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1. Device fabrication

1.1. Fabrication of single-crystal diamond nanoladders

Diamond devices were patterned by electron beam lithography onto an electronic-grade single crystal

with a (100) surface orientation that was polished down to 20 µm thickness. The pattern was

transferred to the diamond and released by inductively coupled plasma (ICP) etching. Detailed

instructions can be found in Ref. [1, 2] with the important difference that the nanoladders were

tethered to the support substrate (Fig. S1 (a)), in order to protect the fragile structure of the

diamond nanoladders during the final release step. To cut the tether after the release, we used a

focused helium ion beam (He-FIB) (Fig. S1 (b)). Zeiss Orion Plus He-FIB [3] equipped with a Raith

Elphy MultiBeam pattern generator were used for presented study. He-FIB was operated at 30 kV

acceleration voltage and ∼ 5 × 10−5 Pa chamber pressure. He-ion beam current selected for this

work was 5− 10 pA. It was defined by the following hardware parameters: 10 micrometer aperture,

6.7× 10−4 Pa helium pressure in the gun chamber, and âĂĲspotâĂİ parameter between 2.5 and 3.

The diamond cantilevers were cut by irradiating a box 500× 100 nm with a dose ∼ 1 C/cm2. Such

dose is expected to make a 200− 400 nm deep cut [4].

1.2. Fabrication of single-crystal silicon nanoladders

Silicon devices were batch-fabricated using single crystalline silicon-on-insulator (SOI) wafers (Soitec)

with 1500±30 nm device layer, 1000±10 nm buried oxide layer, and 725±15 µm handle layer. The

device silicon layer was p-type, (100)-oriented, and had a resistivity of 18± 4 Ohm · cm. A PECVD

silicon nitride (SiNx) layer with 260± 10 nm thickness was deposited on the device layer of a 4-inch
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Figure S1: Focused ion beam cutting of diamond nanoladders. (a) Optical micrograph of a 150 µm diamond
nanoladder cantilever after the final release. In order to protect the fragile structure, it was tethered to the
opposite support substrate. (b) Optical micrograph of the same device after cutting by a focused helium ion
beam which offers a high precision while inflicting minimal material damage. Scale bars are 20 µm.

SOI wafer and patterned by e-beam lithography (EBL). The device silicon layer was then wet-etched

in tetramethyl ammonium hydroxide (TMAH) solution (25%, heated to 60 ◦C) with the patterned

SiNx layer as a hard mask. The thickness of the device layer was monitored at different locations

using profilometry in regular intervals during the silicon thinning process. This step determined the

thickness of the nanoladders.

A layer of hydrogen silsesquioxane (HSQ), negative e-beam resist solution (6%) with 170 nm thick-

ness was spin-coated (500 rpm, 5 s; 2000 rpm, 60 s) onto the SOI wafer with the thinned device

layer. E-beam lithography was used to write the nanoladder features. After exposure, the sample

was developed in a 351B:H2O solution (volume ratio 1 : 3) for 5 minutes. The resulting pattern

served as a mask during the subsequent inductively coupled plasma (ICP) etching step, in which

HBr plasma in the ICP was used to transfer the HSQ pattern into the underlying device layer. This

is possible because HSQ is five times more etch-resistant than silicon. The residual HSQ mask was

then removed by a short dipping (15 s) in buffered hydrofluoric acid (BHF). At this point, the silicon

nanoladders remain anchored to the buried oxide layer (see Fig. S2 (a)).

The wafer was ready for backside etching to suspend the silicon nanoladders. To protect the pat-

terned structures, AZ4562 resist was spin-coated at 4000 rpm onto the front side of the wafer.

Thicker AZ4562 resist was spin-coated at 1500 rpm onto the backside to provide sufficient etch-

resistance during DRIE. Following backside alignment and photolithography, the wafer was glued
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Figure S2: Wafer-scale fabrication of silicon nanoladders. Optical micrograph of chips carrying 6 nanoladders
of different lengths after electron beam lithography and inductively-coupled plasma etching step. The chip
dimensions can be easily changed during fabrication to allow mounting them in a variety of systems. Scale
bar: 2 mm

using wax to a dummy silicon carrier wafer via the front side. DRIE of the handle-layer silicon was

performed to etch through the silicon down to the buried oxide stop layer.

To release the nanoladders, the wafer was soaked in warm NMP at 50 ◦C. The wafer was cleaned

by rinsing, sequentially, in the following solvents: acetone, IPA, DI water, piranha solution, DI

water, and IPA. The wafer was allowed to dry in air after taking it out from the final IPA rinse.

To minimize contamination by drying residues, care was taken to keep the wafer tilted on a piece

of cleanroom wipe to allow as much liquid to flow away as possible. Nitrogen flow was not used

to avoid damaging the delicate buried oxide membranes. The wafer was etched in vapor HF for 10

minutes to remove the buried oxide layer, thus releasing the silicon nanoladders. Figures S3 (b) and

(c) show optical micrographs of a wafer before and after this final step.

Taking advantage of the wafer-scale production, we designed some silicon nanoladders with a tether

and some without (see Fig. S4). While the tethered devices could have been cut by a focused ion

beam, a hydraulic micromanipulator system (Narishige Three-axis Hanging Joystick Oil Hydraulic

Micromanipulator, model MMO-202ND) operated under an optical microscope yielded the same

result.
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Figure S3: Final fabrication steps for silicon nanoladders. (a) Chip before the final vapor HF etch to remove
the buried oxide layer and thus releasing the nanoladders. Scale bar: 100 µm (b) Ready-to-use chip after
the final fabrication step. The chips can be easily picked out with a pair of tweezers and mounted into our
custom-built AFM stage. Scale bar: 100 µm

(a)

(b)

Figure S4: Tethering of devices. (a) Chip with finished silicon devices fabricated without tether. (b) Same
devices but fabricated with help of a tether. Scale bars are 100 µm.
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Figure S5: End mirror of the nanoladders. SEM micrograph of the paddle used for reflecting the readout
laser beam from the cantilever. With a paddle area of 3 × 3 µm2, the aspect ratio between the cantilever
and the arms width is extreme. In this case, the arms width and thickness lie in the range of 50 − 60 nm,
smaller than for the devices presented in the main manuscript which have a width and thickness in the range
of 100− 300 nm.
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2. Characterization of further devices

We have investigated a total of 5 diamond and 2 silicon devices whose characteristics are shown

in table S1. In particular, a 300 µm-long diamond cantilever has been characterized in the same

manner as the devices of the main manuscript. It shows a similar behavior and agrees as well with

our simulations. Its characteristics are summarized in table S2. The resonance frequency of the

fundamental mode, f0 = 9, 496.1Hz, is measured from the thermomechanical displacement power

spectral density shown in fig S6a.

Table S1: Characteristics of different devices at room temperature.

cantilever # material Length ( µm) fc ( kHz) Q

1 diamond 100 25.22 60, 000
2 diamond 150 13.914 37, 000
3 diamond 250 4.640 48, 000
4 diamond 300 4.180 40, 000
5 diamond 300 9.500 62, 000
6 silicon 160 4.282 14, 000
7 silicon 160 5.523 12, 000

Table S2: Key characteristics of a 300µm long single crystal diamond nanoladder cantilever (cantilever #5
in table S1). a Reported Q factor represent the highest measured value at milikelvin temperatures.

Fth (aN/
√

Hz)
fc (kHz) m (pg) k (µN/m) Qa γ (pg/s) 300 K 4 K 100 mK

9.5 19.3 69 161,000 7.2 18 1.6 0.27
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Figure S6: Characterization of a 300 µm-long diamond nanoladder cantilever (cantilever #5 in table S1).
(a) Power spectral density (PSD) of the cantilever displacement measured at room temperature. (b) and
(c) PSD of the fundamental mode (f0 = 9.499 kHz, f0 = 9.508 kHz) at room and cryogenic temperatures,
respectively. (d) PSD of the silicon nanoladder cantilever at room temperature (device #6). Besides two
harmonics of the fundamental resonance frequency (2f0 and 3f0), the second (f1 = 37.83 kHz) and third
(f2 = 44.23 kHz) modes are seen. The spurious mechanical resonance fs = 6.787 kHz with a quality factor of
7700 observed could correspond to one of the two other shorter devices present on the same chip.
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3. Finite element modeling

3.1. Mode shape simulation

We performed finite element simulations to determine the mode shape of the nanoladders and

their resonance frequencies. Figure S7 shows the results where (a) corresponds to the fundamental

resonance frequency, and (b)-(f) show increasingly higher modes. (a), (c), and (f) correspond to

in-plane motion whereas (b), (d), and (e) include only lateral motion. The fundamental mode has

approximately the same shape as the one of a plain beam cantilever.

(a)

(b)

(c)

(d)

(e)

(f)

Figure S7: COMSOL mode shape simulation of the fundamental and higher modes. (a) Fundamental
mode, f (a)

c = 25.4 kHz, (b) f (b)
c = 142 kHz, (c) f (c)

c = 204 kHz, (d) f (d)
c = 488 kHz, (e) f (e)

c = 619 kHz, (f)
f

(f)
c = 905 kHz. (a), (c), and (f) correspond to in-plane motion whereas (b), (d), and (e) include only lateral
motion.
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3.2. Estimations of resonance frequency and spring constant

We compare our results to theoretical simulations by two different approaches. In a first approxima-

tion, the rungs and the paddle are neglected and the nanoladder is considered as two single beams

coupled in parallel. The effective spring constant k writes then k = 2kbeam where kbeam is the spring

constant of a single beam. It is given by

kbeam = W

(
T

L

)3 E

4 (1)

with W being the width, T the thickness, L the length and E the Young’s modulus of the beam.

The fundamental mode frequency reads

f0 = 0.162 T
L2

√
E

ρ
(2)

where ρ is the Poisson’s ratio of the material. Fixing the length to 100µm or 300µm, respectively,

we computed lower and upper boundaries for frequency and spring constant by setting the width

and the thickness to 100 nm and 300 nm, respectively.

The second method is a finite element simulation performed for the same parameters through COM-

SOL. The simulated results are shown in table S3 and are compared to the measured values.

Table S3: Simulated cantilever characteristics compared to the measured values.
aDevice # in table S1)

Devicea fc (kHz) k (µN/m)
analytical COMSOL measured analytical COMSOL measured

#1 30.1-90.4 16.9-68.0 25.2 61-4940 85-8918 106
#5 3.35-10 2.45-22.6 9.50 2.26-183 3.90-404 69
#7 5.06-15.2 3.30-12.5 5.46 10.2-710 2.88-297 6.5
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4. Quality factor study

We have studied the quality factor dependance on temperature for our different devices as shown

in fig S8 (a). It increases from room temperature towards cryogenic temperatures for all 3 devices.

The dip around 150K has been previously observed in single-crystal diamond (electronic and op-

tical grade), polycrystalline diamond and single-crystal silicon. The feature has been ascribed to

dissipation caused by surface adsorbates or a surface passivation layer [2, 5]. Around 230K, an

interferometer malfunction prevented a precise measurement and we therefore removed the data in

the relevant temperature range.

As shown in the main manuscript, the mode temperature of the cantilever depends on the incident

laser power in the milikelvin range. During this measurement, we have monitored the quality factor

as well as seen in fig S8 (b). The quality factor increases for decreasing mode temperatures. No

change of the quality factor is observed at room temperature and at 4 K. This corresponds to the

expectation that the absorption of the laser light is negligible at those temperatures.
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Figure S8: Quality factor measurements. (a) Q between 4 and 300 K. Orange corresponds to device #1,
green to #5 and blue to #6. (b) Q as function of the laser power at different temperature ranges. The
purple squares correspond to values at room temperature, the red ones were taken at 4 K, and the light gray
denote milikelvin temperature measurements. While no change is observed for 300 and 4 K, Q increases with
decreasing laser power in the milikelvin range.
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5. Estimation of mode temperature and force noise

This Section discusses how the values and errors reported for cantilever mass, spring constant, mode

temperature and force noise were calculated.

5.1. Room temperature calibration

In a first step, the mass m and spring constant k of the resonator were determined by a room

temperature measurement of the displacement power spectral density (PSD). The room-temperature

spring constant kRT and mass m are given by

kRT = kBTRT
(Vrms,RTsRTcRT)2 (3)

m = kRT
(2πfc,RT)2 (4)

where kB is Boltzmann’s constant, TRT = 295 K, fc,RT is the resonance frequency, Vrms,RT the rms

value of the displacement measured in units of Volts, sRT the interferometer displacement sensitivity

in units of meters per Volt, and cRT the c-factor, a geometrical factor accounting for the mode shape

at the location of the laser spot used for readout. The rms displacement Vrms,RT was calculated by

integrating the displacement PSD. Vrms,RT corresponds to the area under the peak after the baseline

has been substracted (see Fig. S10). To determine Vrms,RT, the voltage PSD SV(f) was numerically

integrated around the resonance with a bandwidth B to get the power P1,

P1 =
fc+B/2∑
fc−B/2

SV(f)∆f (5)

where the sum runs over N points in the interval [fc−B/2, fc+B/2] and ∆f = B/N is the frequency

sampling of the PSD. To determine the baseline, two additional noise powers were calculated,

P2 =
fc−B/2∑
fc−3B/2

SV(f)∆f (6)

P3 =
fc+3B/2∑
fc+B/2

SV(f)∆f (7)
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corresponding to the areas to the left and right of the signal peak, respectively (see Fig. S10). The

rms value of the displacement is then

Vrms =
√
P1 − (P2 + P3)/2. (8)

The displacement sensitivity sRT was determined by sweeping the wavelength of the interferometer,

which we achieved by controlling the temperature of the laser diode via a thermoelectric cooler

(TEC). Due to additional stray reflections in our experimental setup, we observed variations in the

slopes of the individual fringes ai = 2πVpp,i/λ, where Vpp,i is the peak-to-peak voltage of the i-th

fringe and λ = 1550nm is the laser wavelength (whose variance between fringes is negligible). These

artifacts should not be present when changing the interferometer length instead of the wavelength.

To cancel them out, we calculated the mean value of all slopes within 4-5 fringes, a = 1
N

∑N
i=1 ai,

and used the result to determine the displacement sensitivity sRT = G/a, where G is a factor

accounting for the different gains used for the calibration (DC signal) and the cantilever displacement

measurements (AC signal), typically G = 0.1. The value of a was in agreement with a separate

calibration method, which consisted in driving the cantilever until its vibration amplitude exceeded

the fringe. Since we observed that the sensitivity determined from the slope would vary with a

standard deviation of 15% between measurements, we use σsRT = 0.15sRT. Note that the same

uncertainty applies to smK.
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Figure S9: Calibration of the displacement sensitivity. A fringe pattern is measured when sweeping the laser
wavelength, which is achieved by adjusting the temperature of the laser diode with a thermoelectric cooler
(TEC). The mean displacement sensitivity is then determined from the slopes of several individual fringes
(see text). The measured signal is shown in black and the laser power monitor signal in orange.

As shown in fig. S9, the fringe signal features a general upwards slope with increasing TEC voltage.
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This slope is due to a dependence of the laser power on the TEC voltage. To correct for this effect,

we monitored the laser output power (before the interferometer) with a separate detector and used

this monitor signal (orange curve in fig. S9) to normalize the fringe voltage. For every individual

fringe, we computed the peak-to-peak voltages as

Vpp =
(

Vs,max
Vmon,max

− Vs,min
Vmon,min

)
Vmon,avg (9)

where Vmon,avg is the monitor voltage in the center of the fringe. For convenience, we have dropped

the index i in this equation.

The c-factor was computed based on the location of the reflective paddle and was c = 1.07 for

diamond and c = 1.04 for silicon at room temperature.
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Figure S10: Integration of the power spectral density. All 3 powers P1,2,3 are computed by integrating the
power spectral density over the same interval B. The power under the peak is P1 and P2,3 are the baseline
powers. Data are for device #1.

5.2. Errors of spring constant and mass

The dominant contribution to the errors in the estimates for spring constant and mass is the un-

certainty in the displacement sensitivity sRT. Because of the low reflection of the mirror paddle

and due to additional stray reflections in our experimental setup, the displacement sensitivity could

vary with a standard deviation of about 15% between different measurements (see previous section

for details). We therefore assume an error σsRT = 0.15sRT for the following error calculation. The

errors in the c-factor cRT and the rms displacement Vrms were comparably much smaller, typically

σcRT < 0.01cRT and σVrms,RT < 5 · 10−4Vrms,RT, and are neglected in the following. The propagated
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error is

σkRT ≈
2kBTRT

s3
RT(Vrms,RTcRT)2σsRT (10)

The corresponding error for the mass is

σm = σkRT

(2πfc,RT)2 (11)

5.3. Low-temperature measurement

To determine the mode temperature and thermal force noise at millikelvin temperatures, we used

the room-temperature calibration of kRT and m together with a low-temperature measurement of

the displacement PSD. The mode temperature TmK and thermal force noise PSD SF,mK are given

by

TmK = kmK(Vrms,mKsmKcmK)2

kB
(12)

SF,mK =
[

4k2
mK(Vrms,mKsmKcmK)2

(2πfc,mK)QmK

]1/2

(13)

where kmK = kRT(fc,mK/fc,RT)2 is the low-temperature spring constant, and Vrms,mK, smK and

cmK are the corresponding displacement noise, displacement sensitivity and c-factor for the low-

temperature measurement. QmK is the low-temperature quality factor that was determined in a

separate ring-down measurement.

The principal uncertainties in TmK and SF,mK are the calibration uncertainty in kRT and the uncer-

tainty in the displacement sensitivity smK. Error propagation yields

σTmK = 1
kB

[
(Vrms,mKsmKcmK)4σ2

kmK + (2kmKsmKV
2

rms,mKc
2
mK)2σ2

smK

]1/2
(14)

σSF,mK =
[(

2(Vrms,mKcmKsmK)2

πfc,mKQmK

)
σ2

kmK
+
(

2(kmKVrms,mKcmK)2

πfc,mKQmK

)
σ2

smK

]1/2

(15)

5.4. Monte Carlo-based error propagation

Because of the significant uncertainty in the calibration of the displacement sensitivities sRT and

smK, we performed a Monte Carlo simulation of the uncertainty in the force noise in addition to

a standard error propagation calculation. We found that the Monte Carlo method gives slightly

different, but similar values to the standard error propagation. Errors reported in the manuscript

represent the values of the Monte Carlo simulation.
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5.5. Thermal force noise vs. force sensitivity

The total noise power spectral density (PSD) measured at the output of the interferometer is the

sum of the transduced displacement noise PSD of the cantilever Sv,th (caused by the thermal force

noise) and the detector noise PSD intrinsic to the interferometer Sv,det,

Sv,tot = Sv,thG
2 + Sv,det. (16)

Here, we use G = s−1
mK (G = s−1

RT at room temperature) for the total transducer gain of the interfer-

ometer in units of V/m and the units of Sv,th and Sv,det are m2/Hz and V2/Hz, respectively. In order

to be detectable, a force signal must cause a displacement signal that is larger than the standard

deviation of the total noise measured with a certain bandwidth B, which according to Parseval’s

theorem is given by

∫
B
Sv,tot(f)df. (17)

In the narrow-filter limit (B � f0/Q) and defining the force sensitivity as the smallest measurable

force which can be detected with unit signal-to-noise ratio per bandwidth, Fmin, we get

Fmin =
[
B(SF,th + k2

Q2
Sv,det

G2 )
]1/2

(18)

where SF,th = 4kBTγ is the white thermal force noise PSD and Sv,det is the displacement noise PSD

of the interferometer determined by the baseline in Fig. S10 (note that Sv,det does not correspond

to a real cantilever displacement but to a displacement uncertainty caused by the detector noise).

Since SF,th generates a peak of magnitude Sv,th,peak = G2(Q/k)2SF,th in the real displacement PSD,

the force sensitivity can be expressed as

Fmin = Fth

[
1 + Sv,det

Sv,th,peak

]1/2

(19)

where we have used the notation Fth =
√
SF,thB for the force noise. Thus, in the absence of

significant detector noise (Sv,det � Sv,th,peak), force noise and force sensitivity are equal, Fmin ≈ Fth.

In the presence of detector noise, the force sensitivity is worse than the thermal force noise by a

factor of [1 + Sv,det

Sv,th,peak
]1/2.
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