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Supplementary Note 1: Derivation of Measurement Back-action

To verify the simple Bloch vector picture of nuclear spin evolution, we calculate the quantum mechanical
evolution of the coupled electron-nuclear system. We consider an ideal, closed two-spin system and neglect
relaxation due to environmental couplings. The Hamiltonian of the coupled system, in the rotating frame of
the electronic spin, is given by

Ĥ = −γnB · Î + Ŝ ·A · Î (S1)

Here, Ŝ and Î are the vectors containing the electron and nuclear spin operators, respectively, γn is the
nuclear gyromagnetic ratio, B is the external bias field, and A is the hyperfine tensor. Although in our
experiments the electronic spin is S = 1, we always work with the mS = 0 and mS = −1 spin-sublevels
(whose transition energy is well separated from the mS = 0 to mS = +1 transition) that form an effective
spin-1/2 system. Furthermore, assuming weak coupling between the electron and nuclear spins, we apply
the secular approximation, leading to the Hamiltonian

Ĥ = Ĥ0 + Ĥint = −ωnÎz + a‖

(
Ŝe + Ŝz

)
Îz + a⊥

(
Ŝe + Ŝz

)
Îx (S2)

where Îx = 1
2σx, Îz = 1

2σz and Ŝz = 1
2 (|0〉〈0| − |1〉〈1|) = 1

2σz are the Pauli spin operators and Îe =

Ŝe = 1
2 (|0〉〈0|+ |1〉〈1|) are the identities. Before we proceed, we recall the Hausdorff formula for unitary

propagation of the density matrix,

Û ρ̂Û † = e−iP̂ tρ̂ eiP̂ t = ρ̂ cos(
√
kt)− i√

k
Q̂ sin(

√
kt) (S3)

where P̂ and Q̂ are operators, k is a scalar, and where [P̂ , ρ̂] = Q̂ and [P̂ , Q̂] = kρ̂.

We now calculate the effect of the first weak measurement. Starting with the sensor (electron) spin in the
|0〉 state and the nuclear spin in the |x〉 state,

ρ̂ = ρ̂s0 ⊗ ρ̂n0 =
(
Ŝe + Ŝz

)(
Îe + Îx

)
(S4)

We first apply a π/2 pulse along Ŝy,

ρ̂ =
(
Ŝe + Ŝx

)(
Îe + Îx

)
Next we apply a sequence of N equidistant π pulses spaced by an interpulse delay 2τ . If the delay between
the π pulses is adjusted to half the effective nuclear Larmor period, the system evolves under the effective
Hamiltonian g2Ŝz Îx for a time tβ = N(2τ), where g = a⊥/π is the coupling strength. Evolution under this
Hamiltonian generates the conditional rotation around 2Ŝz Îx with a rotation angle β = gtβ = a⊥tβ/π. We
call β the measurement strength. The corresponding propagator is UNπ = exp(−β2Ŝz Îx). Using Eq. S3
(with P̂ = Ŝz Îx,

√
k = 1/2), application of the propagator yields

ρ̂ =
(
Ŝe + Ŝx cos(β) + Ŝy sin(β)

)(
Îe + Îx

)
Applying the second π/2 pulse along Ŝx we obtain

ρ̂ =
(
Ŝe + Ŝx cos(β) + Ŝz sin(β)

)(
Îe + Îx

)
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Finally we perform a projective (optical) readout of the electronic spin. The optical readout measures
〈Ŝz〉 = Tr

(
ρ̂Ŝz

)
= sin(β)/2 and re-polarizes the sensor back on to the initial state ρ̂s0. We calculate the

resulting nuclear state by tracing over the sensor spin,

ρ̂n0 = Tre (ρ̂) =
(
Îe + Îx

)
(S5)

We therefore conclude that a nuclear spin in the |x〉 state is insensitive to a weak measurement.

Nuclear precession now takes place under Ĥ0 = −ωnÎz (Eq. S2) for a time ts, leading to a mixing of the Îx
and Îy amplitudes,

ρ̂ =
(
Ŝe + Ŝz

)(
Îe + Îx cos(ωnts) + Îy sin(ωnts)

)
(S6)

Using Eq. S3 and the following commutators, we calculate the outcome of the next weak measurement,[
Ŝz Îx, Ŝx

(
Îe + aÎx

)]
= i

1

2
Ŝy

(
aÎe + Îx

)
;
√
k =

1

2[
Ŝz Îx, ŜxÎy

]
=
i

2

{
Ŝz, Ŝx

}
Îz = 0 ;

√
k =

1

2[
Ŝz Îx, ŜeÎy

]
=
i

2
Ŝz Îz ;

√
k =

1

2

The first π/2 pulse along Ŝy yields

ρ̂ =
(
Ŝe + Ŝx

)(
Îe + Îx cos(ωnts) + Îy sin(ωnts)

)
Application of ÛNπ results in

ρ̂ =
(
Ŝe + Ŝx cos(β)

)(
Îe + Îx cos(ωnts)

)
+ Ŝy sin(β)

(
Îe cos(ωnts) + Îx

)
+
(
Ŝe cos(β) + Ŝx

)
Îy sin(ωnts) + Ŝz Îz sin(ωnts) sin(β)

The second π/2 pulse along Ŝx yields

ρ̂ =
(
Ŝe + Ŝx cos(β)

)(
Îe + Îx cos(ωnts)

)
+ Ŝz sin(β)

(
Îe cos(ωnts) + Îx

)
+
(
Ŝe cos(β) + Ŝx

)
Îy sin(ωnts)− Ŝy Îz sin(ωnts) sin(β)

(S7)

Optical readout again measures 〈Ŝz〉 and re-polarizes the sensor back on to the initial state ρ̂s0,

〈Ŝz〉 = Tr
(
ρ̂Ŝz

)
=

1

2
cos(ωnts) sin(β) (S8)

The effect of a single weak measurement now becomes more clear: it maps, proportionally to the mea-
surement strength sin(β) ≈ β, the instantaneous nuclear Îx amplitude onto the optically readable 〈Ŝz〉
component, while only weakly entangling the sensor and nuclear spins (sin(β)Ŝz Îx) such that a measure-
ment of Ŝz only partially projects the nuclear spin. The last term in Eq. S7 also indicates that the nuclear
Îz component develops an oscillatory correlation with the sensor Ŝy component. Since the latter is never
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measured, the nuclear spin does not experience, on average, a net rotation outside the precession plane.
Furthermore, the information about this correlation becomes lost upon optical readout. We again calculate
the partially projected nuclear state by tracing over the sensor spin

ρ̂n1 = Îe + Îx cos(ωnts) + Îy sin(ωnts) cos(β) (S9)

= Îe + a1Îx + b1Îy (S10)

where a1 and b1 are the respective amplitudes of Îx and Îy. The net effect of a single weak measurement
on the nuclear spin is to scale the initial Îy amplitude by a factor cos(β).

1. Measurement-induced decoherence

We now apply a series of weak measurements. The next free precession period will again mix the Îx and Îy
amplitudes

ρ̂ =
(
Ŝe + Ŝz

)(
Îe + (cos(ωnts) cos(ωnts)− sin(ωnts) cos(β) sin(ωnts)) Îx

+ (cos(ωnts) sin(ωnt) + sin(ωnts) cos(β) cos(ωnts)) Îy

)
=
(
Ŝe + Ŝz

)(
Îe + a2Îx + b2Îy

)
and the subsequent weak measurement will again scale the resulting Îy amplitude by a factor cos(β). The
nuclear state after the n’th readout is

ρ̂n(n) = Îe + Îxan + Îybn

= Îe + Îx (an−1 cos(ωnts)− bn−1 sin(ωnts))

+ Îy (an−1 sin(ωnts) + bn−1 cos(ωnts)) cos(β)

(S11)

with a0 = 1 and b0 = 0. We next develop recursion relations (Eq. S11) for the Îx and Îy amplitudes

a0 = 1

a1 = cos(ωnts)

a2 = cos2(ωnts)− sin2(ωnts) cos(β)

=
1

2
cos(ωn(2ts))(1 + cos(β)) +

1

2
(1− cos(β))

a3 =

(
1

2
cos(ωn(2ts))(1 + cos(β)) +

1

2
(1− cos(β))

)
cos(ωnts)

−
(

1

2
sin(ωn(2ts))(1 + cos(β)) cos(β)

)
sin(ωnts)

=
1

4
cos(ωn(3ts))(1 + cos(β))2 + (1− cos(β)) cos(ωnts)

(
1

2
+

1

4
(1 + cos(β))

)
a4 =

1

8
cos(ωn(4ts))(1 + cos(β))3 + (1− cos(β))

(
1

2
cos(ωn(2ts))(1 + cos(β)) +

1

8

(
3 + cos2(β)

))
an =

1

2n−1
cos(ωn(nts)) (1 + cos(β))n−1 + (1− cos(β))fan(. . .)
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b0 = 0

b1 = sin(ωnts) cos(β)

b2 = cos(ωnts) sin(ωnts)(1 + cos(β)) cos(β)

=
1

2
sin(ωn(2ts))(1 + cos(β)) cos(β)

b3 =

(
1

2
cos(ωn(2ts))(1 + cos(β)) +

1

2
(1− cos(β))

)
sin(ωnts) cos(β)

+

(
1

2
sin(ωn(2ts))(1 + cos(β)) cos(β)

)
cos(ωnts) cos(β)

=
1

4
sin(ωn(3ts)) cos(β) (1 + cos(β))2 + (1− cos(β)) cos(β) sin(ωnts)

(
1

2
− 1

4
(1 + cos(β))

)
b4 =

1

8
sin(ωn(4ts)) cos(β)(1 + cos(β))3 +

1

4
(1− cos(β))2 cos(β)(1 + cos(β)) sin(ωn(2ts))

bn =
1

2n−1
sin(ωn(nts)) cos(β) (1 + cos(β))n−1 + (1− cos(β))fbn(. . .)

where fan,bn(. . .) are polynomial functions which depend on cos(β) and on the parity of n ∈ N.{
fan,bn(cos(β), cos(ωn(2m)ts));m ∈ [0 . . . n/2] , n even

fan,bn(cos(β), cos(ωn(2m+ 1)ts));m ∈ [0 . . . (n− 1)/2] , n odd.

For weak measurements, i.e. β � 1, the polynomials fan,bn(. . .) ≈ O(1) and (1− cos(β)) ≈ 0 +O(β2).
We can therefore approximate the amplitudes as

an ≈ cos(ωn(nts))

(
1 + cos(β)

2

)n−1

bn ≈ sin(ωn(nts)) cos(β)

(
1 + cos(β)

2

)n−1

We observe that both amplitudes correspond to quadratures which oscillate at the precession frequency
ωn and become scaled by a power of cos(β). Expanding cos(β) to second order and using the binomial
expansion we find(

1 + cos(β)

2

)n−1

≈
(

1− β2

4

)m
=

m∑
n=0

(
m

n

)
(1)m−n(−1)n

(
β2

4

)n
where we have set m = n − 1. To observe the approximate scaling of this term at the n’th readout, we
assume the limit of a large number of readouts m and use Stirling’s formula to approximate the factorials

m∑
n=0

(
m

n

)
(1)m−n(−1)n

(
β2

4

)n
≈

m∑
n=0

mn

n!
(−1)n

(
β2

4

)n
=

m∑
n=0

1

n!

(
−mβ2

4

)n
≈ e−mβ2/4 (S12)

The scaling for the nuclear state follows the form

ρ̂n(t) ≈ Îe +
(
Îx cos(ωnt) + Îy sin(ωnt)

)
e−Γβt +O(β2) (S13)

where t = n·ts ;n ∈ N with ts being the sampling period and Γβ = β2/(4ts). For t→∞, ρ̂n → Îe. Hence,
the net effect of a series of weak measurements is an exponential decay of the nuclear coherences Îx and Îy
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at a measurement-induced rate Γβ proportional to the square of the measurement strength, ultimately leading
to a fully mixed state. From Eq. S12 we observe that the number of measurements that can be performed
before the nuclear spin dephases (defined as a 1/e decay) is n = 4/β2. Alternatively the dephasing time is

Tβ =
1

Γβ
=

4

β2
ts

Any nuclear spin will also have some intrinsic dephasing Γ0 = (T ∗2,n)−1 given by the intrinsic dephasing
time T ∗2,n. The total decay rate is then the sum of all contributions

Γ = Γβ + Γ0

2. Frequency synchronization

We now turn our attention to the validity of our approximations for Eq. S13. We first consider the case
when the effective sampling time approximates a half or a full Larmor period. Such a scenario corresponds
to the case when we continuously measure the nuclear spin when it finds itself along the X (or Y ) axes in
the Bloch sphere. We thus go back to Eq. S11 and set

ωnts = 2π

(
T/2± δt

T

)
= π ± 2πδt

T
= π ± δα

where T is the Larmor period and δt � T is the detuning in the sampling period ts from half a Larmor
period. From Eq. S11, the nuclear state at the kth readout becomes

ρ̂n(n) = Îe +
(
Îx (an−1 cos(δα)− bn−1 sin(δα)) + Îy (an−1 sin(δα) + bn−1 cos(δα)) cos(β)

)
cos(π)

≈ Îe +

(
Îx

(
an−1

(
1− δα2

2

)
− bn−1δα

)
+ Îy

(
an−1δα+ bn−1

(
1− δα2

2

))
cos(β)

)
cos(π) +O(δα3)

Developing the recursion for the amplitudes an and bn with a0 = 1 and b0 = 0, we find

a0 = 1

a1 = −
(

1− δα2

2

)
a2 = 1− δα2 (1 + cos(β))

a3 = −
(

1− δα2

(
1

2
+ (1 + cos(β))2

))
an = (−1)n

(
1− δα2fan (cos(β))

)
+O(δα3)

b0 = 0

b1 = −δα cos(β)

b2 = δα cos(β)(1 + cos(β))

b3 = −δα cos(β)(1 + cos(β)(1 + cos(β)))

bn = (−1)nδα cos(β)fbn(cos(β)) +O(δα3)

where fan,bn are polynomial functions of order n on cos(β). The nuclear state is therefore

ρ̂n(n) ≈ Îe +
(
Îx
(
1− δα2fan(cos(β))

)
+ Îy (δα cos(β)fbn(cos(β)))

)
cos(nπ)
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as the product δα cos(β)→ 0, the nuclear state becomes

ρ̂n(n) ≈ Îe + Îx cos(nπ) = Îe + Îx cos((0.5ωs)ts) (S14)

where ωs = 2πt−1
s . Eq. (S14) reveals that we effectively observe a state which remains unaffected by the

measurements and is precessing at (half) the sampling frequency, and not at its Larmor frequency. For an
increasing detuning δα, we only observe this effect for stronger measurements, i.e., for β → π/2, where the
measurement becomes increasingly projective. In this case, the product δα cos(β) → 0 and we approach
the behavior of Eq. S14. It is easy to see that for an effective sampling time close to the Larmor period, i.e.
ts ≈ T , the behavior is completely analogous and the nuclear state would be

ρ̂n(n) ≈ Îe + Îx cos(ωsts) (S15)

3. Nuclear spin z-component

In our analysis we have assumed a nuclear spin with zero Îz component. It is nevertheless important to
note what the evolution for a finite Îz polarization looks like. From Eq. S4 we observe that the presence
of a finite nuclear spin Îz component right before a measurement leads to an additional term in the system
density matrix of the form

∝
(
Ŝe + Ŝx

)(
Îz

)
To observe the measurement effect on this component, we first calculate the commutators[

Ŝz Îx, ŜxÎz

]
= − i

2

{
Ŝz, Ŝx

}
Îy = 0[

Ŝz Îx, ŜeÎz

]
= − i

2
Ŝz Îy

The weak measurement transforms this component according to Eq. S3 (with
√
k = 1/4)

∝
(
Ŝe + Ŝx

)(
Îz

)
→ ŜeÎz cos(β)− Ŝz Îy sin(β) + ŜxÎz

The second π/2 pulse on the sensor spin followed by optical readout therefore yield a partially projected
nuclear state of the form

ŜeÎz cos(β) + Ŝy Îy sin(β) + ŜxÎz → Îz cos(β)

Larmor precession only rotates the in-plane components, so an Îz component of a precessing nuclear spin
upon n weak measurements evolves in analogy to its Îy component without the effect of Larmor precession.

Îz cos(β)→ Îz (cos(β))n ≈
(
Îz

)
e−nβ

2/2

The nuclear Îz component therefore experiences a measurement-induced exponential decay at double the
rate of the in-plane components. As indicated in Eq. S12, the slower decay rate for in-plane spin components
is due to Larmor precession.
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Supplementary Note 2: Signal-to-Noise Ratio

We estimate the signal-to-noise ratio (SNR) for the weak measurement protocol of Fig. 1b. For our esti-
mation, we assume that the output noise is dominated by the shot noise of the optical readout (and not by
quantum projection noise), which is a typical situation for experiments with NV centers. For a discussion
of readout noise vs. quantum projection noise see Ref. [1]. When dominated by shot noise, the SNR per
unit time is given by the ratio between the differential photon count δCtot (the signal) and the square root
of the total photon counts Ctot (the noise), normalized to the total measurement time Ttot,

SNR =
δCtot√
CtotTtot

(S16)

Here, δCtot corresponds to the change in optical intensity that is proportional to the meter spin Ŝz state, and
Ctot corresponds to the total intensity that determines the shot noise.

Our weak measurement experiment consists of an initialization step that prepares the nuclear spin in the Îx
state, followed by nweak measurements separated by a sampling time ts. The duration of a single repetition
of the experiment is given by

Ttot = tinit + nts (S17)

where tinit is the time it takes to initialize the nuclear spin into Îx. The total counts are given by

Ctot = nC0 (S18)

where C0 is the photon count of one optical readout. The differential photon count (signal amplitude) of the
j’th weak measurement is given by

δCj =
1

2
εC0 sin(gtβ)e−Γetβe−jΓ

′
nts ≈ 1

2
εC0gtβe

−Γetβe−jΓ
′
nts (S19)

where ε is the optical intensity contrast, g is the coupling constant, tβ is the interaction time, and Γe =

1/T2,DD is the electronic decoherence rate (assumed to be of first order) that is effective during tβ . The
approximation sin(gtβ) ≈ gtβ � π/2 acknowledges that the measurement is weak. Γ′n is the nuclear
dephasing rate,

Γ′n = Γn + Γβ = Γn +
g2t2β
4ts

(S20)

which is the sum of the intrinsic dephasing rate Γn and the measurement-induced dephasing rate Γβ =

β2/(4ts) = (gtβ)2/(4ts) (see Supplementary Note 1). The total differential photon count is the sum over
all δCj ,

δCtot ≈
n∑
j=1

δCj ≈
εC0gtβe

−Γetβ (1− e−nΓ′
nts)

2Γ′nts
(S21)

where we have replaced the sum by an integral and performed the integration. The SNR is then given by

SNRweak =
δCtot√
CtotTtot

=
ε
√
C0gtβe

−Γetβ (1− e−nΓ′
nts)

2Γ′nts
√
n(tinit + nts)

(S22)

We now simplify this SNR by making the following assumptions:
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• The initialization time is similar to (or shorter than) the duration of free precession, tinit ≤ nts. This
assumption is only roughly fulfilled in our experiments. The assumption is justified by the argument
that initializing and detecting a nuclear spin will require approximately the same time, since governed
by the same coupling constant.

• The sensor readout/reset time td is short compared to the interrogation time tβ , such that ts = tβ +

td ≈ tβ . This assumption is not always met in our experiments, but will in general hold for weak
couplings, which is the most important scenario.

The simplified SNR is

SNRweak ≈
1

2
ε
√
C0ge

−Γetβ
1− e−nΓ′

ntβ

nΓ′n
√
tβ

(S23)

The two free experimental parameters in this SNR are the number of measurements n and the interaction
time tβ . To ensure a spectral resolution on the order of the nuclear linewidth, the duration of the time trace
must be at least as long as the nuclear dephasing time T ∗2,n,

n ≥
T ∗2,n
ts
≈ 1

Γntβ
(S24)

To choose an interaction time tβ , we impose that the measurement-induced dephasing rate Γβ is less than
the intrinsic dephasing rate Γn,

tβ ≤
4Γn

g2
(S25)

The maximum possible tβ is thereby limited to T2,DD = 1/Γe by the exponential decoherence term e−Γetβ ,
which kicks in once couplings become very weak, g .

√
ΓnΓe. Evaluation of Eqs. (S23-S25) then yields

the optimum SNR (up to a factor of order unity)

SNR
(opt)
weak ≈

 ε
√
C0Γn for g

√
T ∗2,nT2,DD > 1

ε
√
C0Γn × g

√
T ∗2,nT2,DD for g

√
T ∗2,nT2,DD < 1

(S26)

Since the nuclear dephasing time T ∗2,n is typically much longer than T2,DD, or can be made long by suitable
NMR decoupling sequences, weak measurements allow maintaining a constant SNR beyond the decohe-
rence time T2,DD of the sensor spin, up to an evolution time of approximately

√
T ∗2,nT2,DD. This renders

weak measurement spectroscopy particularly useful for the detection of very weakly coupled nuclear spins.
A qualitative plot of the SNR vs. coupling parameter g, along with curves for the spectral resolution and
receiver bandwidth, is given in Extended Data Fig. 7.
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Supplementary Data 1: Experimental Parameters

Parameters of NV centers and 13C nuclear spins

NV g (2π kHz) a‖ (2π kHz) a⊥ (2π kHz) T2,DD (µs)

1 46.78 -18.61 146.35 42
2 4.651 0.540 14.61 165
3 54.22 16.78 150.75 21
4 33.41 381.21 113.29 35
5 37.18 41.56 117.53 500
6 44.25 99.40 139.1 130
7 (13C 1) 6.693 -173.5 20.18 216
7 (13C 2) n/m 49.7 n/m 216
7 (13C 3) 19.92 98 63.25 216

TABLE S1: Hyperfine coupling parameters calculated for the nuclear spins associated to each NV center. Following
Ref. [2], the parallel coupling a‖ is determined from a free precession experiment yielding two frequencies whose
difference is approximately a‖. The transverse coupling a⊥ is obtained by driving a nuclear Rabi oscillation via the
electronic spin, and recording the oscillation frequency fR, where a⊥/(2π) ≈ πfR. We extract these frequencies
from the measurements shown in Fig. S1 to Fig. S11. n/m, not measured.

Parameters for Figures 2

NV center 1

B field 191.8 mT

NV initialization laser pulse 1.5 µs

NV readout laser pulse 1.5 µs

π/2 rotation CPMG pulses 24

π/2 rotation CPMG duration 5.908 µs

Weak measurement CPMG pulses K {1, 2, 4, 6, 8, 12, 16}
Weak measurement CPMG duration tβ {0.246, 0.493, 0.985, 1.477, 1.969, 2.954, 3.938} µs

Sampling period ts {3.24, 3.24, 3.76, 4.24, 5.00, 5.72, 7.20} µs

Number of weak measurements n 61

Integration time {1496, 691, 661, 628, 675, 481, 391} sec

Number of Repetitions {3.798, 1.754, 1.592, 1.444, 1.448, 0.970, 0.703} · 106
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Parameters for Figures 3

Figure 3a
NV center 3

B field 190.8 mT

NV initialization laser pulse 1.5 µs

NV readout laser pulse 1.5 µs

π/2 rotation CPMG pulses 24

π/2 rotation CPMG duration 5.874 µs

Weak measurement CPMG pulses K 2

Weak measurement CPMG duration tβ 0.489 µs

Sampling period ts (3.56 + j 0.01) µs; j ∈ N = [0, 49]

Number of weak measurements n 51

Figure 3b,c
NV center 5

B field 194 mT

NV initialization laser pulse 1.5 µs

NV readout laser pulse 1.5 µs

π/2 rotation CPMG pulses 32

π/2 rotation CPMG duration 7.579 µs

Weak measurement CPMG pulses K {2, 6, 12}
Weak measurement CPMG duration tβ {0.474, 1.422, 2.844} µs

Sampling period ts {3.061, 4.013, 4.956}+ j 0.002 µs; j ∈ N = [0, 48]

Number of weak measurements n 49

Figure 3d
NV center 5

B field 194 mT

NV initialization laser pulse 1.5 µs

NV readout laser pulse 1.5 µs

π/2 rotation CPMG pulses 32

π/2 rotation CPMG duration 7.579 µs

Weak measurement CPMG pulses K 12

Weak measurement CPMG duration tβ 2.844 µs

Sampling period ts 5.933 + j 0.001 µs; j ∈ N = [0, 48]

Number of weak measurements n 49
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Parameters for Figure 4

Figure 4a
NV center 7

B field 201.2 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

CPMG pulses 200

Starting CPMG duration 222.22µs

CPMG duration increments ts 0.092µs

CPMG harmonic order 5

Number of points n 260

Figure 4b, blue dots
NV center 7

B field 201.2 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

Weak measurement CPMG pulses K 8

Weak measurement CPMG duration tβ 1.860µs

Sampling period ts 5.680µs

Number of weak measurements n 1520

Contact time for LR-NOVEL 30 µs

Ramp amplitude for LR-NOVEL 10 %

π/2 rotation RF pulse 10.903 µs

Number of polarization repetitions M 1200

Figure 4b, gray dots
See Extended Data Fig. 4,top for experimental parameters

Figure 4 inset
NV center 2

B field 190.2 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

π/2 rotation CPMG pulses 176

π/2 rotation CPMG duration 43.384µs

Weak measurement CPMG pulses K 16

Weak measurement CPMG duration tβ 3.944µs

Sampling period ts 13.92µs

Number of weak measurements n 501
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Parameters for Extended Data Figure 2

Extended Data Figure 2
NV center 4

B field 190 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

π/2 rotation CPMG pulses {4, 8, 12, 16, 24, 32}
π/2 rotation CPMG duration {0.822, 1.764, 2.647, 3.523, 5.294, 7.058}µs

Strong measurement CPMG pulses K 32

Strong measurement CPMG duration tβ 7.058µs

Parameters for Extended Data Figure 4

Extended Data Figure 4, top
NV center 7

B field 201.3 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

Strong measurement CPMG pulses K 120

Strong measurement CPMG duration tβ 27.899uµs

Sampling period ts 8.0µs

Number of points n 500

Contact time for LR-NOVEL 30 µs

Ramp amplitude for LR-NOVEL 10 %

π/2 rotation RF pulse 10.903 µs

Number of polarization repetitions M 200

Extended Data Figure 4, bottom
NV center 7

B field 201.3 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

Weak measurement CPMG pulses K 16

Weak measurement CPMG duration tβ 3.720µs

Number of weak measurements n 500

Sampling period ts 8.0µs

Contact time for LR-NOVEL 30 µs

Ramp amplitude for LR-NOVEL 10 %

π/2 rotation RF pulse 10.903 µs

Number of polarization repetitions M 200
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Parameters for Extended Data Figure 5

Extended Data Figure 5a
NV center 7

B field 201.3 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

Weak measurement CPMG pulses K {2, 4, 8, 12, 16}
Weak measurement CPMG duration tβ {0.465, 0.930, 1.860, 2.790, 3.720}µs

Number of weak measurements n 800

Sampling period ts 8.0µs

Contact time for LR-NOVEL 30 µs

Ramp amplitude for LR-NOVEL 10 %

π/2 rotation RF pulse 10.903 µs

Number of polarization repetitions M 1200

Extended Data Figure 5b
NV center 7

B field 201.3 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

Weak measurement CPMG pulses K 8

Weak measurement CPMG duration tβ 1.860µs

Number of weak measurements n 800

Sampling period ts 8.0µs

Contact time for LR-NOVEL 30 µs

Ramp amplitude for LR-NOVEL 10 %

π/2 rotation RF pulse 10.903 µs

Number of polarization repetitions M {200, 400, 800, 1200}

Extended Data Figure 5c
NV center 7

B field 201.3 mT

NV initialization laser pulse 1.5µs

NV readout laser pulse 1.5µs

Weak measurement CPMG pulses K 8

Weak measurement CPMG duration tβ 1.860µs

Number of weak measurements n 800

Sampling period ts 8.0µs

Contact time for LR-NOVEL 30 µs

Ramp amplitude for LR-NOVEL 10 %

π/2 rotation RF pulse 10.903 µs

Number of polarization repetitions M 1200
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Supplementary Figures for NV 1
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FIG. S1: Correlation spectroscopy for NV1. ts = 4.084µs.
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FIG. S2: Correlation spectroscopy with induced nuclear rabi rotation during waiting time for NV1. ts = 1.969µs.
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Supplementary Figures for NV 2
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FIG. S3: Correlation spectroscopy for NV2. ts = 5.054µs.
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FIG. S4: Correlation spectroscopy with induced nuclear rabi rotation during waiting time for NV2. ts = 3.944µs.
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FIG. S5: T1 relaxation time (left) and T2 (right). Solid lines are exponential fits yielding T1 = 1.97 ms and T2,echo =

52.6µs.
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Supplementary Figures for NV 3
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FIG. S6: Correlation spectroscopy for NV3. ts = 1.102µs.
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FIG. S7: Correlation spectroscopy with induced nuclear rabi rotation during waiting time for NV3. ts = 0.979µs.
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Supplementary Figures for NV 4

0 1 2 3 4 5 6 7

0.75

0.80

0.85

0.90

0.95

1.00

t (μs)

1
-
p
(a
.u
.)

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

f (MHz)

PS
D

(a
.u
.)

FIG. S8: Correlation spectroscopy for NV4. ts = 0.120µs.
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FIG. S9: Correlation spectroscopy with induced nuclear rabi rotation during waiting time for NV4. ts = 1.764µs.
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Supplementary Figures for NV 5
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FIG. S10: Correlation spectroscopy for NV5. ts = 2.033µs.
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FIG. S11: Correlation spectroscopy with induced nuclear rabi rotation during waiting time for NV5. ts = 1.895µs.
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Supplementary Figures for NV 6
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FIG. S12: Correlation spectroscopy for NV5. ts = 1.008µs.
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FIG. S13: Correlation spectroscopy with induced nuclear rabi rotation during waiting time for NV5. ts = 1.782µs.
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Supplementary Figures for NV 7
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FIG. S14: Correlation spectroscopy for NV7, 13C 1. ts = 1.094µs.
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FIG. S15: Correlation spectroscopy with induced nuclear rabi rotation for NV7, 13C 1. ts = 3.869µs.
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FIG. S16: Correlation spectroscopy for NV7, 13C 2. ts = 1.046µs.
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FIG. S17: Correlation spectroscopy for NV7, 13C 3. ts = 1.018µs.
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FIG. S18: Correlation spectroscopy with induced nuclear rabi rotation for NV7, 13C 3. ts = 1.829µs.
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FIG. S19: Correlation spectroscopy for NV7, 13C 1. The detection frequency was centered at the position of the 2
peaks associated to 13C 1 in Fig. 4a of the main text. ts = 1.046µs.
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