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1. Introduction

The last decade has seen the advent of quantum technologies. 
Significant advances have paved the way for promising applications 
in computing, sensing or communication. The time evolution of 
quantum systems is governed by the Schrödinger equation with a 
time-dependent Hamiltonian

ih̄
dψ

dt
= H(t)ψ(t). (1)

Efficiently solving eq. (1) is key to understanding the systems at 
hand, and to their successful technological application. Substantial 
effort has been put into simulating large quantum systems (thou-
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sands of degrees of freedom), by exploiting specific properties that 
allow a reduction of the Hilbert space. In addition, significant ef-
fort has been put on porting such simulations to GPUs.

Nevertheless, a lot of research focuses on small to medium-
sized quantum systems. Although a simulation of such systems 
can be easily done on modern CPUs, computational expense scales 
with the number of time steps. As an example, consider an elec-
tron spin simulated in the laboratory (non-rotating) frame. Here, 
GHz control fields are applied for multiple microseconds leading to 
the need for integrating over tens of thousands of time steps. Of-
ten, this problem can be tackled by a suitable approximation (e.g. 
the rotating frame [1]). However, such an approximation may not 
always be convenient or even possible: for instance, when studying 
non-secular effects like the Bloch-Siegert shift, the strong driv-
ing regime, complex modulated waveforms, or when performing a 
validation of the control software of an experiment. Accurate sim-
ulation rather than approximations (with sometimes elusive side 
effects) builds extra confidence in the correctness. Efficiency is key, 
too: when developing new pulse sequences for quantum control, it 
is desirable to run simulations at interactive speeds, such that the 
designer can quickly iterate different parameters. Furthermore, ap-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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plications in the field of quantum optimal control rely on the fast 
evaluation of a time-dependent Hamiltonian.

With the recent advent of artificial intelligence research, new 
powerful tools have emerged. For suitable tasks, a modern GPU of-
fers the computational power of a supercomputer from the mid 
2000s, off-the-shelf and at a fraction of the cost. Like supercom-
puters, GPUs focus on massive parallelization. The implementation 
of matrix-matrix multiplication in suitable hardware structures, 
combined with fast memory access, allows for a fast and paral-
lelized tackling of a variety of computational tasks.

We present an approach for solving the time-dependent Schrö-
dinger equation in a form that is frequently encountered in exper-
imental realizations of a variety of physical quantum systems. Our 
approach leverages the parallelization of GPUs for integrating the 
steps of the time propagation in parallel and relies on a fast mem-
ory connection. We use the recently standardized Batched BLAS 
routines [2] and a minimal set of custom functions. Therefore, our 
approach can be ported to a variety of platforms including, e.g., 
GPUs of other vendors or Field Programmable Gate Arrays (FPGAs).

This paper is structured as follows: First, we describe the con-
cept of slice-wise propagation and the parallelization of the cal-
culation. Then, we focus on the two underlying problems to be 
solved. This is followed by details about the implementation using 
the Batched BLAS functions. Furthermore, we improve the conver-
gence order by extending the approach to a Magnus integrator. 
Finally, we showcase the runtime and the convergence using a 
suitable example of a driven two-level system.

2. Computational approach

For a system with a Hamiltonian H = h̄H that is stationary in 
time, the exact solution of the Schrödinger or the von Neumann 
equation is given by

|ψ(t)〉 = e−iHt/h̄ |ψ(t = 0)〉 = U (t) |ψ(t = 0)〉 and (2a)

ρ(t) = U (t)ρ0 U †(t), (2b)

respectively. Here, |ψ〉 denotes the system state of a pure quantum 
system and ρ the density matrix of a mixed state. One approach to 
treat arbitrary time-dependent Hamiltonians is to ‘slice’ the Hamil-
tonian, known also as Euler’s method. During the finite duration 
�t of each slice, the Hamiltonian is assumed to be stationary. For 
sufficiently small equidistant time steps, the sequence

U (t) = lim
�t→0

U (n) · U (n−1) · ... · U (0) = U (tn), (3)

with

U (n) = exp(−iH (n)�t) (4)

converges to the true solution of the original problem. If the di-
mension of the Hamiltonian is large, Krylov methods can be em-
ployed to simplify the exponentiation. Here, we instead focus on 
small, dense matrices.

The algorithm thus involves two steps: (i) calculating the ma-
trix exponential efficiently for many matrices and (ii) executing the 
matrix multiplication of the individual slice-propagators. In the fol-
lowing subsections, we will discuss the chosen approaches for each 
of the two aspects.

We assume that the time-dependent Hamiltonian takes the 
form

H(t) =H0 +
N∑

ci(t)Hi (5)

i=1

2

Fig. 1. Parallel time integration of the PARAMENT integrator. We upload a minimal 
amount of data to the GPU and propagate all time steps synchronously. The final 
propagator is obtained by iterative pair-wise multiplication of the slice propagators. 
In the case of the Magnus implementation, the expansion step also calculates the 
coefficients for the commutator terms.

where H0 is typically named drift Hamiltonian and Hi and ci(t)
denote control Hamiltonians and control coefficient array. The con-
trol terms represent the coupling of the quantum system, e.g., 
time-varying magnetic or electric fields (control fields). The de-
composition in eq. (5) does not trade any generality: Hi are simply 
a basis of the H(t) −H0 space. Numerous experimental situations 
however conform very well to the form of eq. (5), with a number 
N of control fields that is much smaller than the total dimension 
of the Hamiltonian space.

The overall structure of the approach is shown in Fig. 1: We 
transfer a minimal amount of data to the GPU, the control arrays 
and the Hamiltonians. Then we expand the Hamiltonians for each 
time step in the GPU memory. Subsequently we exponentiate all 
slice Hamiltonians in parallel. For the final propagator, we reduce 
the slice propagators by repeated pair-wise matrix multiplications.

2.1. Matrix exponential

The numerical computation of the matrix exponential has been 
treated extensively by Moler and Van Loan in their famous ‘19 
dubious ways’ paper [3]. Moler and Van Loan describe six main 
classes of algorithms: (1) Series-based methods relying on, e.g., 
Taylor or Padé approximations, (2) Methods relying on ODE solvers, 
(3) polynomial methods which are typically not very attractive due 
to their high computational cost, (4) matrix decomposition meth-
ods, (5) splitting methods like the powerful scaling-and-squaring 
technique and (6) Krylov methods, which are interesting for large 
matrices. On CPUs, matrix decomposition methods are particularly 
powerful due to well-established implementations like the Schur 
decomposition in LAPACK using the ZGEES or CGEES function [4]. 
This approach is especially competitive for Hermitian matrices like 
Hamiltonians, where the decomposed matrix is always diagonal. It 
is used e.g. in the MATLAB software package. In general, for non-
Hermitian matrices, most modern implementations (e.g. in Python 
and MATLAB) combine the scaling and squaring technique with a 
series method, either Taylor or Padé. Typically the matrix is first 
scaled down until its norm is sufficiently small so that its exponen-
tial can be well approximated by a (reasonably) truncated Taylor 
or Padé approximation. The exponential of the original matrix can 
be recovered by raising the small-norm exponential to the correct 
power.

For our implementation of the highly-parallelized calculation 
of the matrix exponential we choose a different series approach 
based on the Chebyshev polynomials. The expansion of the matrix 
exponential in a Chebyshev series in the context of time propa-
gation of quantum systems goes back to Tal-Ezer and Kosloff [5]. 
The expansion of the complex exponential in a Chebyshev series 
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Table 1
Maximum norms of the exponent of a matrix exponential that guarantees machine precision when calculating the matrix exponential by using the Chebyshev expansion (7)
truncated at mmax. Here, we approximated the spectral range of G with α = −||G|| and β = ||G|| and solved (9) for ||G||. For calculations in single-precision floating-point 
format (FP32) we required ε < 2−24, for the double-precision floating-point format (FP64) ε < 2−53.

mmax 3 5 7 9 11 13 15 17 19 21 23 25

||G||max FP32 0.033 0.219 0.620 1.218 1.980 2.873 3.873 4.959 6.118 7.336 8.606 9.919
||G||max FP64 2 × 10−4 0.008 0.050 0.163 0.368 0.677 1.088 1.596 2.194 2.874 3.627 4.447
can be obtained by starting with the expansion of eiωx on the unit 
interval x ∈ [−1, 1]

eiωx = a0 + 2
∞∑

k=1

ak Tk(x) with ak = ik Jk(ω) (6)

where the coefficients are readily obtained from Abramovic Stegun 
(9.1.21) and Tk(x) and Jk(ω) denote the Chebyshev polynomials 
and the Bessel functions of the First Kind respectively. An approx-
imation of e−iζ for the interval ζ ∈ [α, β] can be obtained by a 
straightforward affine-linear transformation of x. The scalar expan-
sion (6) can be extended to matrix arguments and reads in our 
case for the slice propagators [6]

e−iG ≈ e−i(α+β)/2

[
a0I + 2

mmax∑
k=1

ak Tk

(
2

β − α

(
G − α + β

2
I

))]
.

(7)

Here, G =H�t is Hermitian and we suppose that the spectrum of 
this matrix lies between α = λmin(H�t) and β = λmax(H�t). For 
the transformed expansion, the coefficients ak read

ak = (−i)k Jk

(
β − α

2

)
. (8)

For the numerical evaluation of the matrix exponential, we will 
truncate the series in (7) at mmax. Lubich [6] estimated the error 
for approximating the matrix exponential by using a Chebyshev 
series truncated after the m’th term to

ε = 4

(
e

1−
(

β−α
4m+4

)2
β − α

4m + 4

)m+1

. (9)

We use (9) to determine mmax under the requirement that ε is 
smaller than the machine precision of the respective datatype. This 
gives us constrains for the maximum norm that the argument can 
take, cf. Table 1.

Algorithm 1 Matrix exponential.
Require: Hamiltonian H , time step �t , spectral boundaries α, β
Ensure: Propagator U = e−i�tH

1: X = 2
β−α

(
�tH − α+β

2 I
)

2: Dmmax+2 = 0
3: Dmmax+1 = 0
4: for k = mmax downto 0 do

5: ak = (−i)k Jk

(
β−α

2

)
6: Dk = akI + 2X Dk+1 − Dk+2
7: end for
8: return e−i(α+β)/2(D0 − D2)

The series in (7) can be efficiently computed by the Clenshaw 
algorithm [7].

The number of necessary steps (and thus the number of matrix 
multiplications) grows at least linearly with the matrix norm. For 
our application, this is not a major problem as the matrix norm 
per time slice ||H�t|| is expected to be small if the time step 
is sufficiently short. In a general context, Chebyshev-series-based 
3

matrix exponentiation has been successfully combined with the 
powerful scaling-and-squaring approach [8]. This approach brings 
down the number of necessary matrix multiplications to a growth 
that is only logarithmic in the matrix norm. It is worth noting that 
the Chebyshev approach is also very appealing for problems with 
sparse Hamiltonians, as it relies only on matrix products of the 
form sparse × dense. This circumstance could be further leveraged 
for bigger Hamiltonians. Nonetheless, our approach requires a pri-
ori knowledge about the expected spectrum of the Hamiltonian. 
As the boundaries α and β of the Eigenvalue range are often not 
available, we estimate them by using a suitable matrix norm (Ger-
shgorin’s theorem).

2.2. Reduction by matrix multiplication

After obtaining all slice propagators, we multiply them together 
to obtain the full evolution, cf. eq. (3). We can again parallelize 
this step by leveraging the associativity of the matrix multiplica-
tion. Our slice propagators U (i) are all quadratic and have the same 
dimensions. Therefore, we simply compute pair-wise products of 
consecutive slice propagators: U (0) ·U (1), U (2) ·U (3), ..., U (n−1) ·U (n) . 
By repeating this scheme log2(n) times, where we halve the num-
ber of remaining time slices with every round, we compute the 
overall product. As we will see in the next section, the pair-
wise matrix multiplications can be easily parallelized using the 
Batched BLAS functions. Although there exist more sophisticated 
approaches to this problem in the literature [9,10], during our nu-
merical tests it turned out that this simple approach is sufficient as 
the major computational cost is given by the exponentiation step.

3. Implementation

The main idea of our implementation is that the computation-
ally expensive exponentiation performed by Algorithm 1 is run in 
parallel for all time steps. As all time steps have approximately a 
similar spectrum we can choose global α, β and mmax that are 
suitable across all time steps. Together with the fact that all matri-
ces have the same shape, this makes the algorithm ideally suitable 
for a Single Instruction Multiple Data (SIMD) platform, such as a 
GPU. Furthermore, Algorithm 1 has been designed in a way that 
it can be implemented by only a small subset of the BLAS func-
tions (batched and non-batched) which will bear the majority of 
the computational workload.

3.1. Batched BLAS routines

The Batched BLAS routines have been standardized in 2017 [2]
and were created with the intend to maintain high compute re-
source utilization when dealing with small-to-medium-sized ma-
trices. Looking at the ubiquitous General Matrix Multiply (GEMM) 
routine, the batched version performs the operation

C[k] = α A[k] · B[k] + β C[k] ∀k (10)

for a batch of length k in parallel.
It is obvious that the Batched BLAS functions can be used to 

parallelize the matrix exponentiation step. However, the flexibil-
ity of the GEMM routine allows us to reuse the GEMM function 
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for nearly all steps in Fig. 1. As A and B are pointers, the strided 
batched GEMM routine can also be reused for the pair-wise reduc-
tion operation, where we double the memory stride to twice the 
propagator size. A and B can point to the same region in memory 
with only an offset of one matrix between them. Depending on the 
implementation, special attention may have to be brought to pos-
sible bottlenecks induced by memory miss-alignments. However, 
our tests with the NVIDIA cuBLAS implementation (see below) did 
not reveal major negative effects.

Similarly, the addition of the Bessel coefficients to the diagonal 
elements of the propagators during the exponentiation step (lines 
5 and 6 in Algorithm 1) can be implemented using the batched 
version of AXPY (scalar × vector multiplication, “a · x plus y”). By 
this, the full integration can be done solely with BLAS routines, 
without any custom compute kernels required. This makes the ap-
proach easily portable to a variety of systems.

3.2. GPU implementation using NVIDIA cuBLAS

We implemented the proposed integration scheme using the 
CUDA platform and by using the cuBLAS library. The batched ver-
sion of the AXPY routine had to be implemented by a custom 
CUDA kernel as it is not yet part of the cuBLAS library (as opposed 
to other GPU frameworks like AMD’s rocm). To reduce the memory 
requirements for working arrays, we implemented two Chebyshev 
iterations per loop iteration in Algorithm 1, cf. Appendix.

The performance of the integrator benefits from the fast mem-
ory connection on the GPU and the sheer number of compute pro-
cessors available. On a Quadro P2000 GPU, for 80’000 time steps 
and a 12 × 12 system, the exponentiation step is by far the most 
time consuming (∼ 80% of the total run time). The NVIDIA visual 
profiler (NVVP) reports that we make good use of the available 
resources (a memory bus utilization of 55%, a compute resource 
utilization of 85%, and an occupancy of 90%). During the subse-
quent reduction step, these numbers are slightly reduced (55%, 
75%, and 35%). This may indicate room for optimization, but any 
improvements here are unlikely to improve total runtime signifi-
cantly, since time expended for the reduction step is short already. 
It is worth noting that memory misalignment problems can de-
crease the efficiency of the Batched BLAS functions when e.g. set-
ting the memory stride to unusual values. However, for the cuBLAS 
library we do not observe this to be a major problem.

The user provides the control amplitudes as an array sampled 
at equidistant time points. From the control amplitude array we 
compute the actual exponents −iG , optionally by averaging the 
control vector over three points according to Simpson’s quadrature 
rule. This makes sense in the context of a higher-order Magnus in-
tegrator (see section 4 below). Otherwise, we simply set G =H�t
with H as per equation (5).

The exact computation of the spectral boundaries α and β can 
be expensive. We instead use the operator norm ||G||1 as an in-
expensive upper bound. We use a single value for α and β for all 
time steps, so we further bound the norm by the triangle inequal-
ity: ||G||1/�t < ||H0||1 + ∑N

i=1 |ci(t)| ||Hi ||1. By requiring the user 
to keep the control amplitudes ci(t) ∈ [−1, 1], rescaling the control 
Hamiltonians if necessary, we hence define

−α = β = �t
N∑

i=0

||Hi ||1. (11)

4. Magnus integrators

It can be shown that the error of the above integrator in a 
single time step scales as O(�t3), making it a second order in-
tegrator over the full integration time T = N�t . The order of the 
4

convergence can be improved significantly by Magnus expansion 
[11,12]. Magnus integrators have been successfully used for solving 
the Schrödinger equation in various implementations, including on 
GPUs [13]. However, these typically again focus on large Hamilto-
nians, rather than the small to medium-sized problems with long 
time horizon that we are considering.

Magnus proposed that the solution U (t) to any time-dependent 
ODE (like the Schröedinger equation) can indeed be written as the 
exponential of some matrix �(t). He provided a series expansion 
of that exponent, i.e.

U (t) = e�(t) with �(t) =
∑

i

�i(t) (12)

�1(t) = −i

t∫
0

dt1H(t1), (12a)

�2(t) = −1

2

t∫
0

dt1

t1∫
0

dt2 [H(t1),H(t2)]−, (12b)

. . .

where [A, B]− := AB − B A is the commutator of the matrices A
and B . The interpretation is obvious: The term �1(t) averages the 
Hamiltonian over the time slice. By replacing the integral with 
the mid-point rule, we recover the naive approach where we as-
sume the Hamiltonian to be constant over the whole time slice. 
The higher-order terms �2(t), �3(t), ... describe the effects when 
the Hamiltonian at time t1 does not commute with itself at a later 
time t2.

For constructing a fourth-order integrator, it is sufficient to only 
include terms up to �2, and then to approximate the integrals 
with quadrature rules of sufficiently high order [14]. The inclu-
sion of this extra term neatly integrates with the method described 
above. As we will show next, including �2 is equivalent to simply 
adding extra control terms in equation (5). The extra terms corre-
spond exactly to the commutators of the existing control Hamilto-
nians.

Assume we have sampled the Hamiltonian at 3 equidistant time 
points, H (1) =H(0), H (2) =H(�t) and H (3) =H(2�t). Follow-
ing Blanes et al.,1 we approximate the integrals in equations (12a)
and (12b) by Simpson’s rule and the trapezoidal rule respectively. 
The new exponent then reads

� = −iG

= −i

(
�t

3

(
H (1) + 4H (2) +H (3)

)
− i

�t2

3

[
H (1),H (3)

]
−

)
.

(13)

Inserting equation (5), we find

G = 2�tH0 + �t
N∑

k=1

(
1

3
c(1)

k + 4

3
c(2)

k + 1

3
c(3)

k

)
Hk︸︷︷︸
∗

− i
�t2

3

N∑
k=1

(
c(3)

k − c(1)

k

)
[H0,Hk]−︸ ︷︷ ︸

∗

− i
�t2

3

∑
k<k′

(
c(1)

k c(3)

k′ − c(3)

k c(1)

k′
)

[Hk,Hk′ ]−︸ ︷︷ ︸
∗

.

(14)

1 Cf. eq. (256) of [12].
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Fig. 2. Runtime vs. matrix size for 80’000 time steps on the GPU. For small matrices 
(d < 32), we see a very gentle increase in runtime when increasing the matrix size. 
At d = 32 the cuBLAS library switches to a different compute kernel.

The matrix G is still of the same form as H in eq. (5). The matri-
ces marked with an asterisk now correspond to the new effective 
control Hamiltonians. Also note that compared to eq. (5), we have 
now doubled the time step to 2�t . This is because Simpson’s rule 
requires an extra sample in the middle of the interval.

By exponentiating −iG instead of −iH�t we thus double the 
time step, yet also increase the order of convergence of the in-
tegrator from 2 to 4. The price to pay is that the transform in-
troduces additional control Hamiltonians. It maps N original con-
trol Hamiltonians (and their corresponding control amplitude ar-
ray) to 3/2N + N2/2 effective control Hamiltonians. This can be 
costly if the initial number of control Hamiltonians is already 
large.

Note that the transform H → G is entirely contained in the 
‘expand’ step in Fig. 1. The time expended here is usually neg-
ligible though, as the computational bottleneck is the subsequent 
exponentiation. In practice, we find that the improved convergence 
allows for much fewer timesteps (for a given target accuracy), such 
that both the expansion and propagation steps are proportionally 
faster to compute.2

Finally, an extension to higher-order Magnus terms is possible 
and integrators of 6th or 8th order can be obtained, although the 
number of necessary commutator terms grows very fast. Here, the 
recently developed commutator-free Magnus integrators [15] may 
provide an alternative.

5. Numerical experiments

We first test the performance by propagating several dense 
Hamiltonians as a function of matrix size. We used an NVIDIA 
V100 GPU. The results are shown in Fig. 2. Next, we compare it 
against a fully parallelized CPU implementation, running on an In-
tel i9-9900 and linked against Intel MKL. The CPU implementation 
combines the expansion and propagation step in Fig. 1 into a single 
parallelized function. This improved the performance due to more 
efficient caching as a direct port of the GPU code would be an un-
fair comparison. For a 12 × 12 Hamiltonian system (encountered 
often in nitrogen vacancy research) and 80’000 time steps, we find 
that the GPU runs 50 times faster for single precision (FP32) and 
25 times faster for double precision (FP64).

In the regime of a small number of time steps and a small 
matrix dimensionality, the CPU is faster as the “outsourcing” of 
the computation to the GPU comes with several overheads. This 
is highlighted in Fig. 3. For small matrices, we see an approxi-
mately logarithmic increase in the runtime, due to the extra kernel 
launches required in the “reduce” step.

2 In reality, doubling the timestep improves the run-time by slightly less than 
a factor 2. This is because the exponent norm scales with the time step, so more 
iterations in the Chebychev expansion are required (see Table 1).
5

Next, we test the rate of convergence. We used the model of a 
qubit driven with a circularly polarized excitation field, a problem 
for which an exact analytical solution exists. The studied system 
Hamiltonian is

H(t) = ω0

2
σz + cos(ωrft)

ω1

2
σx + sin(ωrft)

ω1

2
σy , (15)

where the σi denote the Pauli matrices. Fig. 4 shows the resulting 
accuracy when increasing the number of time steps while keeping 
the total evolution time fixed. We clearly observe that for both, 
FP32 and FP64, we achieve a better convergence when implement-
ing a Magnus integration scheme while the computational cost per 
time step only increases marginally. For the sinusoidal drive, our 
implementation reaches machine precision for ≈ 102 time steps 
per oscillation cycle in the case of FP32, and for ≈ 104 time steps 
per cycle in the FP64 case. Furthermore, we see that when truncat-
ing the Magnus expansion at �1, increasing the quadrature order 
alone does not improve the convergence.

We observe that the error reaches a minimum after a certain 
number of timesteps. Finer timesteps do not improve the accu-
racy. Past this point, the error per time slice is limited by the 
machine precision, which accumulates over an increasing num-
ber of slices. With single-precision arithmetic, the achievable er-
ror is on the order of 10−5. This result might seem unsatisfying 
at first. However, this precision still by far exceeds the accuracy 
achieved in many experimental realizations of the quantum sys-
tems that the algorithm is designed to simulate. For instance, 
in the field of Nitrogen Vacancy (NV) center research, available 
Signal-to-Noise Ratio (SNR) frequently limits the practical experi-
mental accuracy to ∼ 1%. In turn, this means that even consumer 
GPUs that throttle FP64 performance can provide acceptable per-
formance.

6. The PARAMENT library

We provide the full-GPU integrator as a C library. We name 
the library PARAMENT (PARallelized Matrix Exponentiation for
Numerical Time-evolution) and make it available for download.3

The compiled DLL for the Windows platform and the UNIX version 
of the shared library can be included into a large range of applica-
tions including Python, Julia, Matlab or LabVIEW.

The usage model follows the steps of Fig. 5. First, the user ini-
tializes the integrator by calling the Parament_create() func-
tion. It returns a handle to a newly created context. The context 
stores the state of the integrator. Multiple contexts may exist at 
any time, and used independently; however they are not thread-
safe nor reentrant. The context must eventually be released by 
calling Parament_free().

Next, the Hamiltonians are uploaded to the GPU using the
Parament_setHamiltonian() function. Here, the user also 
decides on the use of the Magnus expansion. When enabled, PARA-
MENT will then calculate the necessary commutators (effective 
control Hamiltonians) and upload them to the GPU as well.

To obtain a propagator, the user calls the Parament_
equiprop() routine with the coefficient arrays. The Hamiltoni-
ans persist between propagations, so that repeated runs (e.g. with 
different control fields) are possible. Lastly, the implementation 
exposes several helper functions which allow tweaking the under-
lying numerics, e.g., the selection of a different mmax. For a full 
description of available functions, the user is referred to the doc-

3 https://github .com /parament -integrator /parament.

https://github.com/parament-integrator/parament
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Fig. 3. Perfomance as a function of time steps for various regimes of matrix dimensions. Blue traces are single precision (FP32) and orange traces are double precision (FP64). 
(a) shows the run-time for a 2 × 2 matrix. The black trace shows the measured run-time for a propagation implemented on a CPU (FP64). (b) shows the measured run-times 
for 40 × 40 matrices and (c) for 192 × 192. (d) shows the intersection of the run-time curves of the CPU and the GPU in the FP64 case.
Fig. 4. Convergence of the propagator for a qubit driven with a circularly polarized 
excitation field for various numbers of time steps (a) in case of single precision 
(FP32) accumulation and (b) double precision (FP64) accumulation. The parameters 
in (15) are ω0 = 1.0, ω1 = 0.1, ωrf = 1.0 and we evaluated the propagator at final 
time t = 6.0. The manually added black dashed-line indicates the same convergence 
order for the FP32 and the FP64 case.

umentation of PARAMENT bundled together with the source code, 
or available on the project website.
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Fig. 5. State-machine of the PARAMENT integrator.

6.1. Python

While written in C++, the PARAMENT library can easily be used 
together with other programming languages, including Matlab or 
LabView. For Python, we provide a reference binding, called py-
parament. This use-case was the initial motivation for the devel-
opment of PARAMENT: A fast lab-frame propagation in interactive 
compute sessions, e.g., during the development of new microwave 
control schemes, possibly in Jupyter notebooks. Applications in-
clude, for instance, testing of advanced control schemes e.g. by 
frequency-modulating the microwave pulses [16]. It truly embraces 
the mindset of ‘interactive super-computing’ [17].

Finally, pyparament is also compatible with the QuTIP frame-
work [18].

The source code is available on the PARAMENT Github, or on 
the PyPI package repository.

7. Applications and outlook

The presented speed-up of lab-frame simulations will facilitate 
testing new control schemes during the sequence design of quan-
tum control experiments. Due to implementation with only a few 
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BLAS functions, our scheme can be ported easily to a variety of 
platforms, including AMD GPUs and FPGA devices.

The applications of our integration scheme, however, go beyond 
what it was initially designed for. It is generally suitable for study-
ing the evolution of small-to-medium-sized quantum system under 
complex-modulated control fields. It can be used to quickly deter-
mine the Floquet states and quasi energies of strongly periodically 
driven system, by diagonalizing the propagator [19].

As the size (degrees of freedom) of the simulated system in-
creases, the presented approach requires vastly more memory. For-
tunately, modern GPUs provide ample amounts thereof. If that is 
insufficient, PARAMENT could easily be adapted to scale across 
multiple GPUs. We hope to encourage the implementation of 
Batched BLAS routines that natively support multi-GPU calcula-
tions via fast GPU-to-GPU buses like the NVIDIA NVLink.

A more visionary application could be the verification of an 
experimental control software and hardware stack. The quantum 
system could be replaced by PARAMENT, a fast digitizer, and a fast 
arbitrary waveform generator (AWG). If the latter two have direct 
access to GPU memory, performance may be sufficient to fully em-
ulate the quantum system in near-real time.

Our approach is not limited to quantum systems. It can be ap-
plied to any differential equation that can be cast into the form 
of equation (1). Of course, computational efficiency is best if the 
problem can be formulated with only a few ‘control Hamiltonians’, 
such that limited upload rate from host computer to GPU does not 
affect the overall computation time.

Finally, the fully GPU-based integration algorithm can be used 
as an essential building block for fully GPU-based optimal control 
optimization routines like the GRAPE algorithm [20]. The optimizer 
must evaluate the time-evolution operator in every step of the op-
timization routine. We are confident that GRAPE can be greatly 
accelerated if built around PARAMENT. Depending on how large 
the norms of the slice Hamiltonians are, here the introduction of a 
scaling and squaring approach might be needed.

CRediT authorship contribution statement

K.H. initiated the project and implemented a prototype version 
of PARAMENT. K.H. and P.W. implemented the production algo-
rithm and cowrote the paper. All authors discussed the results.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgement

The authors thank Prof. Christian Degen for his support and 
proof-reading the manuscript. The authors acknowledge Prof. Oded 
Zilberberg and Timo Schmetzer for the fruitful discussions on the 
mathematical details of the numerics.

This work has been supported by Swiss National Science Foun-
dation (SNFS) Project Grant No. 200020 175600, the National Cen-
tre of Competence in Research – Quantum Science and Technology
(NCCR QSIT), and the Advancing Science and TEchnology thRough 
dIamond Quantum Sensing (ASTERIQS) program, Grant No. 820394, 
of the European Commission.

Appendix A. Pseudo-code of the BLAS-implementation

Here, we describe the main integration routine presented in the 
main text. We do not include the Magnus expansion as this can be 
seen as adding effective control Hamiltonians and amplitudes to 
7

Listing 1 Implementation of the central integration routine in a C-
style pseudo code.

// Working arrays X, D0, D1, length dim*dim*pts
// J[k] array with Bessel coefficients

// EXPANSION STEP
GEMM(OP_N, OP_N,
dim*dim, pts, 1,
1, &H0, dim*dim,
c0, 1,
0, &X, dim*dim);
GEMM(OP_N, OP_N,
dim*dim, pts, amps,
1, &H1, dim*dim,
ck, pts,
1, &X, dim*dim);

// PROPAGATE STEP
for (int k = MMAX; k >= 0; k--) {

// D0 = D0 + 2 X @ D1 * dt
GEMMStridedBatched(OP_N, OP_N,
dim, dim, dim,
dt,
&X, dim, dim*dim,
&D1, dim, dim*dim,
-1,
&D0, dim, dim*dim,
pts);

diagonal_add(D0, J[k], pts, dim);
k--;
if (k == 0) {

ptr_accumulate = &handle->mtwo;
}
else {

ptr_accumulate = &handle->mone;
}
GEMMStridedBatched(OP_N, OP_N,
dim, dim, dim,
dt,
&X, dim, dim*dim,
&D0, dim, dim*dim,
ptr_accumulate,
D1, dim, dim*dim,
pts);
diagonal_add(D0, J[k], pts, dim);

}
// D1 contains now the matrix exponentials

// REDUCTION STEP
complex *read = &D1;
complex *write = &D0;
complex *temp;

int remain_pts = pts;
int pad = 0;
while (remain_pts > 1) {

pad = remain_pts % 2;
remain_pts = remain_pts/2;
GEMMStridedBatched(OP_N, OP_N,
dim, dim, dim,
1, read, dim, dim*dim*2,
read + dim*dim, dim, dim*dim*2,
0, write, dim, dim*dim,
remain_pts);
if (pad > 0) {

// One left over, need to copy to Array
COPY(dim*dim,
read + dim*dim*(remain_pts*2),
1, write + dim*dim*(remain_pts), 1);
remain_pts += 1;

}
temp = write;
write = read;
read = temp;

}
&D1 = read;
// D1 contains as first matrix the propagator
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the problem. Those can be obtained according to eq. (14). The goal 
is to provide an easy way to port the integration parallelization to 
other platforms that offer Batched BLAS routines.

References

[1] C. Slichter, Principles of Magnetic Resonance, Springer-Verlag, Berlin New York, 
1990.

[2] J. Dongarra, S. Hammarling, N.J. Higham, S.D. Relton, P. Valero-Lara, M. Zounon, 
Proc. Comput. Sci. 108 (2017) 495–504, https://doi .org /10 .1016 /j .procs .2017.05 .
138.

[3] C. Moler, C.V. Loan, SIAM Rev. 45 (1) (2003) 3–49, https://doi .org /10 .1137 /
s00361445024180, 19 dubious ways paper.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, 
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 
3rd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 
1999.

[5] H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81 (9) (1984) 3967–3971, https://doi .org /
10 .1063 /1.448136.

[6] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Mod-
els and Numerical Analysis, European Mathematical Society Publishing House, 
Zuerich, Switzerland, 2008.

[7] C.W. Clenshaw, Math. Comput. 9 (51) (1955) 118–120, https://doi .org /10 .1090 /
s0025 -5718 -1955 -0071856 -0.

[8] T. Auckenthaler, M. Bader, T. Huckle, A. Spörl, K. Waldherr, Parallel Comput. 
36 (5–6) (2010) 359–369, https://doi .org /10 .1016 /j .parco .2010 .01.006.

[9] R.E. Ladner, M.J. Fischer, J. ACM 27 (4) (1980) 831–838, https://doi .org /10 .1145 /
322217.322232.

[10] D. Irony, S. Toledo, A. Tiskin, J. Parallel Distrib. Comput. 64 (9) (2004) 
1017–1026, https://doi .org /10 .1016 /j .jpdc .2004 .03 .021.

[11] W. Magnus, Commun. Pure Appl. Math. 7 (4) (1954) 649–673, https://doi .org /
10 .1002 /cpa .3160070404.

[12] S. Blanes, F. Casas, J. Oteo, J. Ros, Phys. Rep. 470 (5–6) (2009) 151–238, https://
doi .org /10 .1016 /j .physrep .2008 .11.001.

[13] N. Auer, L. Einkemmer, P. Kandolf, A. Ostermann, Comput. Phys. Commun. 228 
(2018) 115–122, https://doi .org /10 .1016 /j .cpc .2018 .02 .019.

[14] S. Blanes, F. Casas, J. Ros, BIT Numer. Math. 40 (3) (2000) 434–450, https://
doi .org /10 .1023 /A :1022311628317.

[15] A. Alvermann, H. Fehske, J. Comput. Phys. 230 (15) (2011) 5930–5956, https://
doi .org /10 .1016 /j .jcp .2011.04 .006.

[16] M.P. Silveri, J.A. Tuorila, E.V. Thuneberg, G.S. Paraoanu, Rep. Prog. Phys. 80 (5) 
(2017) 056002, https://doi .org /10 .1088 /1361 -6633 /aa5170.

[17] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor, B. Bergeron, V. 
Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein, L. Milechin, J. Mullen, A. 
Prout, A. Rosa, C. Yee, P. Michaleas, in: 2018 IEEE High Performance Extreme 
Computing Conference (HPEC), IEEE, 2018.

[18] J. Johansson, P. Nation, F. Nori, Comput. Phys. Commun. 184 (4) (2013) 
1234–1240, https://doi .org /10 .1016 /j .cpc .2012 .11.019.

[19] C. Creffield, Phys. Rev. B 67 (2003) 165301, https://doi .org /10 .1103 /PhysRevB .
67.165301.

[20] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, J. Magn. Res. 
172 (2) (2005) 296–305, https://doi .org /10 .1016 /j .jmr.2004 .11.004.
8

http://refhub.elsevier.com/S0010-4655(21)00293-9/bib29F5451086DDC100A0E6EB99650DD249s1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib29F5451086DDC100A0E6EB99650DD249s1
https://doi.org/10.1016/j.procs.2017.05.138
https://doi.org/10.1016/j.procs.2017.05.138
https://doi.org/10.1137/s00361445024180
https://doi.org/10.1137/s00361445024180
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib6A7321323DEEAC8D377E41ED762A858Bs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib6A7321323DEEAC8D377E41ED762A858Bs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib6A7321323DEEAC8D377E41ED762A858Bs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib6A7321323DEEAC8D377E41ED762A858Bs1
https://doi.org/10.1063/1.448136
https://doi.org/10.1063/1.448136
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib56ADCABBF3E6806D38C7DAD27AA9577Cs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib56ADCABBF3E6806D38C7DAD27AA9577Cs1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bib56ADCABBF3E6806D38C7DAD27AA9577Cs1
https://doi.org/10.1090/s0025-5718-1955-0071856-0
https://doi.org/10.1090/s0025-5718-1955-0071856-0
https://doi.org/10.1016/j.parco.2010.01.006
https://doi.org/10.1145/322217.322232
https://doi.org/10.1145/322217.322232
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.cpc.2018.02.019
https://doi.org/10.1023/A:1022311628317
https://doi.org/10.1023/A:1022311628317
https://doi.org/10.1016/j.jcp.2011.04.006
https://doi.org/10.1016/j.jcp.2011.04.006
https://doi.org/10.1088/1361-6633/aa5170
http://refhub.elsevier.com/S0010-4655(21)00293-9/bibCBFDAE81341027D5545B79FB114ECD3Ds1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bibCBFDAE81341027D5545B79FB114ECD3Ds1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bibCBFDAE81341027D5545B79FB114ECD3Ds1
http://refhub.elsevier.com/S0010-4655(21)00293-9/bibCBFDAE81341027D5545B79FB114ECD3Ds1
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevB.67.165301
https://doi.org/10.1103/PhysRevB.67.165301
https://doi.org/10.1016/j.jmr.2004.11.004

	Parallel time integration using Batched BLAS (Basic Linear Algebra Subprograms) routines
	1 Introduction
	2 Computational approach
	2.1 Matrix exponential
	2.2 Reduction by matrix multiplication

	3 Implementation
	3.1 Batched BLAS routines
	3.2 GPU implementation using NVIDIA cuBLAS

	4 Magnus integrators
	5 Numerical experiments
	6 The PARAMENT library
	6.1 Python

	7 Applications and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Pseudo-code of the BLAS-implementation
	References


