A dynamical magnetic field accompanying the motion of ferroelectric domain walls: Supplementary Material

Dominik M. Juraschek, ${ }^{1, *}$ Quintin N. Meier, ${ }^{1}$ Morgan Trassin, ${ }^{1}$ Susane E. Trolier-McKinstry, ${ }^{2}$ Christian Degen, ${ }^{3}$ and Nicola A. Spaldin ${ }^{1}$
${ }^{1}$ Department of Materials, ETH Zurich, Zürich, Switzerland
${ }^{2}$ Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
${ }^{3}$ Department of Physics, ETH Zurich, Zürich, Switzerland

Time evolution of Néel- and Bloch-type ferroelectric domain walls. In the following we review the derivation of the domain wall motion based on Refs. [17, 18], rewriting it in the notation used in this work. The Lagrangian for a ferroelectric domain wall separating domains of different orientation of polarization lying in the $x y$ plane can be written as

$$
\begin{align*}
\mathcal{L} & =\frac{1}{2} \mathcal{M}_{x}\left(\partial_{t} U_{x}\right)^{2}-\frac{1}{2} S_{x}\left(\partial_{r} U_{x}\right)^{2}-\frac{1}{2} A_{x} U_{x}^{2}-\frac{1}{4} B_{x} U_{x}^{4} \\
& +\frac{1}{2} \mathcal{M}_{y}\left(\partial_{t} U_{y}\right)^{2}-\frac{1}{2} S_{y}\left(\partial_{r} U_{y}\right)^{2}-\frac{1}{2} A_{y} U_{y}^{2}-\frac{1}{4} B_{y} U_{y}^{4} \\
& -C_{x y} U_{x}^{2} U_{y}^{2} \tag{S1}
\end{align*}
$$

where $U_{x / y}$ is the amplitude of the ferroelectric displacement along direction $x / y, \mathcal{M}_{x / y}$ is the effective mass of the ferroelectric distortion mode, $S_{x / y}$ are the gradient energies and $A_{x / y}, B_{x / y}$ and $C_{x y}$ are the coefficients of the harmonic, quartic anharmonic, and coupling terms. The coordinate r denotes the position perpendicular to the domain wall in the $x y$ plane of polarization. For a Bloch-type domain wall, we would require components perpendicular to the plane of polarization, $z \perp x, y$; for a Néel-type domain wall, we can express the change of ferroelectric displacement as simple rotation in the $x y$ plane:

$$
\begin{equation*}
\mathbf{U}=\binom{U_{x}(t)}{U_{y}(t)}=U_{0}\binom{\cos (\phi(r, t))}{\sin (\phi(r, t))} \tag{S2}
\end{equation*}
$$

where U_{0} is the amplitude of the bulk ferroelectric displacement. ($\mathbf{U}=U_{0} \mathbf{Q}$ in Eq. (5) in the main text with $n=1$.) Inserting this into the Lagrangian (S1), together with $\mathcal{M}_{x}=\mathcal{M}_{y}=\mathcal{M}, S_{x}=S_{y} \equiv S, A_{x}=A_{y} \equiv A, B_{x}=B_{y} \equiv B$, $B_{x}=B_{y} \equiv B$, and $C_{x y} \equiv C$ we obtain

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \mathcal{M} U_{0}^{2}\left(\partial_{t} \phi\right)^{2}-\frac{1}{2} S U_{0}^{2}\left(\partial_{r} \phi\right)^{2}-\frac{1}{2} A U_{0}^{2}-\frac{1}{4} B U_{0}^{4}-C U_{0}^{4} \frac{1}{8}(1-\cos (4 \phi)) . \tag{S3}
\end{equation*}
$$

The Euler-Lagrange equations for the Lagrangian (S3) yield after some rearrangements

$$
\begin{equation*}
\partial_{t}^{2} \phi-c_{0}^{2} \partial_{r} \phi+\kappa^{2} \sin (4 \phi)=0 \tag{S4}
\end{equation*}
$$

where $\kappa^{2}=C U_{0}^{2} /(2 \mathcal{M})$ and $c_{0}=\sqrt{S / \mathcal{M}}$ is the characteristic velocity. A substitution $4 \phi \rightarrow \theta$ and a transformation to a moving frame $r \rightarrow \xi=r-v t$, where v is the constant domain wall velocity yields

$$
\begin{equation*}
\partial_{\xi}^{2} \theta-\alpha^{2} \sin (\theta)=0 \tag{S5}
\end{equation*}
$$

where $\alpha^{2}=\kappa^{2} /\left(c_{0}^{2}\left(1-v^{2} / c_{0}^{2}\right)\right)$. The solution to this equation is known for a 360° rotation of θ (corresponding to a 90° rotation of ϕ), see for example Ref. [18]:

$$
\begin{align*}
\theta(\xi) & =4 \arctan \left(\mathrm{e}^{\xi \alpha}\right) \tag{S6}\\
\Rightarrow \phi(r, t) & =\frac{1}{4} \theta(\xi(r, t))=\arctan \left(\exp \left(\frac{1}{w} \frac{r-v t}{\sqrt{1-\frac{v^{2}}{c_{0}^{2}}}}\right)\right) \tag{S7}
\end{align*}
$$

where $w=c_{0}^{2} / \kappa^{2}=S /\left(2 C U_{0}^{2}\right)$ and $2 w$ is the width of the domain wall. Eq. (S7) is the expression (4) given in the main text. $n \phi$ with $n=1,2,4$ then corresponds to $90^{\circ}, 180^{\circ}$, and 360° rotations of the ferroelectric polarization.

Stray field estimate. The vertical magnetic stray field B_{z}^{s} appearing at height h above a thin $(2 w / \beta \ll h)$, extended domain wall located (see Fig. 3a) is given by

$$
\begin{equation*}
B_{z}^{\mathrm{s}}(r)=\frac{\mu_{0} M_{2 \mathrm{~d}} h}{2 \pi\left(r^{2}+h^{2}\right)} \tag{S8}
\end{equation*}
$$

where r is the relative position of the domain wall with respect to the sensor, $M_{2 \mathrm{~d}}$ is the two-dimensional moment density of the domain wall, and where the material is assumed to be thick $(d \gg 2 w / \beta, h)$. The magnetic moment density is given by

$$
\begin{equation*}
M_{2 \mathrm{~d}}=\frac{1}{V} \int_{-\infty}^{\infty} \mathrm{d} r m_{z}(r)=\frac{1}{V} \int_{-\infty}^{\infty} \mathrm{d} t v \gamma n \dot{\phi}(t)=\frac{\gamma}{V} v n \pi \tag{S9}
\end{equation*}
$$

To detect the magnetic stray field, we repeatedly move the domain wall back and forth to create an oscillatory field $B_{z}^{\mathrm{s}}(t)$ at the location of the NV spin sensor. When tuned to the spin resonance frequency f_{0}, the oscillatory field induces a Rabi rotation of the spin providing an experimentally detectable signal. The Rabi field B_{1} is given by the Fourier component of $B_{z}^{\mathrm{s}}(t)$ at frequency f_{0},

$$
\begin{equation*}
B_{1}=\frac{4}{T} \int_{-T / 4}^{T / 4} \mathrm{~d} t \cos (2 \pi t / T) B_{z}^{\mathrm{s}}(t) \tag{S10}
\end{equation*}
$$

where $T=1 / f_{0}$ is the Larmor period of the spin. Because the Larmor period ($\sim 0.1-1 \mathrm{~ns}$) is typically much longer than the time taken for the domain wall to pass ($\sim 1 \mathrm{ps}$), $B_{z}^{\mathrm{s}}(t)$ is non-zero only for a very short period of time around $t=0$, and the integral can be approximated by

$$
\begin{align*}
B_{1} & \approx \frac{4}{T} \int_{-\infty}^{\infty} \mathrm{d} t B_{z}^{\mathrm{s}}(t)=\frac{4}{T} \frac{\mu_{0} m h}{2 \pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} t}{v^{2} t^{2}+h^{2}} \\
& =\frac{\gamma}{V} n 2 \pi \mu_{0} f_{0} \tag{S11}
\end{align*}
$$

which is the expression used in the main text. Note that the expected signal is independent of domain wall width w, speed v and sensor height h as long as the geometric assumptions about the setup (a thick sample and thin moving domain wall) are satisfied and $v T \gg h$.

TABLE S1. Calculated diagonal Born effective charges $Z_{i, a a}^{*}$ in units of the elementary charge (a denoting spatial coordinates x, y, and z), and ferroelectric displacements $u_{i, x}$ in picometers for polarization along the x direction.

Atom	$Z_{i, x x}^{*}$	$Z_{i, y y}^{*}$	$Z_{i, z z}^{*}$	$u_{i, x}$
Ba	2.8	2.7	2.7	4.2
Ti	6.6	7.6	7.6	8.9
$\mathrm{O}(1)$	-5.3	-2.1	-2.1	-3.4
$\mathrm{O}(2)$	-2.0	-6.0	-2.1	-0.8
$\mathrm{O}(3)$	-2.0	-2.1	-6.0	-0.8

