the wideband spectrum
based on a compressive sampling (CS) technique (17).

CS refers to the idea that certain types of signals, more exactly signals which are sparse in some basis,
can be reconstructed out of a small number of partial measurements. Specifically, suppose that we have a
discrete number of samples M of a signal x (t) with 0 < t < T . Then x (t) can be represented by a set of
basis functions ϕk (t), for example the Fourier basis ϕk (t) = ei2πfkt, as

x(t) =
M−1∑
k=0

Xkϕk (t) . (S44)

If only a few coefficients Xk are significantly non-zero, then the signal x (t) is considered sparse and its
reconstruction from a set of measurements acquired at sub-Nyquist rates becomes an optimization problem
(17, 36).

Let us assume that the signal is represented by the vector ~x = {x0, . . . , xm, . . . , xM} and that the
samples of ~x are acquired at or above a relevant Nyquist rate. Then the discrete wideband spectrum
~X = {X0, . . . , Xk, . . . , XM} of ~x is given by the set of coefficients Xk,

Xk =
M−1∑
m=0

xm exp
(
−i2πk m

M

)
, (S45)

The process of measuring an undersampled spectrum ~Yi of ~X can be viewed as the action of a sampling
matrix Φi on the target spectrum ~X . If each partial measurement ~Yi consists of Ni samples, then each
Φi has dimensions Ni × M . It has been shown that ~X can be recovered by using p ≈ sO (log(M))

partial measurements where s � M indicates the sparsity of ~X , i.e. the number of significantly non-zero
coefficients of ~X (37). The problem can be written as

~Y =


~Y1
...
~Yp

 =

 Φ1
...

Φp

 ~X = Φ ~X, (S46)

where ~Y is a vector that contains the p undersampled spectra ~Yi and Φ a vector that contains the p sampling
matrices Φi of dimensions Ni×M each. Thus, reconstruction of ~X out of the set of ~Yi requires appropriate
construction of the sampling matrices Φi and dedicated algorithms. The problem has motivated research
in the context of wideband spectrum sensing (38), where the idea is to achieve awareness of spectral op-
portunities, i.e. , to detect and fill licensed but unused portions of the electromagnetic spectrum at minimal
computational cost. For this purpose, approaches like l1 minimization or greedy pursuit algorithms have
been studied (23, 39).
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In our experiment, we implemented a compressive sensing scheme where the ~Yi represent undersampled
spectra acquired at slightly different sampling rates f (i)

s . We varied the sampling rates by adding small extra
delays to the delay time td. We then constructed a sampling matrix Φi for each spectrum ~Yi following Refs.
(23, 39) and solved the linear system (Eq. S46) by a non-negative linear least-squares solver (lsqnonneg)
in Matlab.

To successfully reconstruct ~X , suitable sampling matrices Φi need to be chosen. The reason is that we want
to avoid that two matrices Φi and Φj map the same components of ~X into different undersampled spectra
~Yi and ~Yj . To avoid such a situation, the matrices should be chosen as orthogonal or maximally incoherent
as possible. The coherence µ of the sampling matrices is obtained via the inner product of their columns

µ = max
i 6=j∈[1,M ]

|〈φi, φj〉| (S47)

where φi denotes a l2-normalized column of the matrix Φ. µ is a measure of the orthogonality of the
sampling matrices, and under appropriate construction equals 1/p (23). In such case, the spectrum ~X can
be exactly reconstructed if p > 2s− 1 (17).

We minimized the coherence of our sampling matrices by choosing random delay times td, which in turn
determine f (i)

s and therefore Ni = Tf
(i)
s . Furthermore, since the effective total measurement durations

Ti ≈ T were not identical (due to rounding requirements of the pulse generator), the frequency resolution
for a measured ~Yi and the sought after spectrum ~X are not exactly the same. We therefore interpolated the
elements of the sampling matrices Φi, which would ideally be ∈ {0, 1}, to fractional values ∈ [0...1], as

Φi

[
n′,m′

]
=
Ni

M

∞∑
l=−∞

wnm

(
δ

(
m−

⌊
(n+ lNi)

T

Ti

⌋)
+ δ

(
m−

⌈
(n+ lNi)

T

Ti

⌉))
n′ = n+

⌊
Ni

2

⌋
+ 1

m′ = m+

⌊
M

2

⌋
+ 1

wnm =

∣∣∣∣1− (m− (n+ lNi)
T

Ti

)∣∣∣∣
where bac is the floor function and dae is the ceil function. δ (a) denotes the Kronecker delta function
and |a| the absolute value. To minimize computational costs, we only reconstructed the portions of the
spectrum falling within the CPMG filter windows, i.e. , we constructed sparse matrices Φi with zeros
everywhere outside the spectral portions of interest.
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Supplementary Figure 1
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FIG. S1: Qubit gate diagram of one sensing instance. Two qubits were used, including a probe qubit (implemented
by the electronic spin of the NV center) and a memory qubit (implemented by the 15N nuclear spin of the NV center).
The top channel represents the electronic and the bottom channel the nuclear qubit. The nuclear spin was initialized
by a laser pulse (green) plus two c-NOT gates. Thereafter, the electronic qubit was initialized by another laser pulse.
The c-NOT gates were implemented by selective microwave (red) and radio-frequency (blue) inversion pulses on the
electronic and nuclear hyperfine transitions, respectively. A CPMG sequence adjusted to the frequency of interest was
then executed on the electronic qubit. The resulting state was stored in the nuclear qubit via another c-NOT gate and
subsequently read out in a repetitive quantum-nondemolition measurement (21). The readout sequence consisted of
the repetitive execution of an electronic c-NOT gate followed by a readout laser pulse of duration≈800 ns. Full-height
pulses symbolize non-selective pulses and half-height pulses symbolize selective pulses.
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Supplementary Figure 2
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FIG. S2: (A) Pulse timing diagram of the CPMG sequence executed on the electronic qubit. Blue (red) microwave
pulses stand for rotations around the X-axis (Y -axis). The eight π-pulses in the square bracket are repeated K

8

times. The alternation of the rotation axes is that of an XY8 sequence (40). (B) Modulation function g(t) of the
CPMG sequence. Each π reverts the accumulated quantum phase of the qubit, represented by a change in sign of the
modulation function.
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Supplementary Figure 3
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FIG. S3: Power spectrum of a.c. signals for T = 4 min, 10 min and 240 min. Peaks (i-iii) originate from coherent
signals at fc = 1.2 MHz and fc±15 mHz produced by amplitude modulation. Signal (iv) with frequency fc+40 mHz

originates from a frequency modulated (FM) signal with an artificial line broadening of γint = 0.76 mHz.
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Supplementary Figure 4
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FIG. S4: (A) Simulated spectra based on formula given in Eq. (S11) for different signal amplitudes φmax. Odd
harmonics of the signal frequency fac are observed as φmax exceeds the linear regime of the sensor (φmax & 1). The
number of harmonics increases with the signal amplitude φmax, eventually leading to spectral folding. (B) Simulated
spectrum of a signal with two frequency components: fac = 400.75 kHz and f ′ac = 401.75 kHz sampled at a rate
of fs = 742.1 Hz. The signal amplitudes are φmax,1 = 3 and φmax,2 = 2, respectively. The spectrum shows
harmonics as well as frequency mixing of the two fundamental frequencies. Spectral folding further complicates
the interpretation of the spectrum. (C) Peak height in the power spectrum as a function of φmax for a signal with
frequency fac. The blue curve is given by φ2rms/4 and represents the linear regime where J1(φmax) ≈ φmax/2. We
have used this approximation in our experiments. The red and yellow curves show the first and third Bessel function
corresponding to the amplitudes of the fac and 3fac harmonics, respectively. The purple curve shows the total power
of all harmonics,

∑∞
k=0 J

2
2k+1(φmax), which approaches 0.25 as φmax →∞.
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Supplementary Figure 5
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FIG. S5: (A) Experimental spectra of a single tone a.c. signal with fac = 1.202254655 MHz for five different
amplitude settings on the external signal generator. The amplitude settings are stated with each plot. The spectra are
vertically shifted by one unit for clarity. All spectra use the same vertical scale, except for the top spectrum which
is magnified 6×. Labels identify the different signal harmonics as discussed with Eq. (S11). (B) Fitted peak heights
for the first four harmonics at fac, 3fac, 5fac and 7fac as a function of the phase amplitude φmax. The data are in
excellent agreement with Eq. (S11).
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