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S1. EXPERIMENTAL DETAILS: OPTICAL TRAPPING SETUP

We implement the bitflip based on a deformation of the potential using an optically trapped nanoparticle [S1]. An extended
sketch of the setup is shown in Fig. S1. In our experiment, we focus a linearly polarized laser beam (wavelength 1064 nm, focal
power 80 mW) with a microscope objective (0.8NA) inside a vacuum chamber. A dielectric nanoparticle (silica, diameter 136 nm)
is trapped by the optical gradient force in the laser focus. We collect the light scattered by the particle in the forward direction,
where it interferes with the transmitted trapping beam, and send it to a standard four-quadrant detection scheme. We can therefore
monitor the particle’s motion along all three coordinate axes as a function of time. We call the optical axis the z direction, while
the x and y axes lie in the focal plane with the x axis perpendicular to the polarization direction. The center-of-mass motion of
the particle resembles three Duffing oscillators [S2]. Our experiments take place at 5× 10−6 mbar, where the particle’s motion is
strongly underdamped. We use parametric feedback cooling to reduce the thermal oscillation amplitude of the particle along all
three axes to 1 K [S3]. At these low oscillation amplitudes any non-linear mode coupling is negligible. The feedback signal is
derived from the position measurement using a phase-locked loop whose output is frequency doubled and whose phase is adjusted
to achieve cooling. This feedback signal is applied to an electro-optic modulator (EOM). Throughout this work, we focus on the x
mode of the particle with natural frequency f0 ≈ 164 kHz.

Under parametric driving at a frequency 2fd (with fd close to the natural frequency f0), the particle motion locks to the
drive and acquires a large oscillation amplitude [S4]. Driving the x mode leaves the remaining degrees of freedom essentially
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Figure S1: Experimental setup for phase flips via potential deformation.
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unaffected due to the large frequency difference between the modes (fz ≈ 50 kHz, fy ≈ 130 kHz). The parametric driving in our
experimental system corresponds to a harmonic modulation of the laser intensity which sets the stiffness of the optical trap. We
realize this parametric driving using the same EOM used for feedback cooling. The parametric driving signal is the frequency
doubled output of a function generator producing a harmonic tone at fd.

To effect the potential deformation leading to the flip of the parametron phase, we reduce the stiffness of the optical potential
using an acousto-optic modulator (AOM). We have calibrated the device to switch the potential to half of the original stiffness
by observing the natural frequency of the particle oscillation mode as a function of voltage applied to the AOM. To carry out a
bitflip, we generate a square pulse of length τdef with an arbitrary waveform generator (AWG). In order to effect the potential
deformation at the desired time, we trigger the AWG by the parametric drive fd to which the particle motion is locked in phase.

We extract the phase of the parametron by demodulating the detector signal of the measured particle position x(t) at the drive
frequency fd using a lock-in amplifier (LI). The demodulated output of the LI is recorded by a data acquisition card (DAQ). A
typical time trace of the phase output of the LI is shown in Fig. 2e of the main text. The timing resolution in this experiment is
given by the bandwidth of the lock-in amplifier, which is chosen at 220 Hz in the presented experiments and is limited by the
signal-to-noise ratio of the position measurement. With this timing resolution, the phase flips appear as essentially instantaneous
in Fig. 2e and it is not possible to generate a highly time-resolved measurement of the phase as shown in Fig. 3e for the experiment
with the LC resonator (which offers a dramatically higher signal-to-noise ratio). To gain information about the dynamics of the
phase flip with higher timing resolution, we have devised the experiment shown in Fig. 2f. Here, our sub-microsecond control
over the pulse length τdef (provided by the waveform generator), allows us to investigate the dynamics of the phase flip on the
timescale set by the natural frequency of the underlying resonator.

S2. MODEL FOR BIT-FLIP SUCCESS RATE

In this section, we describe the model giving rise to the solid line in Fig. 2f of the main text. Naively, one would expect
Pflip to be a periodic rectangular function of τdef, since the parametron will settle into the phase state φ = 0 (φ = π) if the
deformation pulse takes it to a phase value in the range [−π/2 . . . π/2] ([π/2 . . . , 3π/2]). However, Fig. 2(f) reveals that the
transitions of Pflip(τdef) between zero and unity are not infinitely sharp but display a finite width of about 2 µs, which we attribute
to thermomechanical fluctuations.

To model our system, we describe the phase-space distribution of the parametron as a thermally broadened coherent state
with a Gaussian probability distribution. The width of this Gaussian is determined by the temperature of the nanoparticle’s
center-of-mass motion. Under feedback cooling, the root-mean squared amplitude due to thermal activation is around 2 nm. The
displacement of the Gaussian from the origin by the coherent drive amounts to 7 nm. When the trapping potential is deformed to
have natural frequency f0/2, the phase-space distribution rotates around the origin at that frequency. We calculate the bit-flip
success rate Pflip(τdef) as the fraction of the phase-space distribution falling into the halfspace with negative amplitude X , given
that the system was started with its phase-space distribution initially centered on the positive X axis. The resulting (appropriately
normalized) variation of the complementary error function is plotted in Fig. 2f as a solid line. We note that the width of the
transitions from zero to unity is given by the ratio of the amplitude due to the thermal drive relative to the thermal population.
Both these quantities were independently measured. The period of the undulations of Pflip is given by f0/2, and a fixed parameter
as well. The only free parameter we allow for is a phase shift corresponding to a temporal delay of 1.3 µs to account for the finite
response time of our AOM switching the trapping potential.

S3. EXPERIMENTAL DETAILS: ELECTRICAL RESONATOR SETUP

In Fig. S2, we show the full electrical schematic of the experiment used for rapid phase flipping with the potential displacement
method. Calibration measurements for this setup were performed in a previous study [S5]. A tuning voltage Utune ∼ 2 V is used
to bring the diode into reverse bias, and a second (large) capacitance C1 = 47 nF prevents DC currents from flowing withing the
resonator.

For every flipping event, we first switch on the driving voltage Udrive to drive the resonator into parametric resonance and lock it
to the drive. At the same time, the lock-in amplifier (HF2LI by Zurich Instruments) sends a clock signal phase-locked to Udrive to
the FPGA. After waiting for the resonator to reach a steady state (twait ≥ 0.2 s), we measure its phase state relative to the clock.

In the next step of the phase-flipping protocol, we use a RedPitaya FPGA to detect a zero-crossing of the clock signal. The
FPGA then outputs a single rectangular pulse after a calibrated delay that depends on the measured resonator phase. This
pulse triggers the lock-in amplifier to start logging Umeas, and is at the same time the ‘force’ applied to the resonator with an
additional delay ∆t (this delay ensures that the measurement captures the entire flipping process). We use an operational amplifier
(THS4271D) to preserve a high quality factor of the resonator and to enable a rapid switch of Uflip. The measured resonator
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response Umeas is measured as a time trace and later post-processed digitally in a computer. After the flipping event, the phase of
the resonator is measured once more by the lock-in amplifier to verify a successful phase reversal.

For each phase flip event, we run the raw signal through a digital lock-in amplifier at fd to obtain the phase space quadratures.
We then perform a fast Fourier transform (FFT) and apply a SINC filter with a cut-off frequency at fd to eliminate unwanted
harmonic responses. After a back-transformation into the time domain, we calculate the phase φ that is shown in Fig. 3e.

S4. THEORY DETAILS: FOKKER-PLANCK SIMULATIONS OF RAPID FLIPPING

In the following, we numerically investigate the robustness of the switching protocol based on the potential-deformation
method. In particular, we demonstrate that the flipping fidelity of the potential-deformation method is independent of the time
when the switch is executed within the parametron oscillation cycle. We perform these investigations using numerical simulations
of corresponding time-dependent Fokker-Planck equations [S6].
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Figure S2: Experimental setup for phase flips via potential displacement.
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Figure S3: Probability density function (PDF) p(X,Y, t) of the parametron’s steady state for our simulation parameters. The colorbar ranges
from p = 0 (white) to p = 2425 (grey). The integration of p over the entire phase space yields unity. We use the phase-space population in the

half space X < 0 as the initial state for simulations of the bit-flip protocols.
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Figure S4: Fokker-Planck simulation of the potential-deformation protocol with noise. The bit-flip is initialized when the resonator has
maximum (negative) displacement and minimum momentum. The three subfigures are snapshots of the flipping process at different times during

the protocol and correspond to the three situations shown in Fig. 2d of the main text. The colorbars range from p = 0 (white) to p = 4850
(red/green/blue). (a) Initial state p(X,Y, t = 0), corresponding to the steady state in Fig. S3 in the region X < 0 of phase space. (b) Probability
density function (PDF) of the parametron in the middle of the flipping protocol, corresponding to time t = 1/(2f0). (c) PDF of the parametron

at the end of the flipping protocol at time t = 1/f0.

A. Details of the numerical model

In our analysis, we consider a nonlinear parametric resonator with additive force noise (originating, e.g., from thermal processes
or from a noisy pulse). Our model can describe both experimental platforms used in this work (see [S5] and [S4]). We choose to
discuss our model in the form of a mechanical resonator described by the equation of motion

Ẍ +
γ

m
Ẋ + ω2

0 [1− λ cos(2ωdt)]X +
α

m
X3 =

F (t)

m
+
σξ(t)

m
. (S1)

Here, X is the displacement, Y = Ẋ the velocity, dots indicate differentiation with respect to time t, m is the effective mass,
ω0 = 2πf0 is the angular resonance frequency, γ = mω0/Q is a damping term, and α describes the strength of a cubic restoring
force. The system is subject to a parametric drive with modulation depth λ at a rate ωd = 2πfd. Deterministic external forces are
summed up as F (t). Stochastic forces are described by the noise intensity σ and the white noise process ξ(t) with 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = δ(t− t′), where δ(t) is a Dirac-delta distribution.

The system can be described by the following Fokker-Planck equation for the probability density function (PDF) p(X,Y, t) of
finding the system at the phase-space point (X,Y ) at time t. We rewrite Eq. (S1) as two coupled first order differential equations
to obtain

Ẋ = Y, (S2)

Ẏ =
1

m

{
F (t)− γY −mω2

0 [1− λ cos(2ωdt)]X − αX3
}

+
σ

m
ξ(t). (S3)

The Fokker-Planck equation for p(X,Y ) is then given by [S6]

∂

∂t
p(X,Y, t) =− Y ∂

∂X
p(X,Y, t)− 1

m

∂

∂Y

{
F (t)− γY −mω2

0X[1− λ cos(2ωdt)]− αX3
}
p(X,Y, t) (S4)

+
σ2

2m2

∂2

∂Y 2
p(X,Y, t).

For all following calculations, we use the dimensionless parameters m = 1, Q = 1000, ω0 = ωd = 1, λ = 0.003, α = 1, F = 0
and σ = 2.4× 10−4.

In a first step, we find the steady-state probability distribution psteady of the parametron, see false-color plot in Fig. S3. The
distribution psteady features appreciable values only in two distinct lobes in (X,Y ) phase space. These two regions correspond to
the two stable phase states of the parametron and differ in phase by π as expected. The width of the two lobes is given by the
magnitude of the fluctuating forces σ together with the damping rate γ, while the radial distance of the lobes’ respective centers
from the phase-space origin is set by the driving strength λ and the non-linearity parameter α. In order to investigate the behavior
of the phase-space distribution under our bit-flip protocols, we use as an initial distribution pini the part of psteady residing in the
half of phase space with X < 0. In other words, to obtain pini, we set psteady to zero in the region X > 0 and renormalize the
amplitude. In the following, we investigate the phase-space distribution p(X,Y, t) after execution of a phase-flip protocol.
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Figure S5: Fokker-Planck simulation of the potential deformation protocol with noise. The three subfigures correspond to flipping protocols
that start at different times tstart within the oscillation cycle. The pulse length is set to the optimal value τdef = 1/f0. Each panel combines the
initial (red) and the final (blue) state in a single graph. (a) Potential deformation phase flip initialized at tstart = 0 when resonator has maximum

displacement and minimum momentum. This is the same data as in Figs. S4a and c. (b) Potential deformation phase flip initialized at time
tstart = 1/(8f0), when resonator has equal (normalized) displacement and momentum. (c) Potential deformation phase flip initialized at time
tstart = 1/(4f0), when the resonator has minimum displacement and maximum momentum. The colorbars range from p = 0 (white) to

p = 4850 (red/blue).

B. Numerical results: Potential deformation

We now numerically investigate the method termed ‘potential deformation’ introduced in the main text, where it was imple-
mented with the levitated nanoparticle. To this end, starting with the distribution pini(X,Y, t = 0), we switch the potential to
ω0 = 0.5 during the flip time τdef. In Fig. S4, we show the results of our simulations for an optimal pulse length τdef = 1/f0.
The time t = 0 where the pulse starts is chosen such that the resonator has maximum (negative) displacement and minimum
momentum. (Note that this is the situation that we experimentally realized.) In the different panels, we show snapshots of
p(X,Y, t) at the beginning (t = 0, panel a), in the middle [t = 1/(2f0), panel b], and at the end (t = 1/f0 = τdef, panel c) of the
deformation pulse. We observe that the probability distribution is slightly distorted during the pulse (see panel b), However, at the
end of the pulse, the phase-space distribution is essentially indistinguishable from the starting distribution, except that it has been
rotated by π in phase space.

Having found that our phase-flip protocol based on potential deformation retains the shape of the initial phase-space distribution,
we further investigate the robustness of our method to variations in the starting time of the pulse. In Fig. S5, we show the results
of Fokker-Planck simulations of rapid phase flips for different starting times tstart of the potential-deformation pulse during
the oscillation cycle of the parametron. In each panel, we show the starting distribution pini(X,Y, tstart) in red, together with
the distribution pini(X,Y, tstart + τdef) in blue. Here, we have chosen the ideal pulse length τdef = 1/f0. Note that Fig. S5a
contains the combined information of Fig. S4a and c. Interestingly, looking at Fig. S5, we observe no appreciable difference
in the resulting phase state as we vary the starting time of the pulse through the oscillation period of the parametron. These
findings are in agreement with our expectation: During the time τdef = 1/f0, which corresponds to half an oscillation period in
the deformed potential, the phase state of the oscillator inverts, i.e., it evolves from (X,Y ) to −(X,Y ), irrespective of the starting
state. Accordingly, our bit-flip protocol based on potential deformation can be executed at any arbitrary point in time throughout
the parametron oscillation cycle. Furthermore, our results show that the phase-flip protocol based on potential deformation leaves
the width of the phase-space distribution essentially unchanged. Consequently, we conclude that the protocol is robust against
inevitable additive force noise which can arise due to coupling to a thermal bath.
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