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1 Nanomagnet Field Calibration

1.1 Fits to line scans

The magnetic �eld was approximated by separating its shape into short, cylindrical sections

of constant magnetization. The �eld of a cylinder, homogeneously magnetized along its axis,

can be expressed analytically. Adding the �elds of all the sections provides the total �eld

(see supporting information of Ref. 1). The diameter of each disc was calculated from a �t
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to the mean diameter of an AFM scan, assuming an approximate rotational symmetry of the

nanomagnet (see Sec. 1.3). The calibration of the magnetization was done experimentally,

using the x scans described in the main article. From the known sample geometry, the

expected MRFM signal was calculated and �tted to the experimental data (see Fig. S1).

The simulation follows the supporting information of Ref. 1.

Figure S1: Simulated MRFM signals (black) �tted to three of the x scans presented in Fig. 4b
of the main article. The magnetization of the nanomagnet was determined from this data.
Here the tip position is referenced to the center of the nanomagnet. The curves are o�set
for better visibility.

We obtain a magnetization of the nanomagnet of µ0Mmagnet = 1.83 T. The expected

magnetic �eld gradients along x at di�erent heights z above the nanomagnet's top surface

are plotted in Fig. S2. We can expect a maximum magnetic �eld gradient of 6 · 106 T/m

between 10 and 20 nm above the nanomagnet.

1.2 Magnetic �eld gradient extracted directly from line scans

From the line scans for di�erent resonant slices shown in Fig. 4b, we �t the signal onset

position x0. The scans were recorded ∼ 250 nm away from the edge of the nanomagnet

where the gradient Gx varies slowly with distance. By plotting the onset position as a

function of the slice frequency frf and �tting the slope Sx0 (see Fig. S3), we can estimate the
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Figure S2: Magnetic �eld Bz (panel a) and magnetic �eld gradient Gx (panel b) for dif-
ferent heights above the nanomagnet. The curves were calculated from the experimentally
calibrated tip model. The black cross denotes the experimentally determined magnetic �eld
gradient in x-direction (see Fig. S3).

gradient at this position

Gx =
1

γnSx0

. (S1)

For a slope of Sx0 = 41.6 · 10−15 m/Hz we obtain a gradient of Gx = 0.56 · 106 T/m.
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Figure S3: Linear �t of signal onset position x0 as a function of slice frequency frf . From
the slope we obtain a gradient Gx = (41.6 · 10−15 m/Hz · 42.58 · 106 T/m)−1 = 0.56 · 106 T/m.
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1.3 Nanomagnet parameters

We infer the shape of the nanomagnet from an AFM scan. Assuming rotational symmetry,

we calculate the mean radius as a function of height (gray curve in Fig. S4) and �t it in

order to get a smooth shape (red curve in Fig. S4). The �t function is given by

h(r) = hmag

[
p

1 + 10h1·(r−b1)
+

1− p
1 + 10h2·(r−b2)

]
, (S2)

where the �t parameters hmag = 213.9 nm, p = 0.84, h1 = 2.559·107 m−1, h2 = 6.957·107 m−1,

b1 = 191.7 nm, and b2 = 230.2 nm were chosen to optimally resemble the magnet's top

curvature.

We determine the magnetization of the nanomagnet to be µ0Mmagnet = 1.83 T with a

magnetic bias �eld of B0 = 5.88 T.
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Figure S4: Cross section of the nanomagnet. The gray line is measured data, the red line is
a �t that we use for our model.

2 Spin Simulations

2.1 Time evolution

We simulate the time evolution of a single spin operator Îz while applying an adiabatic

full-passage pulse to estimate the slice function ξ(∆f). To solve the Liouville-von Neumann
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equation we use a time-discrete propagation of the spin density matrix ρ(t). The time

evolution by one time step ∆t is given by

ρ(t+ ∆t) = Û(t+ ∆t)ρ(t)Û †(t+ ∆t) , (S3)

where Û(t) is the unitary operator

Û(t) = exp
(
−i Ĥ(t) ∆t

)
. (S4)

The Hamiltonian Ĥ(t) for an NMR pulse in the rotating frame can be written as

Ĥ(t) = −2π
[
(fL − frf,mod(t)) Ŝz + γnB1,mod(t)Ŝx

]
(S5)

where Ŝx and Ŝz are the Pauli spin matrices, fL is the spin's Larmor frequency, γn the nuclear

gyromagnetic ratio, and where frf,mod(t) and B1,mod(t) are the frequency and amplitude

modulation of the NMR pulse, respectively. The expectation value of the spin along the

external bias �eld B0 is given by

〈Îz(t)〉 = Tr
{
ρ(t)Ŝz

}
. (S6)

All spin simulations shown in this paper were performed with a time step of ∆t =

0.5Tc/314 ∼ 1 µs, where Tc is the cantilever period.

2.2 Pulse selection

In order to select the adiabatic pulse which performs best under our experimental conditions,

we simulated the MRFM signal for a sample with a uniform spin density ρ(∆f) = ρ

ζ = δsliceρ

∫ fFM

−fFM

a1(f∆f )F(f∆f ) df∆f , (S7)
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where δslice is the total slice width de�ned by the frequency range of F(∆f) ≥ 0.1, a1(∆f) is

the Fourier coe�cient, F(∆f) is the �delity and f∆f varies the detuning of the spin from the

carrier frequency frf . This de�nition of ζ is, in a �rst order approximation, proportional to

the force signal F 2
spin and is used to compare the performance of di�erent pulses. In Fig S5

we compare the MRFM signal as a function of the excitation bandwidth 2fFM and the rf �eld

amplitude B1 for di�erent types of adiabatic pulses.2,3 For better comparison, the signal η

is normalized for all simulations to the maximum value that occurred. The pulses indicated

with (HS28) and (Gauss−5) show the best inversion e�ciency for small inversion bandwidths

fFM ≤ 150 kHz. We chose the (HS28) pulse because it also shows very little dependence on

B1.

2.3 Robustness of HSn pulses

For three-dimensional magnetic resonance force microscopy (MRFM) imaging, the cantilever

is scanned with respect to the magnetic tip. The scanning leads to variations of two crucial

parameters of the adiabatic full-passage pulse, the maximum rf �eld amplitude B1 and the

pulse duration Tp = (2fc)
−1. The resonance frequency of the cantilever fc strongly depends

on the cantilever position relative to the magnet (see Sec. 3).

The class of HSn pulses is designed to provide a well-de�ned inversion pro�le as soon

as a threshold �eld amplitude B1,threshold is exceeded.4 We take advantage of this fact by

setting B1 well above B1,threshold to become insensitive to variations that occur within our

typical MRFM scan range. Figure S6a compares the simulated �delity F of an HSn pulse

and a common trapezoidal pulse for small variations in B1. Though simulated for a set

of parameters resulting in the best inversion performance, the trapezoidal pulse slice varies

strongly in shape while for the HSn pulse the di�erence is not visible. We also simulated

the slice shape for a range of cantilever frequencies that are typically measured during a

scan over the nanomagnet, as shown in Fig. S6b. For the HSn pulse, decreasing the pulse

duration Tp from 390 µs to 210 µs only results in a reduction of the slice width of ∼ 20 %. In
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Figure S5: Adiabaticity simulations for several inversion pulses. All simulations are per-
formed for 1Hnuclei with fc = 3350 Hz and N = 140 Inversions. The signal η is normalized
for all simulations by the same value.
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contrast, at the highest cantilever frequency the trapezoid pulse does not achieve a �delity

F = 1 for any spin within the excitation bandwidth. Both sets of simulations con�rm that

the HSn pulse is well suited for high resolution MRFM experiments.

2.4 Di�erence in settings between Fig. 2d and 2e

In Fig. 2d, the spin inversion �delity F as a function of the nuclear spin detuning ∆f was

calculated for a cantilever frequency fc = 3350 Hz, a modulation depth fFM = 150 kHz,

and an in-plane �eld amplitude B1 = 5.3 mT. The transformation from detuning to spatial

distance ∆x = ∆f · γ−1 · G−1
x (top scale in Fig. 2d) takes into account a gradient of Gx =

2 · 106 T/m. For this set of parameters the adiabatic condition for the inversion pulses is

su�ciently ful�lled,4 hence we obtain a well-de�ned and box-like inversion pro�le.

To record the data presented in Fig. 2e the cantilever was positioned centered over the

magnet's edge at a distance of 25 nm and we swept the modulation depth fFM. Due to the

cantilever-magnet interaction the resonance frequency shifted to fc = 4820 Hz, resulting in

a 40 % faster inversion rate. We detected a signal with SNR > 1 with modulation depths

as small as fFM = 75 kHz. A simulation of the inversion pro�le for the given parameters

con�rmed that the adiabatic condition is no longer ful�lled. The �delity does not reach the

maximum value of Fmax = 1 for any spin within the resonant slice, resulting in a di�erent

shape than shown in Fig. 2d. Therefore, the minimal total slice width in this experiment

with Gx = 2.3 · 106 T/m was δslice,min = 0.7 nm, not δslice,linear = 1.2 nm as a linear scaling

with Gx and fFM would suggest. Note that we de�ne δslice,min = 0.7 nm as the spatial range

for F ≥ 0.1. The e�ective width de�ned by, e.g., F ≥ 0.5, would be even smaller.

2.5 Calibration of B1

The �delity of adiabatic full-passage pulses depends on the maximum rf �eld amplitude B1

at the position of the spin. In the experiment, B1 is controlled by the voltage amplitude of

the arbitrary waveform generator UAWG driving the rf stripline antenna.
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Figure S6: Simulated inversion pro�les. Individual curves are o�set for better comparison.
(a) Trapezoidal and HS28 pulse pro�le as a function of B1 for fc = 3350 Hz. (b) Pulse pro�le
as a function of pulse duration Tp = 1/2fc for B1(Trap) = 2.0 mT and B1(HS28) = 5.3 mT.
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We performed a adiabaticity measurement by recording the MRFM signal as a function

of UAWG and fFM and compared it to the simulation shown in Fig S5. The signal onset at

B1,onset ∼ 1.5 mT provides a distinct feature which allows an easy and reliable alignment of

both signals. Additionally, we measured the transmission parameters of the rf circuit and

calculated the expected magnetic �eld for the applied voltage amplitude UAWG. Both values

are in good agreement, resulting in a B1 = 5.3 mT for the data shown in Fig 2e.

3 Cantilever Sensitivity Calibration

In MRFM, as in many other AFM-based techniques, the quantity of interest is the force

acting on the transducer. Therefore, a careful calibration of the spring constant of the

cantilever kc is essential for any quantitative measurement.

We calibrate the spring constant by a �t of the thermally driven power spectral density

spectrum Sxx at room temperature (see Fig. S7). The expected shape of the spectrum is

given by5

Sxx(f) =
2kBTfc

πmcQc

· 1

(f 2
c − f 2)2 +Q−2

c (fcf)2 , (S8)

where kB is the Boltzmann constant, T the absolute temperature of the cantilever eigenmode,

fc the free resonance frequency, Qc the quality factor and mc the dynamic mass of the

cantilever. From independent ring-down experiments we determine Qc = πfcτ , where τ is

the exponential decay time of the amplitude. The eigenmode temperature T is measured

with a temperature sensor integrated in the MRFM probe head. For good thermalization

and an accurate temperature reading, the spectrum is recorded at room temperature. This

is a standard procedure often used for calibrating AFM cantilevers.5,6

The forces that act on the cantilever during a MRFM measurement are generated at the

tip position where the sample is located. The cantilever motion, however, is detected at a

small mirror paddle, which is o�set from the tip apex and leads to a reduced sensor signal.
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Figure S7: Power spectral density of the cantilever used for this work. The dynamic mass
mc has been calibrated by the �tted curve. The parameters for the free cantilever are
fc = 3489.9 Hz, mc = 1.70 · 10−13 kg, and kc = 81.7 µN/m at room temperature; at cryogenic
temperatures the free cantilever resonance frequency shifts to approximately 3522 Hz.

We performed a �nite element analysis (Siemens NX Nastran) to obtain a leverage factor

ac that compensates for the reduction of the signal read-out. The model incorporates the

exact geometry of the cantilever including the glued-on nanorod which was determined from

a high-resolution optical microscope image. The amplitude distribution of the �rst cantilever

eigenmode is depicted in Fig. S8.

Figure S8: Amplitude distribution of the �rst cantilever eigenmode including the glued on
nanowire. It has been normalized to the amplitude of the de�ection read out location at the
small mirror paddle, resulting in a leverage factor ac = 1.355.

Compared to other AFM methods (kAFM ∼ 0.1 − 40 N/m), we use very soft cantilevers
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(kc ∼ 80 µN/m) which are strongly in�uenced by the surrounding energy landscape. In

proximity to the nanomagnet, detected resonance frequencies f ∗c can range from 1 kHz to

10 kHz. This frequency shift is associated with a change of the e�ective spring constant k∗c .

Detailed analysis of the e�ect of an external interaction at the very tip of the cantilever

showed that the relation

k∗c = mc · (2π f ∗c )2 , (S9)

is valid up to about twice the free cantilever resonance frequency. Above this range a node

starts to develop at the tip of the cantilever due to the external potential which alters the

eigenmode structure of the cantilever to where it can no longer be modeled as the original

simple harmonic oscillator with a small correction. Since the dynamic mass mc, obtained

from the �t in Fig. S7, does not change under normal experimental conditions, we can use

the cantilever frequency f ∗c at each scan position to determine the e�ective spring constant

k∗c .

4 Nanorod Fabrication and Attachment

We use batch-fabricated silicon nanorods with a cross-section of ∼ 300 nm × 500 nm as

sample attachment platform. They are prepared independently from the cantilever and

attached after their speci�c treatment is complete. They feature a lower surface roughness

and a smaller cross-section than the cantilever tip, which reduces the non-contact friction

between the cantilever and the nanomagnet and results in a better sensitivity.

The nanorods are made from silicon on insulator (SOI) wafer chips (4� diameter, 4 µm

device layer thickness, 6 µm oxide layer thickness) using the following recipe:

� Dice chips into 2.5 cm× 2.5 cm pieces

� Thin device layer uniformly down to ∼ 300 nm with a TMAH solution (25 % tetram-
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ethylammonium hydroxide in water)

� Write nanorod pattern with electron-beam lithography

� Etch straight sidewalls with inductively coupled plasma (ICP)

� Under-etch nanorods ∼ 3 µm in bu�ered hydro�uoric acid (BHF, 7 % in water)

� Evaporate gold on nanorods (for screening trapped charges and as an adhesion layer

for biological samples)

The scanning electron micrograph in Fig. S9 shows a �nished chip with nanorods attached via

easily breakable silicon beams. A nanorod is glued to the cantilever tip under a microscope

with the use of manual micro-manipulators. We use a epoxy-based adhesive (Alradite,

5 min) which cures even for a very small volume at room temperature within reasonable

time (∼ 20 − 30 min). Finally, the nanorod is broken loose from the chip by wiggling the

cantilever.

This modular approach has the advantage that the sample preparation is carried out

separately from the mechanical transducer. Biological samples, like virus particles or cell

membranes, are usually deposited from a nutrient solution which could leave residuals behind

that degrade the mechanical properties of the cantilever.

Figure S9: Scanning electron microscopy image of nanorods, still attached to their breakaway
bridges, ready to be glued to a cantilever tip and separated from their chip.
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5 Calibration of Scan Position

In MRFM scanning experiments the cantilever is moved relative to a magnetic tip by a

piezoelectric actuator. To determine the lateral resolution of our apparatus, the piezoelectric

constant Sscan is of great importance. Further, for the very compliant transducer we use

(∼ 10−4 N/m), the cantilever-magnet interaction leads to signi�cant static de�ections of the

tip respectively the sample which have to be taken into account.

The scanner is calibrated in-situ under experimental conditions by performing an AFM-

type measurement of the stripline-nanomagnet chip with the MRFM cantilever. By com-

paring the image to a reference scan taken at room temperature with a conventional AFM,

we obtain Sscan. Static de�ections of the cantilever and the blunt shape of the nanorod are

considered in this analysis.

The cantilever motion is measured via an optical interferometer which is sensitive to both

the static cantilever de�ection and the dynamic oscillations. During a scan, the interferom-

eter is kept at its most sensitive operation point by tuning the laser wavelength via a PID

controller. Therefore, the cantilever tip position xtip is given by

xtip = Sscan Uscan + SPID ∆UPID + SDC UPID,error , (S10)

where Uscan is the voltage applied to the piezo actuator, xscan = Sscan Uscan is the nominal

scanner position, SPID is the tuning sensitivity of the PID controller, ∆UPID is the PID

output voltage relative to a reference point with no cantilever-magnet interaction, SDC is the

sensitivity of the interferometer to static de�ections, and UPID,error is the residual error of

the PID controller. Due to the slow scanning speeds in MRFM scans of less than 1 nm/min,

the last term in Eq. S10 is negligible.
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6 Nonlinear Fit of Signal Onset

6.1 Onset position uncertainty

We note that there are similarities between measuring spin density in a sample with a

linearly scanned resonant slice (cf. Fig. 4b) and estimating the position of a grating edge

under an optical microscope with the help of a scanned slit.7 In both cases, the signal

corresponds to the convolution of the pro�le of a scanning probe (slice/slit) and the sample

geometry. The precision with which the position of an edge can be determined is limited by

the noise superimposed on the rising signal. For optical microscopy, the standard error of the

corresponding position estimation can be rigorously derived for a linear �t.7 In close analogy,

we used a nonlinear �t curve (hyperbolic tangent) for our data in Fig. 4b and de�ned the

uncertainty of the sample edge position from the 68.3 %-con�dence interval of the �t. The

resulting number is σx0 = 0.6 nm± 0.1 nm, as stated in the main text.

In a second step, we can de�ne a limit for measuring the same feature (i.e., the same

sample edge) with various `slits'. This is precisely what we have done in Fig. 4b by using

di�erent slices to obtain slightly shifted signals. The smallest spatial shift between two

traces we can discern in this way is derived from basic error propagation. We �nd that the

corresponding uncertainty is σ∆x =
√
σ2
x0,1

+ σ2
x0,2

= 0.9 nm ± 0.2 nm, exactly the same as

our SNR-limited resolution.

6.2 Signal rise distance

From the �ts to individual scans shown in Fig. 4b, we obtain a typical signal rise width of w ∼

10 nm. This width is mainly determined by the convolution of the sample with the residual

curvature of the tangential imaging slice and is not indicative of the spatial resolution. In

the case of comparable sizes of sample width and slice diameter (∼ 300 − 500 nm), the rise

distance is mainly determined by the slice width. This is con�rmed by the slice pro�le shown

in Fig. 2d which translates for Gx = 0.56 · 106 T/m to a total width of wslice = 10.7 nm.
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