
Computer Physics Communications 270 (2022) 108181

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Parallel time integration using Batched BLAS (Basic Linear Algebra

Subprograms) routines ✩,✩✩

Konstantin Herb ∗, Pol Welter

Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 June 2021
Received in revised form 16 August 2021
Accepted 8 September 2021
Available online 27 September 2021

Keywords:
Parallel time integration
Magnus integrators
Batched BLAS
GPU programming
Schrödinger equation
Exponential integrators

We present an approach for integrating the time evolution of quantum systems. We leverage the
computation power of graphics processing units (GPUs) to perform the integration of all time steps in
parallel. The performance boost is especially prominent for small to medium-sized quantum systems.
The devised algorithm can largely be implemented using the recently-specified batched versions of
the BLAS routines, and can therefore be easily ported to a variety of platforms. Our PARAllelized
Matrix Exponentiation for Numerical Time evolution (PARAMENT) implementation runs on CUDA-enabled
graphics processing units.

Program summary
Program Title: PARAMENT
CPC Library link to program files: https://doi .org /10 .17632 /zy5v4xs89d .1
Developer’s repository link: https://github .com /parament -integrator /parament
Licensing provisions: Apache 2.0
Programming language: C / CUDA / Python
Nature of problem: Time-integration of the Schrödinger equation with a time-dependent Hamiltonian for
quantum systems with a small Hilbert space but many time-steps.
Solution method: A 4th order Magnus integrator, highly parallelized on a GPU, implemented using a small
subset of BLAS functions for improved portability.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The last decade has seen the advent of quantum technologies.
Significant advances have paved the way for promising applications
in computing, sensing or communication. The time evolution of
quantum systems is governed by the Schrödinger equation with a
time-dependent Hamiltonian

ih̄
dψ

dt
= H(t)ψ(t). (1)

Efficiently solving eq. (1) is key to understanding the systems at
hand, and to their successful technological application. Substantial
effort has been put into simulating large quantum systems (thou-

✩ The review of this paper was arranged by Prof. David W. Walker.
✩✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).

* Corresponding author.
E-mail address: science@rashbw.de (K. Herb).
https://doi.org/10.1016/j.cpc.2021.108181
0010-4655/© 2021 The Authors. Published by Elsevier B.V. This is an open access article
sands of degrees of freedom), by exploiting specific properties that
allow a reduction of the Hilbert space. In addition, significant ef-
fort has been put on porting such simulations to GPUs.

Nevertheless, a lot of research focuses on small to medium-
sized quantum systems. Although a simulation of such systems
can be easily done on modern CPUs, computational expense scales
with the number of time steps. As an example, consider an elec-
tron spin simulated in the laboratory (non-rotating) frame. Here,
GHz control fields are applied for multiple microseconds leading to
the need for integrating over tens of thousands of time steps. Of-
ten, this problem can be tackled by a suitable approximation (e.g.
the rotating frame [1]). However, such an approximation may not
always be convenient or even possible: for instance, when studying
non-secular effects like the Bloch-Siegert shift, the strong driv-
ing regime, complex modulated waveforms, or when performing a
validation of the control software of an experiment. Accurate sim-
ulation rather than approximations (with sometimes elusive side
effects) builds extra confidence in the correctness. Efficiency is key,
too: when developing new pulse sequences for quantum control, it
is desirable to run simulations at interactive speeds, such that the
designer can quickly iterate different parameters. Furthermore, ap-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2021.108181
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.108181&domain=pdf
https://doi.org/10.17632/zy5v4xs89d.1
https://github.com/parament-integrator/parament
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:science@rashbw.de
https://doi.org/10.1016/j.cpc.2021.108181
http://creativecommons.org/licenses/by/4.0/

K. Herb and P. Welter Computer Physics Communications 270 (2022) 108181
plications in the field of quantum optimal control rely on the fast
evaluation of a time-dependent Hamiltonian.

With the recent advent of artificial intelligence research, new
powerful tools have emerged. For suitable tasks, a modern GPU of-
fers the computational power of a supercomputer from the mid
2000s, off-the-shelf and at a fraction of the cost. Like supercom-
puters, GPUs focus on massive parallelization. The implementation
of matrix-matrix multiplication in suitable hardware structures,
combined with fast memory access, allows for a fast and paral-
lelized tackling of a variety of computational tasks.

We present an approach for solving the time-dependent Schrö-
dinger equation in a form that is frequently encountered in exper-
imental realizations of a variety of physical quantum systems. Our
approach leverages the parallelization of GPUs for integrating the
steps of the time propagation in parallel and relies on a fast mem-
ory connection. We use the recently standardized Batched BLAS
routines [2] and a minimal set of custom functions. Therefore, our
approach can be ported to a variety of platforms including, e.g.,
GPUs of other vendors or Field Programmable Gate Arrays (FPGAs).

This paper is structured as follows: First, we describe the con-
cept of slice-wise propagation and the parallelization of the cal-
culation. Then, we focus on the two underlying problems to be
solved. This is followed by details about the implementation using
the Batched BLAS functions. Furthermore, we improve the conver-
gence order by extending the approach to a Magnus integrator.
Finally, we showcase the runtime and the convergence using a
suitable example of a driven two-level system.

2. Computational approach

For a system with a Hamiltonian H = h̄H that is stationary in
time, the exact solution of the Schrödinger or the von Neumann
equation is given by

|ψ(t)〉 = e−iHt/h̄ |ψ(t = 0)〉 = U (t) |ψ(t = 0)〉 and (2a)

ρ(t) = U (t)ρ0 U †(t), (2b)

respectively. Here, |ψ〉 denotes the system state of a pure quantum
system and ρ the density matrix of a mixed state. One approach to
treat arbitrary time-dependent Hamiltonians is to ‘slice’ the Hamil-
tonian, known also as Euler’s method. During the finite duration
�t of each slice, the Hamiltonian is assumed to be stationary. For
sufficiently small equidistant time steps, the sequence

U (t) = lim
�t→0

U (n) · U (n−1) · ... · U (0) = U (tn), (3)

with

U (n) = exp(−iH (n)�t) (4)

converges to the true solution of the original problem. If the di-
mension of the Hamiltonian is large, Krylov methods can be em-
ployed to simplify the exponentiation. Here, we instead focus on
small, dense matrices.

The algorithm thus involves two steps: (i) calculating the ma-
trix exponential efficiently for many matrices and (ii) executing the
matrix multiplication of the individual slice-propagators. In the fol-
lowing subsections, we will discuss the chosen approaches for each
of the two aspects.

We assume that the time-dependent Hamiltonian takes the
form

H(t) =H0 +
N∑

ci(t)Hi (5)

i=1

2

Fig. 1. Parallel time integration of the PARAMENT integrator. We upload a minimal
amount of data to the GPU and propagate all time steps synchronously. The final
propagator is obtained by iterative pair-wise multiplication of the slice propagators.
In the case of the Magnus implementation, the expansion step also calculates the
coefficients for the commutator terms.

where H0 is typically named drift Hamiltonian and Hi and ci(t)
denote control Hamiltonians and control coefficient array. The con-
trol terms represent the coupling of the quantum system, e.g.,
time-varying magnetic or electric fields (control fields). The de-
composition in eq. (5) does not trade any generality: Hi are simply
a basis of the H(t) −H0 space. Numerous experimental situations
however conform very well to the form of eq. (5), with a number
N of control fields that is much smaller than the total dimension
of the Hamiltonian space.

The overall structure of the approach is shown in Fig. 1: We
transfer a minimal amount of data to the GPU, the control arrays
and the Hamiltonians. Then we expand the Hamiltonians for each
time step in the GPU memory. Subsequently we exponentiate all
slice Hamiltonians in parallel. For the final propagator, we reduce
the slice propagators by repeated pair-wise matrix multiplications.

2.1. Matrix exponential

The numerical computation of the matrix exponential has been
treated extensively by Moler and Van Loan in their famous ‘19
dubious ways’ paper [3]. Moler and Van Loan describe six main
classes of algorithms: (1) Series-based methods relying on, e.g.,
Taylor or Padé approximations, (2) Methods relying on ODE solvers,
(3) polynomial methods which are typically not very attractive due
to their high computational cost, (4) matrix decomposition meth-
ods, (5) splitting methods like the powerful scaling-and-squaring
technique and (6) Krylov methods, which are interesting for large
matrices. On CPUs, matrix decomposition methods are particularly
powerful due to well-established implementations like the Schur
decomposition in LAPACK using the ZGEES or CGEES function [4].
This approach is especially competitive for Hermitian matrices like
Hamiltonians, where the decomposed matrix is always diagonal. It
is used e.g. in the MATLAB software package. In general, for non-
Hermitian matrices, most modern implementations (e.g. in Python
and MATLAB) combine the scaling and squaring technique with a
series method, either Taylor or Padé. Typically the matrix is first
scaled down until its norm is sufficiently small so that its exponen-
tial can be well approximated by a (reasonably) truncated Taylor
or Padé approximation. The exponential of the original matrix can
be recovered by raising the small-norm exponential to the correct
power.

For our implementation of the highly-parallelized calculation
of the matrix exponential we choose a different series approach
based on the Chebyshev polynomials. The expansion of the matrix
exponential in a Chebyshev series in the context of time propa-
gation of quantum systems goes back to Tal-Ezer and Kosloff [5].
The expansion of the complex exponential in a Chebyshev series

K. Herb and P. Welter Computer Physics Communications 270 (2022) 108181

Table 1
Maximum norms of the exponent of a matrix exponential that guarantees machine precision when calculating the matrix exponential by using the Chebyshev expansion (7)
truncated at mmax. Here, we approximated the spectral range of G with α = −||G|| and β = ||G|| and solved (9) for ||G||. For calculations in single-precision floating-point
format (FP32) we required ε < 2−24, for the double-precision floating-point format (FP64) ε < 2−53.

mmax 3 5 7 9 11 13 15 17 19 21 23 25

||G||max FP32 0.033 0.219 0.620 1.218 1.980 2.873 3.873 4.959 6.118 7.336 8.606 9.919
||G||max FP64 2 × 10−4 0.008 0.050 0.163 0.368 0.677 1.088 1.596 2.194 2.874 3.627 4.447
can be obtained by starting with the expansion of eiωx on the unit
interval x ∈ [−1, 1]

eiωx = a0 + 2
∞∑

k=1

ak Tk(x) with ak = ik Jk(ω) (6)

where the coefficients are readily obtained from Abramovic Stegun
(9.1.21) and Tk(x) and Jk(ω) denote the Chebyshev polynomials
and the Bessel functions of the First Kind respectively. An approx-
imation of e−iζ for the interval ζ ∈ [α, β] can be obtained by a
straightforward affine-linear transformation of x. The scalar expan-
sion (6) can be extended to matrix arguments and reads in our
case for the slice propagators [6]

e−iG ≈ e−i(α+β)/2

[
a0I + 2

mmax∑
k=1

ak Tk

(
2

β − α

(
G − α + β

2
I

))]
.

(7)

Here, G =H�t is Hermitian and we suppose that the spectrum of
this matrix lies between α = λmin(H�t) and β = λmax(H�t). For
the transformed expansion, the coefficients ak read

ak = (−i)k Jk

(
β − α

2

)
. (8)

For the numerical evaluation of the matrix exponential, we will
truncate the series in (7) at mmax. Lubich [6] estimated the error
for approximating the matrix exponential by using a Chebyshev
series truncated after the m’th term to

ε = 4

(
e

1−
(

β−α
4m+4

)2
β − α

4m + 4

)m+1

. (9)

We use (9) to determine mmax under the requirement that ε is
smaller than the machine precision of the respective datatype. This
gives us constrains for the maximum norm that the argument can
take, cf. Table 1.

Algorithm 1 Matrix exponential.
Require: Hamiltonian H , time step �t , spectral boundaries α, β
Ensure: Propagator U = e−i�tH

1: X = 2
β−α

(
�tH − α+β

2 I
)

2: Dmmax+2 = 0
3: Dmmax+1 = 0
4: for k = mmax downto 0 do

5: ak = (−i)k Jk

(
β−α

2

)
6: Dk = akI + 2X Dk+1 − Dk+2
7: end for
8: return e−i(α+β)/2(D0 − D2)

The series in (7) can be efficiently computed by the Clenshaw
algorithm [7].

The number of necessary steps (and thus the number of matrix
multiplications) grows at least linearly with the matrix norm. For
our application, this is not a major problem as the matrix norm
per time slice ||H�t|| is expected to be small if the time step
is sufficiently short. In a general context, Chebyshev-series-based
3

matrix exponentiation has been successfully combined with the
powerful scaling-and-squaring approach [8]. This approach brings
down the number of necessary matrix multiplications to a growth
that is only logarithmic in the matrix norm. It is worth noting that
the Chebyshev approach is also very appealing for problems with
sparse Hamiltonians, as it relies only on matrix products of the
form sparse × dense. This circumstance could be further leveraged
for bigger Hamiltonians. Nonetheless, our approach requires a pri-
ori knowledge about the expected spectrum of the Hamiltonian.
As the boundaries α and β of the Eigenvalue range are often not
available, we estimate them by using a suitable matrix norm (Ger-
shgorin’s theorem).

2.2. Reduction by matrix multiplication

After obtaining all slice propagators, we multiply them together
to obtain the full evolution, cf. eq. (3). We can again parallelize
this step by leveraging the associativity of the matrix multiplica-
tion. Our slice propagators U (i) are all quadratic and have the same
dimensions. Therefore, we simply compute pair-wise products of
consecutive slice propagators: U (0) ·U (1), U (2) ·U (3), ..., U (n−1) ·U (n) .
By repeating this scheme log2(n) times, where we halve the num-
ber of remaining time slices with every round, we compute the
overall product. As we will see in the next section, the pair-
wise matrix multiplications can be easily parallelized using the
Batched BLAS functions. Although there exist more sophisticated
approaches to this problem in the literature [9,10], during our nu-
merical tests it turned out that this simple approach is sufficient as
the major computational cost is given by the exponentiation step.

3. Implementation

The main idea of our implementation is that the computation-
ally expensive exponentiation performed by Algorithm 1 is run in
parallel for all time steps. As all time steps have approximately a
similar spectrum we can choose global α, β and mmax that are
suitable across all time steps. Together with the fact that all matri-
ces have the same shape, this makes the algorithm ideally suitable
for a Single Instruction Multiple Data (SIMD) platform, such as a
GPU. Furthermore, Algorithm 1 has been designed in a way that
it can be implemented by only a small subset of the BLAS func-
tions (batched and non-batched) which will bear the majority of
the computational workload.

3.1. Batched BLAS routines

The Batched BLAS routines have been standardized in 2017 [2]
and were created with the intend to maintain high compute re-
source utilization when dealing with small-to-medium-sized ma-
trices. Looking at the ubiquitous General Matrix Multiply (GEMM)
routine, the batched version performs the operation

C[k] = α A[k] · B[k] + β C[k] ∀k (10)

for a batch of length k in parallel.
It is obvious that the Batched BLAS functions can be used to

parallelize the matrix exponentiation step. However, the flexibil-
ity of the GEMM routine allows us to reuse the GEMM function

K. Herb and P. Welter Computer Physics Communications 270 (2022) 108181
for nearly all steps in Fig. 1. As A and B are pointers, the strided
batched GEMM routine can also be reused for the pair-wise reduc-
tion operation, where we double the memory stride to twice the
propagator size. A and B can point to the same region in memory
with only an offset of one matrix between them. Depending on the
implementation, special attention may have to be brought to pos-
sible bottlenecks induced by memory miss-alignments. However,
our tests with the NVIDIA cuBLAS implementation (see below) did
not reveal major negative effects.

Similarly, the addition of the Bessel coefficients to the diagonal
elements of the propagators during the exponentiation step (lines
5 and 6 in Algorithm 1) can be implemented using the batched
version of AXPY (scalar × vector multiplication, “a · x plus y”). By
this, the full integration can be done solely with BLAS routines,
without any custom compute kernels required. This makes the ap-
proach easily portable to a variety of systems.

3.2. GPU implementation using NVIDIA cuBLAS

We implemented the proposed integration scheme using the
CUDA platform and by using the cuBLAS library. The batched ver-
sion of the AXPY routine had to be implemented by a custom
CUDA kernel as it is not yet part of the cuBLAS library (as opposed
to other GPU frameworks like AMD’s rocm). To reduce the memory
requirements for working arrays, we implemented two Chebyshev
iterations per loop iteration in Algorithm 1, cf. Appendix.

The performance of the integrator benefits from the fast mem-
ory connection on the GPU and the sheer number of compute pro-
cessors available. On a Quadro P2000 GPU, for 80’000 time steps
and a 12 × 12 system, the exponentiation step is by far the most
time consuming (∼ 80% of the total run time). The NVIDIA visual
profiler (NVVP) reports that we make good use of the available
resources (a memory bus utilization of 55%, a compute resource
utilization of 85%, and an occupancy of 90%). During the subse-
quent reduction step, these numbers are slightly reduced (55%,
75%, and 35%). This may indicate room for optimization, but any
improvements here are unlikely to improve total runtime signifi-
cantly, since time expended for the reduction step is short already.
It is worth noting that memory misalignment problems can de-
crease the efficiency of the Batched BLAS functions when e.g. set-
ting the memory stride to unusual values. However, for the cuBLAS
library we do not observe this to be a major problem.

The user provides the control amplitudes as an array sampled
at equidistant time points. From the control amplitude array we
compute the actual exponents −iG , optionally by averaging the
control vector over three points according to Simpson’s quadrature
rule. This makes sense in the context of a higher-order Magnus in-
tegrator (see section 4 below). Otherwise, we simply set G =H�t
with H as per equation (5).

The exact computation of the spectral boundaries α and β can
be expensive. We instead use the operator norm ||G||1 as an in-
expensive upper bound. We use a single value for α and β for all
time steps, so we further bound the norm by the triangle inequal-
ity: ||G||1/�t < ||H0||1 + ∑N

i=1 |ci(t)| ||Hi ||1. By requiring the user
to keep the control amplitudes ci(t) ∈ [−1, 1], rescaling the control
Hamiltonians if necessary, we hence define

−α = β = �t
N∑

i=0

||Hi ||1. (11)

4. Magnus integrators

It can be shown that the error of the above integrator in a
single time step scales as O(�t3), making it a second order in-
tegrator over the full integration time T = N�t . The order of the
4

convergence can be improved significantly by Magnus expansion
[11,12]. Magnus integrators have been successfully used for solving
the Schrödinger equation in various implementations, including on
GPUs [13]. However, these typically again focus on large Hamilto-
nians, rather than the small to medium-sized problems with long
time horizon that we are considering.

Magnus proposed that the solution U (t) to any time-dependent
ODE (like the Schröedinger equation) can indeed be written as the
exponential of some matrix �(t). He provided a series expansion
of that exponent, i.e.

U (t) = e�(t) with �(t) =
∑

i

�i(t) (12)

�1(t) = −i

t∫
0

dt1H(t1), (12a)

�2(t) = −1

2

t∫
0

dt1

t1∫
0

dt2 [H(t1),H(t2)]−, (12b)

. . .

where [A, B]− := AB − B A is the commutator of the matrices A
and B . The interpretation is obvious: The term �1(t) averages the
Hamiltonian over the time slice. By replacing the integral with
the mid-point rule, we recover the naive approach where we as-
sume the Hamiltonian to be constant over the whole time slice.
The higher-order terms �2(t), �3(t), ... describe the effects when
the Hamiltonian at time t1 does not commute with itself at a later
time t2.

For constructing a fourth-order integrator, it is sufficient to only
include terms up to �2, and then to approximate the integrals
with quadrature rules of sufficiently high order [14]. The inclu-
sion of this extra term neatly integrates with the method described
above. As we will show next, including �2 is equivalent to simply
adding extra control terms in equation (5). The extra terms corre-
spond exactly to the commutators of the existing control Hamilto-
nians.

Assume we have sampled the Hamiltonian at 3 equidistant time
points, H (1) =H(0), H (2) =H(�t) and H (3) =H(2�t). Follow-
ing Blanes et al.,1 we approximate the integrals in equations (12a)
and (12b) by Simpson’s rule and the trapezoidal rule respectively.
The new exponent then reads

� = −iG

= −i

(
�t

3

(
H (1) + 4H (2) +H (3)

)
− i

�t2

3

[
H (1),H (3)

]
−

)
.

(13)

Inserting equation (5), we find

G = 2�tH0 + �t
N∑

k=1

(
1

3
c(1)

k + 4

3
c(2)

k + 1

3
c(3)

k

)
Hk︸︷︷︸
∗

− i
�t2

3

N∑
k=1

(
c(3)

k − c(1)

k

)
[H0,Hk]−︸ ︷︷ ︸

∗

− i
�t2

3

∑
k<k′

(
c(1)

k c(3)

k′ − c(3)

k c(1)

k′
)

[Hk,Hk′]−︸ ︷︷ ︸
∗

.

(14)

1 Cf. eq. (256) of [12].

K. Herb and P. Welter Computer Physics Communications 270 (2022) 108181
Fig. 2. Runtime vs. matrix size for 80’000 time steps on the GPU. For small matrices
(d < 32), we see a very gentle increase in runtime when increasing the matrix size.
At d = 32 the cuBLAS library switches to a different compute kernel.

The matrix G is still of the same form as H in eq. (5). The matri-
ces marked with an asterisk now correspond to the new effective
control Hamiltonians. Also note that compared to eq. (5), we have
now doubled the time step to 2�t . This is because Simpson’s rule
requires an extra sample in the middle of the interval.

By exponentiating −iG instead of −iH�t we thus double the
time step, yet also increase the order of convergence of the in-
tegrator from 2 to 4. The price to pay is that the transform in-
troduces additional control Hamiltonians. It maps N original con-
trol Hamiltonians (and their corresponding control amplitude ar-
ray) to 3/2N + N2/2 effective control Hamiltonians. This can be
costly if the initial number of control Hamiltonians is already
large.

Note that the transform H → G is entirely contained in the
‘expand’ step in Fig. 1. The time expended here is usually neg-
ligible though, as the computational bottleneck is the subsequent
exponentiation. In practice, we find that the improved convergence
allows for much fewer timesteps (for a given target accuracy), such
that both the expansion and propagation steps are proportionally
faster to compute.2

Finally, an extension to higher-order Magnus terms is possible
and integrators of 6th or 8th order can be obtained, although the
number of necessary commutator terms grows very fast. Here, the
recently developed commutator-free Magnus integrators [15] may
provide an alternative.

5. Numerical experiments

We first test the performance by propagating several dense
Hamiltonians as a function of matrix size. We used an NVIDIA
V100 GPU. The results are shown in Fig. 2. Next, we compare it
against a fully parallelized CPU implementation, running on an In-
tel i9-9900 and linked against Intel MKL. The CPU implementation
combines the expansion and propagation step in Fig. 1 into a single
parallelized function. This improved the performance due to more
efficient caching as a direct port of the GPU code would be an un-
fair comparison. For a 12 × 12 Hamiltonian system (encountered
often in nitrogen vacancy research) and 80’000 time steps, we find
that the GPU runs 50 times faster for single precision (FP32) and
25 times faster for double precision (FP64).

In the regime of a small number of time steps and a small
matrix dimensionality, the CPU is faster as the “outsourcing” of
the computation to the GPU comes with several overheads. This
is highlighted in Fig. 3. For small matrices, we see an approxi-
mately logarithmic increase in the runtime, due to the extra kernel
launches required in the “reduce” step.

2 In reality, doubling the timestep improves the run-time by slightly less than
a factor 2. This is because the exponent norm scales with the time step, so more
iterations in the Chebychev expansion are required (see Table 1).
5

Next, we test the rate of convergence. We used the model of a
qubit driven with a circularly polarized excitation field, a problem
for which an exact analytical solution exists. The studied system
Hamiltonian is

H(t) = ω0

2
σz + cos(ωrft)

ω1

2
σx + sin(ωrft)

ω1

2
σy , (15)

where the σi denote the Pauli matrices. Fig. 4 shows the resulting
accuracy when increasing the number of time steps while keeping
the total evolution time fixed. We clearly observe that for both,
FP32 and FP64, we achieve a better convergence when implement-
ing a Magnus integration scheme while the computational cost per
time step only increases marginally. For the sinusoidal drive, our
implementation reaches machine precision for ≈ 102 time steps
per oscillation cycle in the case of FP32, and for ≈ 104 time steps
per cycle in the FP64 case. Furthermore, we see that when truncat-
ing the Magnus expansion at �1, increasing the quadrature order
alone does not improve the convergence.

We observe that the error reaches a minimum after a certain
number of timesteps. Finer timesteps do not improve the accu-
racy. Past this point, the error per time slice is limited by the
machine precision, which accumulates over an increasing num-
ber of slices. With single-precision arithmetic, the achievable er-
ror is on the order of 10−5. This result might seem unsatisfying
at first. However, this precision still by far exceeds the accuracy
achieved in many experimental realizations of the quantum sys-
tems that the algorithm is designed to simulate. For instance,
in the field of Nitrogen Vacancy (NV) center research, available
Signal-to-Noise Ratio (SNR) frequently limits the practical experi-
mental accuracy to ∼ 1%. In turn, this means that even consumer
GPUs that throttle FP64 performance can provide acceptable per-
formance.

6. The PARAMENT library

We provide the full-GPU integrator as a C library. We name
the library PARAMENT (PARallelized Matrix Exponentiation for
Numerical Time-evolution) and make it available for download.3

The compiled DLL for the Windows platform and the UNIX version
of the shared library can be included into a large range of applica-
tions including Python, Julia, Matlab or LabVIEW.

The usage model follows the steps of Fig. 5. First, the user ini-
tializes the integrator by calling the Parament_create() func-
tion. It returns a handle to a newly created context. The context
stores the state of the integrator. Multiple contexts may exist at
any time, and used independently; however they are not thread-
safe nor reentrant. The context must eventually be released by
calling Parament_free().

Next, the Hamiltonians are uploaded to the GPU using the
Parament_setHamiltonian() function. Here, the user also
decides on the use of the Magnus expansion. When enabled, PARA-
MENT will then calculate the necessary commutators (effective
control Hamiltonians) and upload them to the GPU as well.

To obtain a propagator, the user calls the Parament_
equiprop() routine with the coefficient arrays. The Hamiltoni-
ans persist between propagations, so that repeated runs (e.g. with
different control fields) are possible. Lastly, the implementation
exposes several helper functions which allow tweaking the under-
lying numerics, e.g., the selection of a different mmax. For a full
description of available functions, the user is referred to the doc-

3 https://github .com /parament -integrator /parament.

https://github.com/parament-integrator/parament

K. Herb and P. Welter Computer Physics Communications 270 (2022) 108181

Fig. 3. Perfomance as a function of time steps for various regimes of matrix dimensions. Blue traces are single precision (FP32) and orange traces are double precision (FP64).
(a) shows the run-time for a 2 × 2 matrix. The black trace shows the measured run-time for a propagation implemented on a CPU (FP64). (b) shows the measured run-times
for 40 × 40 matrices and (c) for 192 × 192. (d) shows the intersection of the run-time curves of the CPU and the GPU in the FP64 case.
Fig. 4. Convergence of the propagator for a qubit driven with a circularly polarized
excitation field for various numbers of time steps (a) in case of single precision
(FP32) accumulation and (b) double precision (FP64) accumulation. The parameters
in (15) are ω0 = 1.0, ω1 = 0.1, ωrf = 1.0 and we evaluated the propagator at final
time t = 6.0. The manually added black dashed-line indicates the same convergence
order for the FP32 and the FP64 case.

umentation of PARAMENT bundled together with the source code,
or available on the project website.
6

Fig. 5. State-machine of the PARAMENT integrator.

6.1. Python

While written in C++, the PARAMENT library can easily be used
together with other programming languages, including Matlab or
LabView. For Python, we provide a reference binding, called py-
parament. This use-case was the initial motivation for the devel-
opment of PARAMENT: A fast lab-frame propagation in interactive
compute sessions, e.g., during the development of new microwave
control schemes, possibly in Jupyter notebooks. Applications in-
clude, for instance, testing of advanced control schemes e.g. by
frequency-modulating the microwave pulses [16]. It truly embraces
the mindset of ‘interactive super-computing’ [17].

Finally, pyparament is also compatible with the QuTIP frame-
work [18].

The source code is available on the PARAMENT Github, or on
the PyPI package repository.

7. Applications and outlook

The presented speed-up of lab-frame simulations will facilitate
testing new control schemes during the sequence design of quan-
tum control experiments. Due to implementation with only a few

K. Herb and P. Welter Computer Physics Communications 270 (2022) 108181
BLAS functions, our scheme can be ported easily to a variety of
platforms, including AMD GPUs and FPGA devices.

The applications of our integration scheme, however, go beyond
what it was initially designed for. It is generally suitable for study-
ing the evolution of small-to-medium-sized quantum system under
complex-modulated control fields. It can be used to quickly deter-
mine the Floquet states and quasi energies of strongly periodically
driven system, by diagonalizing the propagator [19].

As the size (degrees of freedom) of the simulated system in-
creases, the presented approach requires vastly more memory. For-
tunately, modern GPUs provide ample amounts thereof. If that is
insufficient, PARAMENT could easily be adapted to scale across
multiple GPUs. We hope to encourage the implementation of
Batched BLAS routines that natively support multi-GPU calcula-
tions via fast GPU-to-GPU buses like the NVIDIA NVLink.

A more visionary application could be the verification of an
experimental control software and hardware stack. The quantum
system could be replaced by PARAMENT, a fast digitizer, and a fast
arbitrary waveform generator (AWG). If the latter two have direct
access to GPU memory, performance may be sufficient to fully em-
ulate the quantum system in near-real time.

Our approach is not limited to quantum systems. It can be ap-
plied to any differential equation that can be cast into the form
of equation (1). Of course, computational efficiency is best if the
problem can be formulated with only a few ‘control Hamiltonians’,
such that limited upload rate from host computer to GPU does not
affect the overall computation time.

Finally, the fully GPU-based integration algorithm can be used
as an essential building block for fully GPU-based optimal control
optimization routines like the GRAPE algorithm [20]. The optimizer
must evaluate the time-evolution operator in every step of the op-
timization routine. We are confident that GRAPE can be greatly
accelerated if built around PARAMENT. Depending on how large
the norms of the slice Hamiltonians are, here the introduction of a
scaling and squaring approach might be needed.

CRediT authorship contribution statement

K.H. initiated the project and implemented a prototype version
of PARAMENT. K.H. and P.W. implemented the production algo-
rithm and cowrote the paper. All authors discussed the results.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

The authors thank Prof. Christian Degen for his support and
proof-reading the manuscript. The authors acknowledge Prof. Oded
Zilberberg and Timo Schmetzer for the fruitful discussions on the
mathematical details of the numerics.

This work has been supported by Swiss National Science Foun-
dation (SNFS) Project Grant No. 200020 175600, the National Cen-
tre of Competence in Research – Quantum Science and Technology
(NCCR QSIT), and the Advancing Science and TEchnology thRough
dIamond Quantum Sensing (ASTERIQS) program, Grant No. 820394,
of the European Commission.

Appendix A. Pseudo-code of the BLAS-implementation

Here, we describe the main integration routine presented in the
main text. We do not include the Magnus expansion as this can be
seen as adding effective control Hamiltonians and amplitudes to
7

Listing 1 Implementation of the central integration routine in a C-
style pseudo code.

// Working arrays X, D0, D1, length dim*dim*pts
// J[k] array with Bessel coefficients

// EXPANSION STEP
GEMM(OP_N, OP_N,
dim*dim, pts, 1,
1, &H0, dim*dim,
c0, 1,
0, &X, dim*dim);
GEMM(OP_N, OP_N,
dim*dim, pts, amps,
1, &H1, dim*dim,
ck, pts,
1, &X, dim*dim);

// PROPAGATE STEP
for (int k = MMAX; k >= 0; k--) {

// D0 = D0 + 2 X @ D1 * dt
GEMMStridedBatched(OP_N, OP_N,
dim, dim, dim,
dt,
&X, dim, dim*dim,
&D1, dim, dim*dim,
-1,
&D0, dim, dim*dim,
pts);

diagonal_add(D0, J[k], pts, dim);
k--;
if (k == 0) {

ptr_accumulate = &handle->mtwo;
}
else {

ptr_accumulate = &handle->mone;
}
GEMMStridedBatched(OP_N, OP_N,
dim, dim, dim,
dt,
&X, dim, dim*dim,
&D0, dim, dim*dim,
ptr_accumulate,
D1, dim, dim*dim,
pts);
diagonal_add(D0, J[k], pts, dim);

}
// D1 contains now the matrix exponentials

// REDUCTION STEP
complex *read = &D1;
complex *write = &D0;
complex *temp;

int remain_pts = pts;
int pad = 0;
while (remain_pts > 1) {

pad = remain_pts % 2;
remain_pts = remain_pts/2;
GEMMStridedBatched(OP_N, OP_N,
dim, dim, dim,
1, read, dim, dim*dim*2,
read + dim*dim, dim, dim*dim*2,
0, write, dim, dim*dim,
remain_pts);
if (pad > 0) {

// One left over, need to copy to Array
COPY(dim*dim,
read + dim*dim*(remain_pts*2),
1, write + dim*dim*(remain_pts), 1);
remain_pts += 1;

}
temp = write;
write = read;
read = temp;

}
&D1 = read;
// D1 contains as first matrix the propagator

K. Herb and P. Welter Computer Physics Communications 270 (2022) 108181
the problem. Those can be obtained according to eq. (14). The goal
is to provide an easy way to port the integration parallelization to
other platforms that offer Batched BLAS routines.

References

[1] C. Slichter, Principles of Magnetic Resonance, Springer-Verlag, Berlin New York,
1990.

[2] J. Dongarra, S. Hammarling, N.J. Higham, S.D. Relton, P. Valero-Lara, M. Zounon,
Proc. Comput. Sci. 108 (2017) 495–504, https://doi .org /10 .1016 /j .procs .2017.05 .
138.

[3] C. Moler, C.V. Loan, SIAM Rev. 45 (1) (2003) 3–49, https://doi .org /10 .1137 /
s00361445024180, 19 dubious ways paper.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide,
3rd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA,
1999.

[5] H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81 (9) (1984) 3967–3971, https://doi .org /
10 .1063 /1.448136.

[6] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Mod-
els and Numerical Analysis, European Mathematical Society Publishing House,
Zuerich, Switzerland, 2008.

[7] C.W. Clenshaw, Math. Comput. 9 (51) (1955) 118–120, https://doi .org /10 .1090 /
s0025 -5718 -1955 -0071856 -0.

[8] T. Auckenthaler, M. Bader, T. Huckle, A. Spörl, K. Waldherr, Parallel Comput.
36 (5–6) (2010) 359–369, https://doi .org /10 .1016 /j .parco .2010 .01.006.

[9] R.E. Ladner, M.J. Fischer, J. ACM 27 (4) (1980) 831–838, https://doi .org /10 .1145 /
322217.322232.

[10] D. Irony, S. Toledo, A. Tiskin, J. Parallel Distrib. Comput. 64 (9) (2004)
1017–1026, https://doi .org /10 .1016 /j .jpdc .2004 .03 .021.

[11] W. Magnus, Commun. Pure Appl. Math. 7 (4) (1954) 649–673, https://doi .org /
10 .1002 /cpa .3160070404.

[12] S. Blanes, F. Casas, J. Oteo, J. Ros, Phys. Rep. 470 (5–6) (2009) 151–238, https://
doi .org /10 .1016 /j .physrep .2008 .11.001.

[13] N. Auer, L. Einkemmer, P. Kandolf, A. Ostermann, Comput. Phys. Commun. 228
(2018) 115–122, https://doi .org /10 .1016 /j .cpc .2018 .02 .019.

[14] S. Blanes, F. Casas, J. Ros, BIT Numer. Math. 40 (3) (2000) 434–450, https://
doi .org /10 .1023 /A :1022311628317.

[15] A. Alvermann, H. Fehske, J. Comput. Phys. 230 (15) (2011) 5930–5956, https://
doi .org /10 .1016 /j .jcp .2011.04 .006.

[16] M.P. Silveri, J.A. Tuorila, E.V. Thuneberg, G.S. Paraoanu, Rep. Prog. Phys. 80 (5)
(2017) 056002, https://doi .org /10 .1088 /1361 -6633 /aa5170.

[17] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor, B. Bergeron, V.
Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein, L. Milechin, J. Mullen, A.
Prout, A. Rosa, C. Yee, P. Michaleas, in: 2018 IEEE High Performance Extreme
Computing Conference (HPEC), IEEE, 2018.

[18] J. Johansson, P. Nation, F. Nori, Comput. Phys. Commun. 184 (4) (2013)
1234–1240, https://doi .org /10 .1016 /j .cpc .2012 .11.019.

[19] C. Creffield, Phys. Rev. B 67 (2003) 165301, https://doi .org /10 .1103 /PhysRevB .
67.165301.

[20] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, J. Magn. Res.
172 (2) (2005) 296–305, https://doi .org /10 .1016 /j .jmr.2004 .11.004.
8

http://refhub.elsevier.com/S0010-4655(21)00293-9/bib29F5451086DDC100A0E6EB99650DD249s1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib29F5451086DDC100A0E6EB99650DD249s1
https://doi.org/10.1016/j.procs.2017.05.138
https://doi.org/10.1016/j.procs.2017.05.138
https://doi.org/10.1137/s00361445024180
https://doi.org/10.1137/s00361445024180
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib6A7321323DEEAC8D377E41ED762A858Bs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib6A7321323DEEAC8D377E41ED762A858Bs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib6A7321323DEEAC8D377E41ED762A858Bs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib6A7321323DEEAC8D377E41ED762A858Bs1
https://doi.org/10.1063/1.448136
https://doi.org/10.1063/1.448136
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib56ADCABBF3E6806D38C7DAD27AA9577Cs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib56ADCABBF3E6806D38C7DAD27AA9577Cs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib56ADCABBF3E6806D38C7DAD27AA9577Cs1
https://doi.org/10.1090/s0025-5718-1955-0071856-0
https://doi.org/10.1090/s0025-5718-1955-0071856-0
https://doi.org/10.1016/j.parco.2010.01.006
https://doi.org/10.1145/322217.322232
https://doi.org/10.1145/322217.322232
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.cpc.2018.02.019
https://doi.org/10.1023/A:1022311628317
https://doi.org/10.1023/A:1022311628317
https://doi.org/10.1016/j.jcp.2011.04.006
https://doi.org/10.1016/j.jcp.2011.04.006
https://doi.org/10.1088/1361-6633/aa5170
http://refhub.elsevier.com/S0010-4655(21)00293-9/bibCBFDAE81341027D5545B79FB114ECD3Ds1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bibCBFDAE81341027D5545B79FB114ECD3Ds1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bibCBFDAE81341027D5545B79FB114ECD3Ds1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bibCBFDAE81341027D5545B79FB114ECD3Ds1
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevB.67.165301
https://doi.org/10.1103/PhysRevB.67.165301
https://doi.org/10.1016/j.jmr.2004.11.004

	Parallel time integration using Batched BLAS (Basic Linear Algebra Subprograms) routines
	1 Introduction
	2 Computational approach
	2.1 Matrix exponential
	2.2 Reduction by matrix multiplication

	3 Implementation
	3.1 Batched BLAS routines
	3.2 GPU implementation using NVIDIA cuBLAS

	4 Magnus integrators
	5 Numerical experiments
	6 The PARAMENT library
	6.1 Python

	7 Applications and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Pseudo-code of the BLAS-implementation
	References

