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Force detectors rely on resonators to transduce forces into a readable signal. Usually, these

resonators operate in the linear regime and their signal appears amidst a competing background

comprising thermal or quantum fluctuations as well as readout noise. Here, we demonstrate a

parametric symmetry breaking transduction method that leads to a robust nonlinear force detection

in the presence of noise. The force signal is encoded in the frequency at which the system jumps

between two phase states which are inherently protected against phase noise. Consequently, the

transduction effectively decouples from readout noise channels. For a controlled demonstration of

the method, we experiment with a macroscopic doubly clamped string. Our method provides a

promising paradigm for high-precision force detection. Published by AIP Publishing.
https://doi.org/10.1063/1.5031058

Resonators are widely used for the detection and ampli-

fication of oscillating signals. In its most basic and ubiqui-

tous form, resonant detection measures the amplitude of

oscillation in response to a signal. Examples of resonator-

based sensors range from radar antennas1 and nuclear mag-

netic resonance2 to optical antennas,3 to gravitational wave

detection,4,5 and to nanomechanical force transducers.6–9 An

attractive feature of resonant detection is the possibility of

phase-sensitive signal transduction, which can be used to

reject unwanted or incoherent signal sources in a lock-in

type measurement. In magnetic resonance force microscopy

(MRFM), for instance, a small magnetic force acting on a

force transducer (a cantilever) is modulated at the trans-

ducer’s resonance frequency and drives coherent oscilla-

tions.10–12 The controlled phase and frequency of the force

modulation allow us to distinguish weak force signals

against an overwhelming noise background.

The sensitivity of a linear amplitude detector is limited

by intrinsic fluctuations and by readout noise, both of which

can obscure the true response to the force signal. Intrinsic

fluctuations include amplitude and phase noise of the resona-

tor vibrations and can stem from many sources. In the partic-

ular case of a classical mechanical force transducer, the

lowest limit of intrinsic fluctuations is set by the white ther-

momechanical force noise. This threshold can be decreased

by designing resonators with small masses and high mechan-

ical quality factors.13–15 Readout noise, on the other hand, is

added in the signal amplification process and is typically

more pronounced when the resonator vibrations are small.

Therefore, as force sensors are scaled down, they usually

experience a decrease in intrinsic fluctuations as well as an

increase in readout noise. This tradeoff establishes a lower

boundary for the forces that can be detected. Pushing this

boundary is vital for all sensing techniques.

Standard parametric amplification can reduce readout

noise by amplifying the resonator’s motion using purely reac-

tive components. Examples of its application include (i) varac-

tor amplifiers used for radio signals,16,17 (ii) superconducting

parametric amplifiers that have demonstrated readout noise

close to that imposed by the laws of quantum mechanics,18–20

(iii) squeezed mechanical vibrations,21–24 as well as proposals

for improved sensitivity of gravitational wave detection.25

Such techniques, however, are bound to operate in a regime of

relatively small vibrations, i.e., well below the parametric

instability threshold.26

In this work, we experimentally demonstrate a comple-

mentary approach for sensitive force detection that operates

beyond the instability threshold of a nonlinear resonator.26,27

Our method is based on the distinct double-hysteresis that

can be observed in the frequency sweep of a parametric reso-

nator, see Figs. 1(a)–1(c). This double hysteresis arises

because the weak applied force breaks the symmetry

between the two phase states of the resonator.28 Our method

is therefore a type of parametric symmetry breaking trans-

ducer (PSBT). In contrast to earlier work by Karabalin

et al.29 that makes use of symmetry breaking, our technique

does not encode the measured force in the coupling strength

between two different resonators, but in the shifted bifurca-

tion frequency of a single resonator.28 Importantly, even

though the resonator vibrations are inherently nonlinear, we

show that the transducer has an approximately linear gain

characteristic. In comparison with linear amplitude-detection

transducers, the PSBT performance degrades faster in the

presence of large intrinsic fluctuations. However, it is highly

insensitive to readout noise, which makes it, for example,

promising for applications with nanomechanical force

sensors.

The PSBT can be realized with any system that fulfills

the following equation:

€v þ x2
0 1� k cos 2xtð Þ½ �vþ C _v þ av3

¼ C � Vd cos xtþ /ð Þ þ C � nðtÞ : (1)

Here, we have chosen a representation in electrical units

to emphasize the generality of the physics involved, i.e.,

v¼ v(t) is the measured voltage that is roughly proportional

to the resonator displacement. Dots denote differentiation

with respect to time t, x is a frequency close to the angular
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eigenfrequency x0 of the resonator, C is a linear damping

constant, and a represents a nonlinear (Duffing) spring con-

stant. Vd is the amplitude of an applied external driving volt-

age that is proportional to a force applied to the resonator

with phase /, and C is a gain factor (See supplementary

material). n(t) is an additive intrinsic fluctuating drive with

standard deviation rdrive. In addition to the external drive,

we also modulate the resonance frequency at a rate 2x and

with a modulation depth k, which we refer to as “parametric

drive” and which we control with a voltage signal of ampli-

tude Vp. Beyond a threshold value Vth / kth ¼ 2C=x0, this

excitation leads to large and stable oscillations of the resona-

tor. In our system, there is an additional nonlinear damping

term in Eq. (1), gv2 _v, that has a negligible influence on the

PSBT performance.

Our experimental demonstration is based on a macroscopic

doubly clamped string that vibrates mechanically in accord

with Eq. (1), see Fig. 1(d)28 [see supplementary material for a

derivation of Eq. (1) for a mechanical resonator]. We character-

ize the resonator at both small and large vibration v / x. With

a small external force applied and with k¼ 0, the resonator

behaves linearly [Fig. 1(a)], which allows us to extract

x0=ð2pÞ � 208:8 Hz, C¼x0/Q with quality factor Q¼ 2150,

and C¼ 430 s�2. To fit the nonlinear constants a and g, we

set Vd¼ 0 and drive the system to large amplitudes with

Vp>Vth¼ 80 mV. From a fit to the nonlinear response [Fig.

1(b)], we obtain a/g¼ 1875 s�1 (See supplementary material).

To perform force measurements, we exploit the double-

hysteresis pattern that emerges when parametric and external

drives are applied simultaneously [Fig. 1(e)]. The underlying

physics is governed by a symmetry breaking in the paramet-

ric phase states.28,30–32 The second jump of the upsweep

at x� is a direct consequence of the interplay between the

two drives. In the absence of noise, the jump frequency is

expected to depend approximately linearly on Vd for a range

of forces. In the following, we shall focus on the accompany-

ing phase jump at x�, which corresponds roughly to p radi-

ans even when the jump is small in amplitude [Fig. 1(f)].

The phase jump is the most convenient experimental signa-

ture for our force detection method.

In Fig. 1(g), we experimentally demonstrate the relation-

ship between x* and Vd for various values of the parametric

modulation depth. The corresponding theoretical results are

obtained by studying the time-averaged slow dynamics of the

system and the jump frequency x* is derived using a bifurca-

tion analysis of the equations of motion (See supplementary

material). The almost-linear dependence of x* on Vd indicates

that usage of the calibrated force sensor is straightforward in

spite of the complex nonlinear physics involved.

We now evaluate the performance of our method in the

presence of noise. Since our resonator operates far above any

natural noise levels, we artificially add white voltage noise

either in the form of intrinsic fluctuations nðtÞ or as a fluctu-

ating component of the measured voltage v, with standard

deviations rdrive and rreadout, respectively [see Fig. 1(d)]. For

comparison, we first use the resonator as a simple linear

transducer without parametric drive. In Figs. 2(a) and 2(c),

we show that the resulting amplitude signal in the presence

of either of the noise channels is almost entirely obscured by

the fluctuations. Next, we repeat the sweep with added para-

metric drive to operate the resonator as a PSBT. Even though

FIG. 1. (a)–(c) Schematic working principle of the PSBT. Response of the

resonator to a small force (a) or to a large parametric drive (b), individually.

When combined, the two driving sources produce a complex response that

has a characteristic second jump (c). Grey and black lines demonstrate how

the jump frequency changes as a function of the applied force. (d) Sketch of

the setup showing input voltages Vd and Vp, as well as the measured output

voltage v (which corresponds to a mechanical vibration x). Added voltage

noise sources are indicated by their standard deviations rdrive and rreadout.

(e) and (f) Amplitude and phase of a frequency sweep with parametric drive

and external drive applied simultaneously, with Vp¼ 0.25 V and Vd¼ 0.1 V.

Red and black correspond to sweeps with decreasing and increasing frequen-

cies, respectively. The arrow marks the frequency x* at which the PSBT

jump occurs. (g) Position of frequency jump, x*, as a function of applied

voltage, Vd. The curves were offset for better visibility and correspond to

Vp¼ 0.21 V–0.25 V in steps of 0.01 V (bottom to top). Lines denote theory

fits using a¼�6.7� 106 V�2 s�2 as the only fitting parameter. Slow fre-

quency drifts occurring between sets were compensated.

FIG. 2. (a) Linear sensor (Vp¼ 0) with artificial readout noise (standard

deviation rreadout ¼ 1.8 mV within the measurement bandwidth). A voltage

with amplitude Vd¼ 10 mV was swept in frequency and the response

detected with a lock-in amplifier. The total sweep time was 1920 s. (b) The

same sweep performed in the PSBT mode (Vp¼ 0.25 V). Here, we detect

the phase rather than the amplitude. (c) Linear sensor with artificial intrinsic

noise power spectral density Sdrive ¼ 2.96� 10�4 V2/Hz and Vd¼ 10 mV.

The total sweep time was 4080 s. (d) The same sweep performed in the

PSBT mode (Vp¼ 0.25 V). Solid lines in (a) and (c) are Lorentzian fits.
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the fluctuations in the phase are noticeable in the signal, the

phase jump stands out clearly in Figs. 2(b) and 2(d).

Comparing the linear transducer and the PSBT, we have

shown that the latter exhibits a surprising robustness to both

intrinsic and readout noise. However, this does not yet char-

acterize the precision of the PSBT in estimating the ampli-

tude of the external signal Vd from the jump frequency x*,

namely, we need to know the variance of the PSBT estima-

tion. To this end, we numerically simulate repeated measure-

ments of Vd using both the linear and PSBT methods. The

simulations enable us to obtain large statistics of the detection

performance in the presence of controllable and independent

noise channels. In Figs. 3(a) and 2(b), exemplary histograms

of the estimated signal are presented for readout and intrinsic

noise channels, respectively. The PSBT histograms exhibit an

almost-Gaussian distribution whose standard deviation quan-

tifies a standard error D (See supplementary material) for the

force measurement.

In Figs. 3(c) and 3(d), we show how noise influences D.

We systematically observe that the impact of intrinsic noise

on the PSBT is larger than its effect on the corresponding

linear transducer. The intrinsic fluctuations increase the

chance for the PSBT to flip prematurely, which translates

into frequency noise in the estimation. However, for readout

noise, the situation is manifestly opposite and the PSBT sig-

nificantly outperforms the linear transducer. This is a direct

consequence of the fact that the PSBT signal is encoded

in the phase of the oscillation, while the phase noise is

reduced by driving the oscillator to a large amplitude. The

PSBT, thus, effectively decouples from the readout noise

channel. Our analysis indicates that the PSBT will have a

better signal-to-noise ratio in situations where the detection

is limited by readout noise.

Finally, we would like to discuss some limitations of the

PSBT scheme: (i) the PSBT relies on a joint sweep of the

frequencies of both external and parametric drives. This

implies that the measured force can be modulated at a desired

frequency and with a controlled phase, similar to MRFM;10

(ii) the dynamic range, i.e., the range of forces that can be

measured, depends on the parametric drive. When the resona-

tor amplitude in response to the measured force becomes

comparable to that of the parametric oscillation, the double

hysteresis is replaced by a qualitatively different behavior

and the PSBT scheme breaks down. In our experiment and

for Vd¼ 0.25 V, this resulted in an upper limit of Vd� 0.15

V; (iii) the PSBT method is sensitive to frequency noise.

Fluctuations of x0 will lead to shifts in x* and distort the esti-

mation of the measured force; (iv) the bandwidth (i.e., the rep-

etition rate) of force measurements with our method is given

by the sweeping speed and therefore ultimately by the resona-

tor’s quality factor. (v) Systematic errors in the force estima-

tion can arise with the PSBT due to premature switching,

delayed resonator response,33,34 or phase noise bias. In the sit-

uations we studied, these systematic errors can be removed

through proper calibration (See supplementary material).

We have demonstrated that the PSBT has several attrac-

tive features that set it apart from a linear force transducer.

The PSBT makes use of parametric phase states, which are

intrinsically protected against amplitude and phase noise.

Since the measured force is extracted from a frequency as

opposed to amplitude, the PSBT can measure small forces

even while operating at relatively large oscillation ampli-

tudes. This feature makes the PSBT highly tolerant to read-

out noise similar to frequency-modulated, feedback-driven

oscillators.35 However, in contrast to the slow frequency

modulation rate used in the latter, our method can detect

forces at frequencies close to the eigenfrequency of the trans-

ducer itself. We believe that the PSBT is promising for force

detection experiments with nanomechanical resonators such

as carbon nanotubes or graphene, as well as for the detection

of electrical signals with Josephson parametric resonators.

Further work will focus on the performance of PSBT sensors

in the quantum realm.

See supplementary material for a derivation of Eq. (1), a

characterization of the experimental system, an explanation

regarding the bifurcation analysis used to theoretically deter-

mine the jump frequency, as well as details on the numerical

simulations presented in Fig. 3.
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