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Gate-controlled phase switching in a parametron
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The parametron, a resonator-based logic device, is a promising physical platform for emerging computational
paradigms. When the parametron is subject to both parametric pumping and external driving, complex phenom-
ena arise that can be harvested for applications. In this paper, we experimentally demonstrate deterministic phase
switching of a parametron by applying frequency tuning pulses. To our surprise, we find different regimes of
phase switching due to the interplay between a parametric pump and an external drive. We provide full modeling
of our device with numerical simulations and find excellent agreement between model and measurements. Our
result opens up new possibilities for fast and robust logic operations within large-scale parametron architectures.
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I. INTRODUCTION

Many fascinating and useful phenomena arise when the
spring constant of a resonator is varied periodically in time.
“Degenerate parametric pumping” refers to the important
case when the modulation rate is close to twice the natural
frequency of the resonator, fp ∼ 2 f0 [1]. As long as the
modulation depth λ is below a threshold value λth, parametric
pumping simply decreases or increases the effective damp-
ing of the resonator in response to external forcing. This
effect is used with great success for quantum-limited signal
amplification with superconducting Josephson circuits [2–6],
feedback damping of nanomechanical resonators and trapped
particles [7–9], and squeezing of the vacuum noise of laser
light [10–13].

When the modulation depth exceeds the threshold, λ > λth,
the effective damping drops below zero. The system then be-
comes a parametric phase-locked oscillator, or “parametron,”
that undergoes large oscillations at fp/2 even in the absence
of external forcing [1,14–16]. Due to the periodicity doubling
between pump and oscillation, the parametron features two
“phase states” that have equal amplitude but differ in phase
by π . In a classical system, the parametron selects one out
of the two phases states during a spontaneous time-translation
symmetry-breaking event, while a quantum system can reside
in a superposition of both states. This state duality has been
applied to classical computing before the invention of the
transistor [17] and has recently been rediscovered in the
context of alternative computational architectures such as
neural networks, adiabatic quantum computing and quantum
annealing [18–21]. There, the two phase states can represent
opposite values of a single variable, e.g., the polarization
states of a single spin (“up and down”). An ensemble of
parametrons is envisioned as a simulator to find the ground
state of Ising Hamiltonians comprising many spins, or equiv-
alent combinatorial optimization problems from other fields.

*eichlera@ethz.ch

These problems are NP-hard and thus very challenging to
solve on conventional computers. Several exciting physical
implementations are currently competing to demonstrate such
novel computing paradigms, including optical parametric os-
cillators, superconducting Josephson circuits, and nanome-
chanical resonators [22–24].

The symmetry between the two phase states can be bro-
ken by applying a force at the oscillation frequency fp/2 ∼
f0 [Fig. 1(a)] [25–28]. Depending on the relative phase θ

of this force, the parametron will favor one of the states,
which can be used for various detection and amplification
schemes [16,29–31]. The symmetry breaking has also been
found to qualitatively change the bifurcation topology of the
parametron, i.e., the way stable and unstable solutions merge
and annihilate as a function of fp [28]. This has surprising
consequences for the hysteresis observed when sweeping the
pump (at fp) and the force (at fp/2) simultaneously. In a cer-
tain frequency range, the two drives can partially cancel each
other, leading to a decrease in amplitude of one parametric
phase state and to an additional jump. One of the applications
predicted in Ref. [28] is that the parametron can be switched
from one phase state to the other simply by changing the
resonance frequency f0 relative to fp/2 with a gate voltage.
The “gate parametron” is effectively a new device with a suite
of useful properties.

In this paper, we experimentally demonstrate gate-
controlled switching of the phase states of a parametron. With
an electrical resonator circuit, we first establish the existence
of a double hysteresis due to parametric symmetry breaking,
which previously has been found in mechanical resonators at
much lower frequencies [28,31]. We then proceed to demon-
strate phase switching with high fidelity and in close agree-
ment with numerical simulations. The achievable switching
rate is ultimately limited by the ringdown time τ = Q

π f0
of

the resonator (where Q is the quality factor). We find that
the switching works down to a timescale of 7τ , where the
dynamics is much too fast for the gate parametron to follow
its steady-state response. We believe that the surprisingly fast
phase switching stems from the interplay between parametric
pumping and external forcing.
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FIG. 1. (a) Phase states of a parametron in the rotating frame
(open dots). In-phase amplitude is denoted by X , out-of-phase am-
plitude by Y . A resonant force with relative phase θ can break
the symmetry of the parametron and shift the states (solid dots).
(b) In our experiment, an electrical resonator is driven and mea-
sured inductively. The varactor diode with capacitance C1 is bi-
ased with Utune and Ugate for dc and ac tuning of f0, respectively.
(c) Response to external driving with Ud = 50 mV (Up = 0) and
(d) parametric response to Up = 5 V (Ud = 0) with Utune = 2.2 V.
Bright dots represent data, fits are shown as lines. The dashed line
in panel (d) indicates an unstable solution branch. From the fits,
we obtain f0 = 3.37 MHz, Q = 243, Fd/Ud = 2.65 × 1010 s−2, α =
3.2 × 1017 V−2 s−2, and η = 5.8 × 108 V−2 s−1.

II. EXPERIMENTAL SETUP

We perform experiments with an electrical circuit whose
main elements are a coil and a varactor diode with capacitance
C1 [Fig. 1(b)]. The precise value of C1 depends on the applied
voltage, giving rise to a nonlinearity (see Appendix B for
details and calibration). We use a dc voltage Utune to ensure
that the diode is in reverse bias, while rapid changes of
the resonance frequency ω0 = 2π f0 ≈ √

1/LC1 are induced
through Ugate. The latter is applied via an operational amplifier
(THS4271D) with a nominal unity gain. The low output
impedance of this voltage buffer is necessary to preserve the
quality factor of the resonator. The resonator is driven and read
out inductively with a lock-in amplifier (Zurich Instruments
HF2LI).

The equation of motion that governs our system is

ẍ + ω2
0[1 − λ cos(ωpt )]x + 	ẋ + αx3 + ηx2ẋ

= Fd cos(ωdt + θ ), (1)

where dots denote differentiation with respect to time t , x is
an oscillating voltage, and 	 = ω0/Q is the damping rate.
The varactor diode gives rise to an approximately linear
dependence of the spring constant on x. Driving the resonator
with a voltage amplitude Up at a rate fp = ωp/2π leads to
off-resonant oscillations in the circuit that modulate ω2

0. In
Eq. (1) this parametric effect is accounted for by the second
term in square brackets with modulation depth λ ∝ Up. The
nonlinearity is also responsible for the Duffing coefficient
α and for the nonlinear damping coefficient η. The res-

onator can be driven externally with a near-resonant frequency
fd = ωd/2π , an effective amplitude Fd ∝ Ud , and relative
phase θ . For simplicity, we set x = Umeas, that is, we treat
the voltage in our pick-up coil as the effective resonator dis-
placement. The only modification we incur through this step
is that the values of α and η will be normalized accordingly
(see Appendix A for all details).

III. MEASUREMENTS

Under a small external drive and for λ = 0, the resonator
oscillates at fd with an amplitude that is proportional to Ud .
From a sweep of the driving frequency, we obtain a Lorentzian
response curve that we can use to determine f0, Q, as well as
to calibrate Fd/Ud [Fig. 1(c)]. In the opposite case of purely
parametric pumping and Ud = 0, a finite response is measured
within a certain frequency range when Up � Uth [Fig. 1(d)],
which allows us to calculate the modulation depth as

λ = Upλth

Uth
= Up

Uth

2

Q
. (2)

Beyond λth, the device is linearly unstable and enters the
nonlinear parametron regime. From a fit to the nonlinear
amplitude response, we can extract values for α and η. Here,
the nonlinear damping coefficient η is used to model the
frequency at which the large-amplitude branch is terminated
[see arrow in Fig. 1(d)].

When parametric pumping and external driving are present
simultaneously, parametric symmetry breaking occurs [28].
With fp = 2 fd , this can lead to a complex bifurcation topol-
ogy and a characteristic double hysteresis in frequency sweeps
[Figs. 2(a) and 2(b)]. Importantly, the external drive causes the
parametron to occupy opposite phase states when sweeping
the frequency upwards or downwards.

The mechanism that underlies phase switching is surpris-
ingly simple. Far from resonance, the resonator is outside the
region of parametric instability, and no parametric oscillation
takes place. The phase of the resonator is then determined by
the external drive alone. Due to the phase difference of the
driven harmonic resonator below and above resonance, the
external drive imprints opposite phases into the system for
the two extreme gate voltages. When the detuning is reduced,
the resonator enters the region of parametric instability (either
from below or above in frequency) and must ring up to one
of the two phase states. In this moment, the phase imprinted
upon the parametron by the external drive acts as a bias that
deterministically selects one of the two phase states. It was
proposed that instead of sweeping fd,p, one could vary f0

over time to induce phase state switches [28]. We present an
experimental demonstration of this prediction.

We can change f0 as a function of time by applying a time-
varying gate voltage Ugate = Umod cos(2πt/Tmod). In Fig. 2(c)
we observe the quasistatic response of the resonator to a
modulation of Ugate within a period Tmod � τ = 23 μs. The
resonator changes indeed between the two phase states once
every Tmod/2, confirming the possibility of gate-controlled
phase switching.

We have tested periodic phase switching with varying
speed and found two distinct regimes. In Figs. 3(a) and
3(b) the voltage Ugate is modulated slowly. Both amplitude
and phase follow the response expected from quasistatic
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FIG. 2. (a) Amplitude and (b) phase response during sweeps of
f with parametric pumping (at fp = 2 f ) and external driving (at
fd = f ) applied simultaneously. A characteristic double hysteresis
is observed, with two jumps when sweeping from low to high
frequency and one jump in the opposite direction. In all graphs,
bright squares are measurements and dark lines are simulations.
Black dots in panel (b) indicate the position of the phase states
in frequency. Utune = 2.2 V, Ugate = 0, Up = 5 V, Ud = 50 mV, θ =
π/4. (c) Response to a periodic voltage Ugate that shifts f0 relative
to the fixed fp,d . Black dots indicate the approximate positions of
the two phase states within one Ugate period. fp = 2 fd = 6.74 MHz,
Umod = 0.2 V, and Tmod = 10 ms.

frequency sweeps [cf. Fig. 2(a) and 2(b)], and the phase
space picture in Fig. 3(a) is asymmetric. Upon decreasing the
modulation period, we reach a qualitatively different behavior.
In Figs. 3(c) and 3(d), the amplitude remains much smaller
and the phase space picture is almost symmetric, i.e., the
gate parametron does not follow its steady-state solution.
Surprisingly, the resonator still undergoes phase switches.
Numerical Runge-Kutta simulations reproduce all of the ob-
served features (see Appendix C for details).

Gate-induced phase switches rely on the formation of a
hysteresis. To gain a deeper insight into the different regimes
observed in Fig. 3, we have investigated the hysteresis of
the gate parametron as a function of Tmod in Fig. 4(a). The
large hysteresis observed for slow modulation (Tmod = 67 ms,
bottom trace) breaks down and reaches a minimum width
at Tmod ∼ 12.5 ms. From there, the hysteresis is found to
monotonically increase down to the shortest Tmod, albeit with a
more symmetric shape than for slow modulations. Numerical
simulations confirm the experimental results.

We believe that the hysteresis for short Tmod is dominated
by the behavior of the underlying harmonic oscillator. If the
driving frequency of any resonator is ramped fast enough,
the response follows with a delay and a hysteresis develops
even in the absence of nonlinearities. In Fig. 4(b) we have
measured the resonator response without parametric pumping.
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FIG. 3. Periodic response of the parametron to Ugate modulations
(a) in the rotating frame of the lock-in amplifer (i.e., the in-phase
and out-of-phase quadratures UX and UY at fp/2) and (b) in terms
of amplitude and phase as a function of time. Bright squares are
measurements, solid lines are simulations. The starting phase of
the gate voltage modulation is a free parameter in the simulation.
Utune = 2.2 V, Up = 5 V, Ud = 50 mV, θ = π/4, Tmod = 67 ms, and
the pulse has an amplitude of Umod = 0.45 V. In panels (c) and (d) we
show the same for Tmod = 2 ms.

Indeed, we observe that a hysteresis arises for short Tmod that
resembles the one in Fig. 4(a).

IV. DISCUSSION

We conclude that the two regimes of phase switching
arise due to the interplay between the parametric pump and
the external drive. For slow evolutions, the resonator follows
the amplitude and phase dictated by the parametric pump,
and the external drive merely acts as a symmetry break-
ing force. The parametron can directly switch between the
slightly asymmetric phase states. For rapid evolutions, it is
the external force that dominates the response, and the only
visible influence of the parametric drive is a broadening of
the hysteresis [compare the upper traces in Figs. 4(a) and
4(b)]. After the phase flip, the parametron relaxes into the
appropriate phase state. Gate-controlled phase state switching
is thus still possible in this regime.

As a summary, we have demonstrated the main func-
tionality of the gate parametron, namely, deterministic and
gate-controlled phase state switching due to a symmetry-
breaking force. More generally, we observed phase switching
of the gate parametron on timescales down to Tmod/2 = 7τ

for a single switch, and we found two distinct regimes of
hysteresis formation due to the interplay between the paramet-
ric pump and the external drive. Our gate-controlled phase-
switching technique allows individual control of any number
of parametrons sharing one parametric drive at fp and one
external drive at fp/2. It thus offers a simplified architecture
for large-scale implementations of parametrons, which may
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FIG. 4. Hysteresis in the phase response to Ugate modulations.
Bright squares are measurements, solid lines are simulations, and
curves are offset for visibility. (a) Response for Tmod = 67 ms,
12.5 ms, 6.7 ms, 2 ms, and 0.33 ms from bottom to top, with Utune =
2.2 V, Up = 5 V, Ud = 50 mV, Umod = 0.45 V, and θ = π/4. (b) The
same study for Up = 0. Note that the color coding for Tmod is
consistent with Fig. 3.

be crucial for novel computation paradigms such as neural
networks, adiabatic quantum computing, and quantum anneal-
ing [18–21].

Ongoing and future work will address additional fea-
tures of the gate parametron. For instance, logic gate oper-
ations, such as originally proposed by Goto [17], should be
straightforward to implement with the gate parametron (see
Appendix D). We suggest that performing logic operations
with a gate voltage instead of a clocked sequence of para-
metric drives [17] allows for more versatile logic architec-
tures. For quantum systems, it will be interesting to study
the possibility of rapid generation of quantum superpositions
between the phase states of a gate parametron [see Ref. [32]
or the steady-state transition in Fig. 1(c) of Ref. [33]] and
of entanglement between coupled parametron devices. All
of these applications may be implemented in a variety of
resonators, ranging from optical parametric oscillators to
Josephson junction circuits, nanomechanical resonators, and
levitating particles [9,22–24].
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APPENDIX A: DERIVATION OF THE EQUATION
OF MOTION

In order to obtain the equation of motion for our resonator,
we use Kirchhoff’s second law and express the equation in

terms of charge q as

q̈ + ω2
0q + 	q̇ + β̃q2 + η̃q2q̇

= U1

L
cos (ωt + θ ) + U2

L
cos(2ωt + φ). (A1)

Here L is the inductance of the circuit, U1,2 are forcing
terms, and β̃ is the coefficient of an antisymmetric potential
contribution, i.e., it reflects the fact that ω2

0 is approximately
linearly dependent on the applied voltage (charge) due to the
varactor diode. The nonlinear damping term with coefficient
η̃ is needed to model the termination of the large-amplitude
branch of the parametron. In this system, nonlinear damping
corresponds to a loss of charge when large voltage oscillations
overcome the reverse bias and the silicon varactor diode has a
finite resistance for a short time during the oscillation period.

We can transform Eq. (A1) using the fact that the quadratic
nonlinear term can be expressed as an effective cubic term
α̃x3 [1]. Furthermore, the forcing due to U2 will generate
modulations of the potential that we take into account in the
form of a parametric pump with modulation depth λ (think of
β̃q as a time-dependent potential contribution). The equation
then becomes

q̈ + ω2
0[1 − λ cos(2ωt + φ)]q + 	q̇ + α̃q3 + η̃q2q̇

= U1

L
cos(ωt + θ ), (A2)

where α̃ is the coefficient of a Duffing nonlinearity.
It is convenient to treat the system in terms of the voltages

that we measure and apply by the two secondary coils, which
are inductively coupled to the main circuit. Therefore we
introduce two proportionality factors n1 and n2, where the first
describes a relation between charge and measured voltage,
x = Umeas = n1q, while the other defines a relation between
the applied and induced voltages, U1 = n2Ud (as well as U2 =
n2Up). This brings us to the the equation of motion [Eq. (1)]
used in the main text,

ẍ + ω2
0[1 − λ cos(2ωt + φ)]x + 	ẋ + αx3 + ηx2ẋ

= Fd cos(ωt + θ ), (A3)

where α = α̃/n2
1, η = η̃/n2

1 and Fd = Ud n1n2/L.

APPENDIX B: BASIC CHARACTERIZATION

In the following, we present the calibration measurements
from which we obtained the numerical values of the coeffi-
cients for Eq. (A3).

Measuring the resonance frequency f0 for varying dc tun-
ing voltages Utune allowed us to calculate C1 as a function of
the voltage applied across the diode. This is done with the
formula

C1 =
[
ω2

0L − 1

C2

]−1

(B1)

with ω0 = 2π f0 and with L = 94 μH and C2 = 47 nF the in-
dependently measured values of the coil inductance and of the
second capacitance, respectively [Fig. 5(a)]. This calibration
is also used to estimate the effect of the gate voltage Ugate that
is applied to the opposite side of the diode. There, however,
it is necessary to take into account the frequency-dependent
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FIG. 5. (a) C1 as a function of Utune calculated from measure-
ments of f0 with Eq. (B1). (b) Frequency-dependent gain G of the
voltage buffer used for Ugate. In the main text, we compensated for
this frequency dependence.

gain characteristic of the operational amplifier that is used
for Ugate. We calibrated the gain for different frequencies
by measuring f0 with a phase-locked loop while modulating
Ugate, and by comparing the measured f0 modulations with
the value found for a dc tuning voltage Utune [Fig. 5(a)]. In the
measurements presented in the main paper, we compensated
for the frequency-dependent gain by adapting the applied
voltage such that the effective value of Ugate remained constant
with frequency.

The quality factor Q was determined both from ringdown
measurements and from a fit to the Lorentzian response of the
resonator to small external driving. The two values were found
to agree within the measurement precision. We obtained the
ratio Fd/Ud = 2.65 × 1010 s−2 from a fit to the peak response
amplitude Uamp with varying driving voltage amplitude Ud

[Fig. 6(a)] using the formula

Uamp = Fd Q

ω2
0

. (B2)

Without external driving and with strong parametric pumping,
the oscillator enters a region of parametric instability within
a precisely defined frequency range, the so-called “Arnold
tongue” [1]. The extent of this frequency range � f as a func-
tion of Up is shown in Fig. 6(b). Knowing that the threshold
for parametric instability is λth = 2/Q, we fit the data with

� f 2 = 2 f 2
0

√
λ2

4
− 1

Q2
, (B3)

which yields Uth, i.e., the critical value of Up above which
parametric oscillations appear at resonance. From this, we
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FIG. 6. (a) Peak amplitude Uamp of the Lorentzian response of the
resonator measured in frequency sweeps with small driving voltage
amplitudes Ud . (b) Width of the Arnold tongue � f for varying
parametric driving voltage amplitude Up.
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FIG. 7. (a) Maximum amplitude Ujump measured in parametric
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the varactor diode before the jump.

infer the relation between Up and λ given in Eq. (2). The
effective coefficient α of the Duffing nonlinearity was found
from fitting the steady-state response of the parametron to the
data in Fig. 1(d) [see Eq. (9) in Ref. [27]].

Finally, we investigated the origin of the termination of
the large-amplitude branch in sweeps with parametric drive
[see arrow in Fig. 1(d)]. In Fig. 7(a) we show the termi-
nation amplitude Ujump, i.e., the maximum amplitude before
the branch is terminated, for sweeps with different tuning
voltage Utune. The linear dependency clearly points to the
diode as the origin of the nonlinear damping term. When the
oscillating voltage in the circuit becomes too large, it can
cancel the reverse bias Utune and make the diode conducting.
During a short duration of the oscillation period, the diode
then conducts electrical current, which leads to a loss of
charge and, consequently, a breakdown of the parametric
oscillation. Using the proportionality factor ∼0.0025 between
Utune and Ujump, we can determine the voltage across the
varactor diode just before the jump [Fig. 7(b)]. This voltage is
indeed close to the forward bias voltage expected for a silicon
diode.

We found that we have to recalibrate η for different values
of Utune because of the changing reverse bias. By contrast,
we neglect the relatively small changes due to Ugate for sim-
plicity. It may be that some of the minor differences between
measurement and simulations in Figs. 3 and 4 are due to this
simplification.

APPENDIX C: SIMULATIONS

The dynamics of the oscillator subjected to gate voltage
modulations was simulated by solving Eq. (A3) with ω0 =
ω0(t ) and ω = const ≈ ω0. We follow Ref. [27] in rewriting
the equation with dimensionless variables τ = ω0t and z =√

α/(ω2
0 )x, using a Van der Pol transformation to obtain slow-

flow variables U and V , and performing the averaging over
one period of a parametric pump cycle. This procedure yields
two coupled first-order differential equations with variables
u = Ū and v = V̄ :

u̇ = f1(u, v) = − 1

2

{
γ̄ u + v

[
σ + λ

2
cos(φ)

]
− u

λ

2
sin(φ)

+ 3

4
(u2 + v2)v + 

η̄

4
(u2 + v2)u − F̄0 sin(θ )

}
, (C1)
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v̇ = f2(u, v)

= − 1

2

{
γ̄ v + u

[
−σ + λ

2
cos(φ)

]

+ v
λ

2
sin(φ) − 3

4
(u2 + v2)u

+ 
η̄

4
(u2 + v2)v + F̄0 cos(θ )

}
, (C2)

where γ̄ ≡ γ /(ω0), η̄ ≡ ηω0/|α|,  ≡ ω/ω0, F̄0 ≡
(F0/ω

3
0 )

√|α|, and σ = 1 − 2.
For a given ω0(t ), Eqs. (C1) and (C2) can be integrated

numerically. We used the itoint function from the python
package sdeint. The solutions in Fig. 3 were attained by using
ω0(t ) = ω0(Ugate = 0) + �ω cos(ωmodt ).

APPENDIX D: LOGIC GATE OPERATIONS

The gate parametron can be used to implement logic op-
erations as originally suggested Goto [17]. In his design, two
parametrons P1 and P2 plus a “constant parametron” (e.g., a
driving voltage Uω) act on a parametron logic unit P3. When
the parametric drive of P3 is switched off, the device becomes
susceptible to the phase of the combined driving signals. The
three driving sources perform a “majority vote” to determine
the phase of P3. When the parametric drive is switched on
again, P3 rings up to the corresponding phase state.

Logic operations with the gate parametron use a similar
working principle [see Fig. 8(a)]. The component of the
driving voltage at frequency fd takes on the role of Uω. In
general, the coupling between gate parametrons should be
chosen such that the driving produced by Uω is equal to the
effect of P1,2. There are a few differences between ours and
Goto’s original design that we should comment on.

In our scheme, the parametric drive of P1,2,3 is never
switched off. Instead, a logic operation is performed by de-
tuning P3 from fd for a defined amount of time, similar to half
a modulation cycle in Fig. 2(c). This can be done with negative
or positive gate voltages, for instance by ramping Ugate from
0 to 0.2 V and back. As shown in Figs. 8(b) and 8(c), the two
signs cause the device to be detuned in opposite directions in
frequency, which will cause different operations. The reason
for the different outcomes is the hysteretic nature of the gate
parametron or, in other words, the different phase response
of the underlying harmonic resonator below and above its
resonance frequency. In Fig. 8(d) we show the outcomes of
different operations as a function of the phases of Uω and P1,2

(with “0” being defined as the phase of Uω) and depending
on the sign of Ugate. If an input of “1” is required from Uω,
the input signal must be inverted, either via a delay line or by
inverse wiring as in Ref. [17].

FIG. 8. (a) Schematic representation of a logic unit. P1 and P2

are two gate parametron devices that are acting on a third gate
parametron, P3. The two driving voltages at frequencies fd and
2 fd = fp are labeled Uω and U2ω, respectively. Gate operations are
achieved by applying voltage pulses via Ugate. The output of the logic
operation is encoded in the phase of Uout. (b) Gate operations can
be performed by applying a negative tuning voltage to Ugate, such
that the device is effectively driven below its resonance frequency
for a short time. The phase that is imprinted onto P3 in this case is
the (majority) phase of the combined drives Uω, P1, and P2. Note
that fd is always constant. (c) For positive Ugate, the phase imprint is
inverted and the phase that is imprinted onto P3 is opposite to that of
the combined drives. (d) Predicted outcome of logic operations. Here
we have defined “0” as the phase of Uω and “1” as the phase shifted
by π .

Due to parametric symmetry breaking, the driving ampli-
tudes of P1,2 may vary slightly. This is not problematic as long
as the difference is much smaller than the amplitudes them-
selves. A 2-to-1 majority voting has the same deterministic
outcome as a 1.98-to-1.01 voting. For operations involving
N sources, the amplitude difference should be much smaller
than one N th of each amplitude. For quantum operations, the
amplitude difference might be more problematic than in the
classical case.

In Goto’s original design, each parametron was period-
ically switched on and off to allow information to travel
through layers of devices [17]. This imposed a strict clock-
ing of all devices and a rigid directionality for operations.
The gate parametron allows operations without switching the
parametric drive off. Gate voltage pulses applied to a single
gate parametron can be used for state initialization as well
as logic operations, allowing more versatile architectures and
operations in different directions.
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