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Discrete time crystals are a many-body state of matter where the extensive system’s dynamics are slower
than the forces acting on it. Nowadays, there is a growing debate regarding the specific properties required
to demonstrate such a many-body state, alongside several experimental realizations. In this work, we
provide a simple and pedagogical framework by which to obtain many-body time crystals using
parametrically coupled resonators. In our analysis, we use classical period-doubling bifurcation theory
and present a clear distinction between single-mode time-translation symmetry breaking and a situation
where an extensive number of degrees of freedom undergo the transition. We experimentally demonstrate
this paradigm using coupled mechanical oscillators, thus providing a clear route for time crystal realizations
in real materials.
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In periodically modulated nonlinear systems, discrete
time-translation symmetry can be spontaneously broken,
leading to inherently slower dynamics than that of the drive
[1–6]. A rapidly expanding community is principally
focused on such a phenomenon in periodically driven
closed quantum systems, where disorder and interactions
are considered to be essential for so-called discrete time
crystals [7–20]. A time-crystalline phase of matter stabilized
by many-body localization was first observed in a one-
dimensional trapped-ion system [13]. Surprisingly, time
crystals were also seen in three-dimensional ensembles of
NVcenters [14] and in spin-1=2nuclei in phosphatematerials
[21] where disorder-induced localization effects are absent.
The latter results indicate a wider class of time-crystalline
behavior, including classical counterparts [22–27].
A natural arena for realizing time crystals is provided

by parametric resonators. A parametrically pumped res-
onator mode plays an important role in many areas of
science and technology. In its best-known form, para-
metric pumping describes the modulation of a resonator’s
potential at twice its natural frequency [1–4]. When the
modulation depth exceeds an instability threshold, the
resonator undergoes a period-doubling bifurcation to a
new regime stabilized by nonlinearities [1]. This time-
translation symmetry breaking (TTSB) leads to two stable
parametric phase states that have equal amplitude, oppo-
site phase, and half the oscillation frequency of the
parametric drive [17,28–30]. Interestingly, these states
can be associated with two states of a classical bit [31–35]
or with an Ising spin [28–30,36–46]. Networks of such
coupled resonators have been proposed as simulation
platforms for complex Ising-like models that are very
hard to solve with conventional computers [17,36–43].
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FIG. 1. (a) Stability diagram of a single parametrically driven
resonator mode with eigenfrequency ω0 as a function of para-
metric pumping frequency and depth, Ωp and λ, respectively
[1,48]; cf. Eq. (1). Green tongue shapes indicate regions where
the linear resonator becomes unstable. (b) Beyond the instability
threshold in the first lobe, Ωp ∼ 2ω0, the nonlinear resonator
undergoes a period-doubling bifurcation and oscillates with
frequency Ωp=2. Because of the period doubling, there exist
two possible phase states with equal amplitude but opposite
phase. In some frequency ranges, there is an additional zero-
displacement stable solution. (c) Enlargement of the stability
diagram around the first instability lobe for N coupled resonators.
Here, N nondegenerate normal modes (marked by different color
and symbols) generically arise; cf. Eq. (1). The red area indicates
the region of many-body TTSB. (d) Inside the many-body TTSB,
each of the normal modes reside in one of the phase states. The
resulting multistate configuration depends on the coupling co-
efficients βij, the nonlinearities, and noise fluctuations.
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In this work, we show that a many-body TTSB can be
easily realized in a classical network of dissipative para-
metric resonators. We present a general theoretical analysis
and derive conditions for the manifestation of many-body
TTSB in this system. This is complemented by a simple
tabletop experimental demonstration using two coupled
resonators. Our setup allows us to tune the coupling
strength, and we find a regime where the modes of the
system jointly undergo TTSB into well-defined parametric
phase state configurations. Our experiment thus realizes the
simplest building block that highlights the plethora of
accessible TTSB solutions. At the same time, we test
our understanding of the general many-body model against
a well-controlled and accessible experimental implemen-
tation. Our work lifts the ambiguity surrounding the
concept of time crystals by establishing sufficient con-
ditions for their generation.
We consider a classical network of N coupled non-

linear parametric oscillators, whose dynamics is governed
by N equations of motion

ẍi þ ω2
i ½1 − λ cosðΩptÞ�xi þ γi _xi

þ αix3i þ ηix2i _xi −
X
i≠j

β2ijxj ¼ 0; ð1Þ

where dots mark differentiations with respect to time t, xi
is the displacement, ωi the eigenfrequency, γi the dis-
sipation, αi the quartic nonlinearity, and ηi the nonlinear
damping of the ith mode. The system is excited by a
single parametric pump of modulation depth λ and
frequency Ωp. Each mode i couples to other modes
j ≠ i in the form of a driving force in proportion to xi
and with a coupling coefficient β2ij.
We can perturbatively solve the system using the slow-

flow method [47]: we rewrite Eq. (1) as 2N first-order
differential equations and perform a van der Pol trans-
formation with frequency ω ¼ Ωp=2, followed by time
averaging, to obtain the slow-flow equation

_X ¼ AðXÞX; ð2Þ
where X ¼ ðu1; v1; u2; v2;…; uN; vNÞT , with ui and vi the
slowly varying phase-space quadratures of the individual
resonators. This equation is valid if the dimensionless
quantities 1 − ðω=ωiÞ2, λ, γi=ωi, ðηi=ωiÞx2i , β2ij=ω2

i , and
ðαi=ω2

i Þx2i are of order ϵ, where 0 < ϵ ≪ 1 [47]. These
conditions are easily satisfied for a network of nearly
identical oscillators. The matrix A can be written as

A ¼

0
BBBBBBBB@

a1ðXÞ b12 � � � b1N

b1;2 a2ðXÞ . .
. ..

.

..

. . .
. . .

.
bðN−1ÞN

b1N � � � bðN−1ÞN aNðXÞ

1
CCCCCCCCA
; ð3Þ

where the ai and bij are given by

aiðXÞ ¼ −
1

8ω

�
ai;1 ai;þ
ai;− ai;1

�
; bij ¼

 
0

β2ij
2ω

−
β2ij
2ω 0

!
;

with i ≠ j and i; j ¼ 1; 2;…; N, and using the definitions
ai;1 ¼ 4γiωþ ηiωX2

i , ai;� ¼ 2ðλω2
i þ2ðω2

i −ω2ÞÞ�3αiX2
i ,

and X2
i ¼ u2i þ v2i . In general, the number of steady-state

solutions, both stable and unstable, to this N-body problem
varies from1 to 5N depending on the parameter regimes [28].
In the absence of nonlinearities, αi ¼ ηi ¼ 0, the natural

description of the resonator network is given by N normal
modes with eigenfrequencies νk, k ¼ 1;…; N. The dynam-
ics of the normal modes is determined by the eigenvalues
and the eigenvectors of A. The 2N eigenvectors define the
positions and momenta of the N normal modes. The time
evolution of the kth normal mode is given by eΛkt, with Λk
the respective eigenvalue. The motion will be bounded for
negative RefΛkg and manifest parametric instability, i.e.,
unbounded dynamics when RefΛkg > 0. Each normal
mode exhibits a corresponding parametric stability phase
diagram known as “Arnold tongues,” delineating regions
where dissipation stabilizes the motion and regions
where the linear system shows unbounded dynamics, see
Fig. 1(a). In the following, we will focus on the dominant
instability lobe occurring around Ωp ∼ 2νk, when the
parametric drive exceeds a threshold λ ≥ λkth [48].
In general, it is not dissipation but the underlying

nonlinearities ðαi; ηiÞ that stabilize the normal-mode oscil-
lations against unbounded growth [5]. The classical sys-
tems we consider here are therefore no more limited by
heating than their quantum counterparts. At the boundary
of its main instability lobe, each normal mode undergoes a
period-doubling bifurcation alongside a spontaneous Z2

symmetry breaking between the two parametric phase
states; see Fig. 1(b). This is a simple manifestation of
TTSB in the steady state of an effective single parametric
mode. It is important to note that although a single normal
mode can involve an extensive number of resonators of the
network, it does not give rise to a many-body TTSB
because it does not involve an extensive number of
independent degrees of freedom.
A many-body TTSB phase is realized in the resonator

network in a region where an extensive number of normal
modes undergo the aforementioned period-doubling tran-
sition. A simple recipe to realize a many-body TTSB
consists of finding the parametric pumping amplitude
λMB
th ðωPÞ ¼ minλfλ > λkthðωPÞ; ∀ kg at which all normal
modes are driven above their respective instability thresh-
olds, see Fig. 1(c). There, each normal mode finds itself in a
parametric phase state, see Fig. 1(d). Note that the many-
body threshold holds in the limit of weak nonlinearities and
does not include corrections stemming from nonlinear
internormal mode coupling. We have numerically verified
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that this picture persists beyond the regime of weak
nonlinearities. For stronger nonlinearities, the system is
predicted to undergo a cascade of period-doubling bifur-
cations resulting in chaotic dynamics [49–51]. In the mean-
field limit of N identical resonators, i.e., ωi ≡ ω0 and
γi ¼ γ, with all-to-all coupling βij ¼ β=

ffiffiffiffi
N

p
, apart from the

symmetric mode, all other instability lobes coincide with
that of the antisymmetric (a) mode. The respective insta-
bility thresholds (λ > λth) are given by [52]

λs=ath ¼ 4ω

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2

4
þ
 
ω2 − ω2

0

2ω
þ
( ðN−1Þ

N ; s
−1
N ; a

)
β2

2ω

!
2

vuut : ð4Þ

The overlap region of λs=ath defines λ ≥ λMB
th ðΩpÞ.

In the following we discuss two limits, “strong” and
“weak” coupling, that are defined relative to the parametric
modulation strength λ. Since all the oscillators are driven
with the same periodic drive, they will synchronize into one
of 2N to 3N phase state configurations: for weak β2ij, these
correspond to the possible compositions of theN individual
resonators [17,53], while for strong β2ij, they correspond to
the configurations of collective normal modes. In both
cases, all these states manifest TTSB and the chosen
configuration will depend on initial conditions, noise,
and the strength of the nonlinearities. Noise can induce
transitions between phase states. However, for detunings
within the multimode instability lobe, transitions occur only
between TTSB states and are exponentially suppressed
[54,55]. To summarize, we predict that an array of coupled
dissipative parametric resonators realizes a stable TTSB

phase in its steady state. This phase endures in a wide region
of parameter space and is robust to fluctuations.
We now report on an experimental demonstration of

many-body TTSB in a system of two coupled mechanical
modes. Our setup is based on the lowest transverse vibra-
tional modes of two macroscopic strings. The strings are
clamped onto a fixed frame at one end, while the other end
is attached to a stiff plate that has two purposes; first, the
plate can be driven into vibrations parallel to the string axes
by an electric motor. These vibrations modulate the tension
inside the strings and generate parametric pumping of both
string modes. Second, the plate transmits vibrations
between the strings, which leads to weak intrinsic coupling
between the modes. In some experiments, we introduce
strong mode coupling by way of a mechanical connection
close to the mode antinodes, see Fig. 2(a).
The motion of each string is independently measured

with a dedicated piezo detector embedded into one clamp-
ing point. We use a lock-in amplifier (Zurich Instruments
HF2LI) to actuate plate vibrations and to read out the
electrical signals from the two piezo detectors, which are
proportional to the strings’ displacements. All measure-
ments in this work were carried out in the form of frequency
sweeps, where the actuation frequency Ωp ¼ 2ω and the
detection frequency ω were swept slowly to capture the
steady-state response of the modes. The measured string
vibration amplitude at each frequency is proportional to the
root-mean-square voltage Vrms detected by the lock-in
amplifier [52].
We use weak external driving for calibration of the

modes, as outlined in Refs. [29,30]. In these experiments,
the vibration amplitude is kept low and the influence of the
intrinsic coupling is negligible. From the Lorentzian
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FIG. 2. Strongly coupled oscillators: (a) Schematic setup representing two parametrically driven strings coupled via an additional
mechanical connection. (b) Calculated normal-mode stability diagram of the symmetric (I) and antisymmetric (II) eigenmodes of the
coupled system. (c) Measured amplitude and (d) phase of strings 1 and 2 for the up sweep (orange and brown) and down sweep (light
and dark blue) where both oscillators are parametrically driven at frequency 2ω. The fixed phase relations in regions I and II are
signatures of the corresponding normal mode symmetries. (e)–(f) Simulated steady-state solutions of oscillators 1 and 2 in the rotating
frame phase space (u, v) calculated from the slow-flow equations, cf. Eq. (2) as a function of ω. The thick (thin) tubes are stable
(unstable) solutions and white spheres indicate the positions of bifurcations. The stable branches corresponding to the experiment are
highlighted in matching colors for up- and down sweeps. Arrows indicate the sweep directions. In agreement with the experiment, fixed
symmetric and antisymmetric phase relations appear in the normal modes I and II, respectively.
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response of each mode, we extract typical values for
ω1;2=2π ¼ 155� 10 Hz (depending on ambient temper-
ature) and Q1;2 ∼ 1200. The effective mass m ¼ 4.14 ×
10−4 kg is calculated from the geometry of the strings. By
fitting to the large-amplitude response under strong para-
metric pumping, we obtain the coefficients of the nonlinear
potential term, α1 ¼ 11.93 and α2 ¼ 6.24 mV−2

rms s−2, as
well as those of the nonlinear damping, η1 ¼ 7.1 and η2 ¼
3.9 μV−2

rms s−1 (in the strong coupling case, we find η1 ¼
3.55 and η2 ¼ 1.95 μV−2

rms s−1) [52]. Finally, in the presence
of strong coupling, we use the normal mode frequency
splitting to estimate β ¼ 36.2� 0.1 Hz.
Strong coupling.—[Fig. 2(a)]: we first explore the regime

where the two instability lobes corresponding to the
symmetric and antisymmetric normal modes are well
separated, see Fig. 2(b). In Figs. 2(c) and 2(d), we show
the measured amplitudes and phases of both strings under a
common parametric modulation as a function of frequency
ω=2π, respectively. As the frequency is slowly swept
upwards, both resonators oscillate with the same phase
from 146 up to 149 Hz, while they are in opposing phase
states from 155 up to 157.5 Hz. The modes exhibit identical
symmetries (s=a) when the frequency is swept downwards.
These qualitative observations were consistent over many
sweeps. The small peaks around ω=2π ¼ 153 Hz corre-
spond to an unidentified eigenmode in the experimental
setup that does not appear to affect the modes of interest.
We model the system with Eq. (2) for N ¼ 2 using the

parameters extracted from the experiment. The results of
our calculations provide a simple understanding of the
experimental observations: as the frequency is swept, either
the symmetric or antisymmetric normal modes undergo
TTSB at their respective instability thresholds, recreating

the effective single-mode TTSB discussed earlier. The
coupling between the normal modes induced by non-
linearities is irrelevant in this regime as one mode is
strongly off-resonant with the other. The experimental
results are well described by the phase-space bifurcation
diagrams for each resonator plotted in Figs. 2(e) and 2(f).
Despite the fact that both resonators participate in the TTSB
of the symmetric or antisymmetric modes, many-body
TTSB is not observed in this strong-coupling limit as
the two instability lobes do not overlap for experimentally
accessible parametric excitation strengths.
Weak coupling.—Next, we remove the connection

between the strings and rely on the driving plate to provide
weak coupling between the string modes [Fig. 3(a)–3(b)].
The experimental data look very different in this regime
[Fig. 3(c)–3(d)]. Both strings have nearly identical natural
frequencies (within 50 mHz from each other) and exhibit
hysteresis when sweeping the frequency upwards and
downwards. The frequencies where the oscillation drops
to zero (during up sweeps) or jumps to a finite amplitude
(during down sweeps) are precisely the same for both
resonators. The strings oscillate in phase during the
upsweep and out of phase during the down sweep. All
of these features were reproduced over many sweeps.
The theoretical model corresponds to normal modes that

are split by a very small coupling β, such that their instability
lobes overlap strongly [Fig. 3(b)]. Since both normal modes
exhibit TTSB and are weakly coupled by nonlinearities, we
witness the realization of two-body TTSB. As before, the
experimental results for the amplitude and phase are con-
sistently explained by the weak coupling bifurca-
tion diagram for both strings shown in Figs. 3(e)–3(f).
In comparison with the strong coupling scenario of
Figs. 2(e)–2(f), the weakly coupled system exhibits richer

(a) (c)

(b)
(d)

(e) (f)

FIG. 3. Weakly coupled oscillators: (a) Schematic setup representing two parametrically driven strings weakly coupled via the driving
plate. (b) Normal mode stability diagram. (c) Amplitude and (d) phase of strings 1 and 2 for the up sweep (orange and brown) and down
sweep (light and dark blue) where both oscillators are parametrically driven at frequency 2ω. Both symmetric and antisymmetric stable
phase relations are observed depending on the system path in parameter space. This is the signature of a many-body time crystal. (e) and
(f) The simulated steady-state solutions of oscillators 1 and 2 in the rotating-frame phase space (u, v) calculated from the slow-flow
equations, cf. Eq. (2) as a function of ω. The thin tubes are unstable solutions and all other colored tubes represent stable solutions. The
white spheres in these plots denote bifurcations. In agreement with the experiment, either symmetric or antisymmetric phase relations
appear depending on the sweep direction (indicated by arrows).
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behavior. The selection of symmetric and antisymmetric
solutions as a function of the sweeping direction may be
explained in terms of the phase response of a linear resonator
to a periodic external force. Below its natural frequency, a
harmonic resonator oscillates with almost no phase lag in
response to an external force. As the two string modes drive
each other, they prefer tomove in phase. In contrast, since the
harmonic resonator response has a phase lag of∼π above the
natural frequency, the stringmodes preferably oscillate out of
phase during the down sweep. Thismany-bodyTTSB state is
stable against small detunings ω1 ≠ ω2 and robust to noise
(as seen in the experiment). Increasing noise levels are
expected to preserve the underlying TTSB, but to induce
transitions between the different stable solutions. For the
inherent noise in our setup, we estimate a negligible
transition rate of ∼10−5–10−10 Hz [54].
Coupled parametric resonators provide the simplest,

albeit rich platform to realize many-body discrete TTSB.
Our paradigm of a many-body time crystal is straightfor-
wardly generalizable to quantum resonator networks
[38,56–59]. Higher-period TTSB is also realizable in these
systems through a judicious choice of modulated non-
linearities [60–62]. The simple view of TTSB proposed in
this Letter can be putatively applied to the recently seen
TTSB in quantum spin systems [13,14]. Heuristically, the
many-body spin system can be viewed as composed of
multiple effective modes describing the eigenstates of the
system. Depending on how many such modes undergo
TTSB, single or many-mode TTSB will manifest in such
spin system. An important distinction is that while noise
and other imperfections lead to a decay of the TTSB state to
a time translation symmetry unbroken state in the spin
system [13,14], they preserve TTSB in our resonator
platform. Further investigations along this line are pending.
To conclude, we provide a simple paradigm of many-body
TTSB, which is applicable to a plethora of systems.
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