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Rapid Flipping of Parametric Phase States
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We experimentally demonstrate flipping the phase state of a parametron within a single period of its
oscillation. A parametron is a binary logic element based on a driven nonlinear resonator. It features two stable
phase states that define an artificial spin. The most basic operation performed on a parametron is a bit flip between
these two states. Thus far, this operation involved changing the energetic population of the resonator and
therefore required a number of oscillations on the order of the quality factor Q. Our technique takes a radically
different approach and relies on rapid control of the underlying potential. Our work represents a paradigm shift
for phase-encoded logic operations by boosting the speed of a parametron bit flip to its ultimate limit.
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Introduction.—Since the invention of the solid-state
transistor, the overwhelming majority of computers fol-
lowed the von Neumann architecture that strictly separates
logic operations and memory [1,2]. Today, there is a revived
interest in alternative computation models accompanied by
the necessity to develop corresponding hardware architec-
tures [3—6]. For example, phase-based logic architectures
can be realized with artificial spins such as the parametron
that arises in driven nonlinear resonators [7—17]. The para-
metron encodes binary information in the phase state
of its oscillation. It enables, in principle, logic operations
without energy transfer and the corresponding speed lim-
itations [18].

The parametron is a logic device employing the principle
of parametric driving [11,19-24]. Consider a resonator
whose natural frequency f( is modulated at a drive fre-
quency 2f ;. If f,1s chosen close to f), and the modulation is
sufficiently strong, the resonator experiences a negative
effective damping and is forced to oscillate at f,; with large
amplitude, as illustrated in Fig. 1(a). With the frequency of
the motion being half that of the modulation, the resonator
undergoes a spontaneous time-translation symmetry break-
ing [25,26]. As aresult, the system is locked to one of the two
available phase states that are degenerate in amplitude but
separated by 7 in phase (relative to a clock running at f;). In
phase space spanned by normalized displacement X and
momentum Y [27], this locking mechanism can be illus-
trated by the quasipotential landscape shown in Fig. 1(b).
The quasipotential features a double-well structure, where
each well corresponds to a stable phase state. The two phase
states of the parametron represent a classical bit or, analo-
gously, an Ising spin. In the lab frame, the states rotate
around the phase-space origin at the drive frequency f,
[Fig. 1(c)].
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FIG. 1. Parametron phase states and basic idea of rapid phase
flipping. (a) Parametric driving corresponds to a harmonic modu-
lation of the resonator’s natural frequency f. Solid (dashed) lines
represent the modulated (original) potential. If the drive is
sufficiently strong, the resonator locks to f; and settles into one
of two stable phase states that are separated by s, illustrated as
oscillating red and blue spheres. (b) In phase space, the parametri-
cally driven resonator experiences an effective double-well poten-
tial, which is the key signature of the parametron. The phase states
now appear as stationary red and blue spheres in the quasipotential
minima. (c¢) Simplified illustration of the parametron in phase
space. In the lab frame, the two states rotate around the origin at
frequency f. (d) Illustration of rapid phase flip. The parametron is
initialized in the red phase state (¢ = x). At time ¢ = 0, the phase
evolution of the system is paused for half an oscillation period by
freezing the resonator’s position. Upon release, the parametron
resumes oscillation in the blue phase state (¢p = 0).
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While the parametron was already patented at the dawn of
the digital era [7,8], it is only with recent experimental
advances that an implementation of the concept appears
useful. Research groups using nanomechanical resonators,
Josephson junction circuits, and optical parametric oscil-
lators have devised prototypical parametron-based Ising
machines that may solve nondeterministic polynomial-time-
hard problems much faster than conventional computers
[13-15,17,24,28]. The most basic logic operation on a
parametron is a bit flip, corresponding to a phase change
of z of the underlying resonator. Thus far, parametrons have
been flipped by first depleting the resonator and then re-
energizing it in the opposite phase state [13,21]. The flipping
speed of this method is limited by the ring-down time
7= Q/(nf,), where Q > 1 is the quality factor of the
resonator. This speed limitation is directly related to the
energy gap between energized and depleted states. However,
flipping the phase state of a parametron does not strictly
require energy transfer. Indeed, the two logic states are
degenerate in energy and protected by a “phase gap” [18]. It
should therefore be possible to devise a protocol to flip
between the phase states at a speed much faster than the
ringdown time z, which is often (erroneously) deemed a
fundamental limit for resonator operations [29,30]. Despite
the fact that such a protocol would unlock the full potential
of phase-encoded logic, an experimental demonstration has
remained elusive to date.

In this Letter, we experimentally demonstrate flipping
between the two phase states of a parametron within a single
oscillation period. Our technique allows logic operations on
a timescale of 1/f, and therefore Q times faster than the
ring-down time. Our protocol temporarily freezes (or slows
down) the evolution of a resonator to bridge the phase gap
separating its phase states. The speed of our method relies on
the fact that it does not require energy transfer into or out of
the system. The demonstrated protocols are platform inde-
pendent. We present two complementary variations of our
phase-flip paradigm on different experimental systems and
assess their performances. Our results call for a reevaluation
of the fundamental limits for high-speed and low-energy
computation using parametron bits.

Phase-flip protocols.—The general idea for rapid para-
metron phase flipping is illustrated in Fig. 1(d). The
resonator is initially in one of the two stable phase states.
Without limitation of generality, let us consider the red
phase state with phase ¢ =z. At t =0, the resonator
evolution is frozen (or slowed down), such that it acquires a
phase delay relative to its initial state. Careful timing results
in a delay of exactly z. Upon release, the resonator resumes
oscillation in the blue phase state with phase 0. In the
following, we consider two methods to achieve such a
phase delay by z. They make use of “potential deforma-
tion” and ‘“potential displacement,” corresponding to a
change in the restoring force and to the application of
an external force, respectively.

Phase flip via potential deformation.—We first demon-
strate rapid parametron phase flipping via potential
deformation, corresponding to switching the underlying
resonator’s natural frequency f,. As an experimental plat-
form, we use a silica nanoparticle optically levitated in a
focused laser beam in vacuum, as illustrated in Fig. 2(a)
(see [31] and the Supplemental Material [32] for details).
The light scattered by the particle provides us with a
measurement of its position. Each degree of freedom of the
particle’s center-of-mass represents a nonlinear resonator
[36]. To minimize the effect of thermal fluctuations, we
feedback-cool all three degrees of freedom to a temperature
of 1 K. Throughout this Letter, we focus on a single
oscillation mode with a resonance frequency f ~ 164 kHz.
The power spectral density of the feedback-cooled mode
under consideration is shown in Fig. 2(b).

Weak periodic modulation of the trapping laser intensity
turns the levitated particle into a parametron. In contrast, a
sudden and strong reduction of the laser intensity leads to a
deformation of the potential and can be used for phase flips.
Consider the particle confined in a potential of natural
frequency f, under parametric driving at 2f; (with
fa~ fo), such that the parametron is locked to one of
the two stable phase states [Figs. 2(c) and 2(d)]. When the
particle reaches its maximum displacement (and its velocity
vanishes), we reduce the power of the trapping laser to
switch the natural oscillation frequency to f/2 for a time
T4ef- If we choose 74.s = 1/, the particle has time to travel
to the opposite side of the potential. At this moment, we
switch the laser intensity (and thus the trap stiffness) back
to its original value and the particle continues to oscillate at
a frequency f,. Importantly, relative to the clock at f,, the
phase state of the parametron has been flipped by z during
the protocol.

We show an experimental demonstration of our idea in
Fig. 2(e), where we plot the phase state of the optically
levitated parametron as a function of time. The measurement
signal is the output of a lock-in amplifier fed with the position
signal. The trap frequency is switched twice per second from
fo = 164 kHz to the reduced value 82 kHz for a duration
T4t = 8.1 us.Indeed, we observe two phase states separated
by z and flipping between them at the expected rate of 2 Hz.
The phase flips happen instantaneously on the timescale set
by the 220 Hz bandwidth of our lock-in detection.

A striking feature in Fig. 2(e) is the failed phase flip
around 8 s, indicating that the success probability Pg;, of
our potential deformation scheme is less than unity (we
define Py, as the ratio of observed phase flips to flipping
attempts). We attribute this observation to the fact that we
did not choose the nominally ideal value of 74 = 6.1 us.
To corroborate this hypothesis, we record Py, for varying
Tge- In Fig. 2(f), we observe that Pg;; is indeed a periodic
function of 74; with the expected period 2/ f ;. When 74 is
an even multiple of 1/f,, the parametron phase remains
unaltered by the pulse and Pg;, vanishes. In contrast, for
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FIG. 2. Experimental demonstration of phase flip via potential deformation. (a) Experimental setup. A silica nanoparticle (diameter
136 nm) is trapped in a focused laser beam (wavelength 1064 nm) inside a vacuum chamber (not shown). The stiffness of the optical
potential can be modulated with an electro-optic modulator (EOM). The particle displacement is detected with a quadrant photo diode
(QPD). (b) Thermally driven power spectral density S, of the particle displacement. From the red line fit, we extract a quality factor
QO = 1970. (c) Schematic illustration of the phase-flip protocol. The parametron is initialized in the red phase state. When the particle
reaches its maximum displacement, we reduce the resonator frequency from f|, (potential sketched as solid line) to f/2 (dashed line) by
attenuating the laser intensity with an acousto-optic modulator (AOM). We then let the particle evolve for the pulse length 74 = 1/ f),
such that the phase states of the parametron undergo a full oscillation, while the particle only traverses the trap and acquires a phase
delay of z. (d) Same as (c) but illustrated in phase space. (e) Measured phase of the parametron as a function of time. A switch of the
potential as outlined in (c) and (d) is applied at a rate of 2 Hz with z4; = 8.1 us, periodically flipping the parametron phase state. Note
the failed flip around 8 s. (f) Flipping probability Pg;, for varying pulse length 74.¢. Our model (black line) takes into account the finite

thermal population of the resonator (see the Supplemental Material [32]). Error bars represent statistical uncertainty.

Tger €qual to an odd multiple of 1/f4, Py, approaches
unity. We note that a pulse of length 74 = 2/f, can be
interpreted as a sequence of two back-to-back pulses of
length 1/ f,. The data in Fig. 2(f) therefore demonstrate that
it is possible to fully exploit the switching speed of our
method by concatenating several rapid phase-flips.

Figure 2(f) reveals that the transitions of Py, (7qer)
between zero and unity are not infinitely sharp but display
a finite width of about 2 s, which we attribute to thermo-
mechanical fluctuations. The solid line in Fig. 2(f) indicates
a model calculation of Pg;, based on thermal phase noise
(see the Supplemental Material [32]). This model reprodu-
ces our data well for 74, > 5 us. We attribute the deviations
between data and model for short 7,4 to the finite response
time and the resulting transients of the modulator that
switches the laser power.

We note that in our experiment, we triggered a phase flip
when the resonator displacement was at its maximum. The
protocol is, however, applicable with any starting condition
(see the Supplemental Material [32]). Indeed, under the
applied potential deformation, a harmonic oscillator with
initial phase state (X, Y) will always evolve towards
—(X,Y) within half a period. By extension, the protocol
is applicable to arbitrary mixtures of states, including
thermal states. Finally, we point out that the flipping time
of our protocol could be further reduced to 1/(2f,) by
completely turning off the trapping potential. For our

particular experimental situation, switching off the poten-
tial also reduces the parametric drive to zero. On the short
timescale of the flipping process, this is not problematic
because parametric locking is only effective on time scales
of the order of 7. However, the scheme implemented in this
work is significantly more resilient against inevitable
thermal fluctuations of the particle motion which can lead
to particle loss.

Phase flip via potential displacement.—In the following,
we demonstrate that rapid parametron phase flips are also
possible by displacing the potential, corresponding to the
application of a force to the resonator. We experimentally
realize this method with the electrical LC circuit illustrated
in Fig. 3(a) (see [37] and the Supplemental Material [32] for
details). Here, the resonator displacement corresponds to
the charge separated across the varicap diode with capaci-
tance C, and the role of the force is assumed by a voltage
Upip- We characterize our resonator in the linear regime by
applying a weak drive tone Uy, Whose frequency we
sweep around f, while recording the output voltage U, c..
as shown in Fig. 3(b). The circuit becomes a parametron
under sufficiently strong driving close to 2f.

We use this system to realize the phase-flipping scheme
detailed in Figs. 3(c) and 3(d). When the resonator
displacement reaches its maximum value, a force is applied
to counter the restoring force and to freeze the resonator
evolution. This equals a displacement of the potential by
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FIG. 3. Experimental demonstration of phase flips via potential displacement. (a) Schematic of the electrical LC resonator circuit with

a varicap diode to provide a nonlinear capacitance C. (b) Linear response of the resonator to a small external driving voltage
(Ugive = 50 mV). From the red line fit we extract f, = 3.3 MHz and Q = 245. (c) Illustration of the phase-flip protocol. The
parametron is initialized in the red phase state. When the resonator reaches its maximum displacement at ¢ = 0, the potential is displaced
by an external force (from dashed to solid lines) such that the resonator is momentarily at rest. Atz = 1/(2f,), the force is turned off and
the parametron resumes its evolution, now in the blue phase state. (d) Same as (c) but illustrated in phase space. (e¢) Demonstration of two
different phase flips, performed with (i) 745 = 153 ns, the ideal pulse duration for flipping, and with (ii) 74, = 230 ns. The signal was
demodulated by a digital lock-in amplifier and filtered for clarity (see the Supplemental Material [32]). (f) Results of flipping
experiments with varying zg,. Each datapoint represents the state of the resonator directly after a pulse. Here, u = X cos(2zf 1) —
Ysin(2zf4t) and v = Y cos(2zf4t) + X sin(2zf 4¢) are the phase-space quadratures in a frame rotating at the drive frequency f,. A

black circle serves as a guide to the eye.

the oscillation amplitude, such that the resonator tempo-
rarily finds itself at the potential center. After the force is
turned off, the resonator has acquired a phase delay of z
relative to its original evolution and is stable in the opposite
phase state.

In Fig. 3(e), we show two examples of the behavior of
the system for different pulse lengths zy,. In the first
example, the pulse length is set to 74, = 1/(2f), the ideal
pulse length for a bit flip. Indeed, the parametron flips its
phase state by z (i, blue data points). In the second
example, we set 74, = 1.5 x 1/(2f,) (ii, green). Here,
the parametron is transferred into a state between the two
stable phase states and evolves towards one of them on a
timescale given by Q/f, ~ 74 us after the flip.

In Fig. 3(f), we plot the state of the resonator at ¢ =
0.7 us after the start of a bit flip in phase space (in a frame
rotating at the drive frequency) for different values of z;,.
The amplitude of the parametron after the flipping protocol
(corresponding to the radial distance from the plot center) is
independent of 74, which results from the fact that the
resonator’s evolution is frozen at the point of maximum
displacement and vanishing velocity. Our data demonstrate
that via the choice of 7y, we can transfer the parametron to
any point on the unit circle in phase space, in particular to
the two stable phase states.

Discussion and conclusion.—The two experimental dem-
onstrations in Figs. 2 and 3 establish a new paradigm for

resonator-based logic operations. Parametron phase flips
can be achieved within a single oscillation period and
completely independently from the quality factor Q. This
finding opens up new possibilities for applications that use
parametrons as phase logic units [7-9,11-14,16,17,38—41].
The states of the parametrons may be initialized and flipped
irrespective of the (desirable) high quality factors of the
underlying resonators, and the flips do not necessarily
involve energy exchange with a bath. In this way, our
schemes reconcile the two seemingly disparate notions of
rapid logic operations and long state coherence [42,43].
Beyond computation, rapid phase flips allow encoding
binary information through phase-shift keying [44].
While current phase-shift keying techniques use an
oscillator with constant amplitude and phase and achieve
different phase-space states through postprocessing, our
demonstrations show that information encoding on the
level of the resonator itself is feasible. This may enable
ultracompact and low-power encoders for specialized
applications such as autonomous nanobots in medical
research [45,46].

There are several factors that significantly relax the
required conditions for large-scale implementations of
our technique. First, the symmetry protection of the para-
metron makes the phase-flips very stable in the presence of
phase noise [18]. Consecutive rapid flips result in the
correct state as long as the summed phase error is below
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7/2. After a sequence of rapid flips, phase errors will self-
correct through relaxation within the double-well. Second,
the external parametric driving signal can be utilized as a
clock with large signal-to-noise ratio. Estimating the
momentary state of a parametron is thus fault tolerant up
to z/2, while the amplitude is generally known.

The physics explored within our work may be translated
to nonlinear high-frequency resonators based on Josephson
junction circuits [17,22-24], micro- and nanomechanical
resonators such as carbon nanotube and graphene devices
[21,23,47-51], optical parametric oscillators in nonlinear
media [12,14,28], trapped ions [52], and cold atom lattices
[53]. It is thus a highly general concept that is potentially
useful in a wide variety of experiments and future
applications.
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