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Abstract
Nanomechanical resonators with ultra-high quality factors have become a central element in
fundamental research, enabling measurements below the standard quantum limit and the
preparation of long-lived quantum states. Here, I propose that such resonators will allow the
detection of electron and nuclear spins with high spatial resolution, paving the way to future
nanoscale magnetic resonance imaging instruments. The article lists the challenges that must be
overcome before this vision can become reality, and indicates potential solutions.

1. Introduction

The detection of electron and nuclear spins is an important open frontier in scanning force microscopy. The
demonstration of single electron spin detection in 2004 already hinted at the capabilities of nanomechanical
resonators as force sensors [1]. The measurement apparatus used in that experiment, however, required an
integration time of 13 h per point, which is impractical for applications.

One goal of researchers is to improve scanning force microscopy to a point where electron spin states can
be detected within their coherence time or lifetime, establishing strong spin–mechanics coupling [2] and
enabling scanning instruments to address spin quantum memories [3]. A second long-term vision is
force-detected nanoscale magnetic resonance imaging (NanoMRI). In this application, nuclear spins are
detected over distances of tens of nanometers to form a three-dimensional image of complex molecules and
other nanoscale objects [4–6]. Once the spatial resolution approaches the atomic scale, NanoMRI can
become an important tool for structural biology.

Strong spin–mechanics coupling and NanoMRI both require nanomechanical sensors with the capability
to detect zeptonewton forces within seconds, translating into a force sensitivity below 1 aNHz−1. Such a
sensitivity is difficult to achieve. The main obstacle to overcome is usually the thermomechanical force noise,
which has a single-sided power spectral density (PSD) of Sth = 4kBTγ, where kB is Boltzmann’s constant, T is
the sensor temperature and γ =mω0/Q is the damping coefficient defined by the effective resonator massm,
the resonance frequency f0 = ω0/2π and the quality factor Q. The spin signal to be detected is in direct
competition with the displacement fluctuations Sx generated by this force noise, which has a
frequency-dependent PSD of Sx(ω/2π) = Sthχ2(ω/2π) with the resonator susceptibility

χ2(ω/2π) =
1

m2
× 1

(ω2 −ω2
0)

2 +ω2
0ω

2/Q2
. (1)

The most widely used strategy to reduce the force noise (at a given temperature) is to reduce the
resonator mass and resonance frequency, resulting in long and thin geometries. Following this approach,
researchers explored top-down fabricated pendulum-style cantilevers [7–9] as well as bottom-up-grown
devices such as nanowires [10–13], carbon nanotubes [14, 15] and graphene sheets [16]. All these resonators
have spring constants of the order of k=mω2

0 ≈ 1mNm−1 or below, causing them to vibrate with sizeable
amplitudes in response to tiny forces. At the same time, their low masses and frequencies render them
susceptible to interactions that can degrade their performance. Most notably, non-contact friction sets in
when the sensor tip approaches a surface, increasing the force noise PSD via a reduction of Q [17–27]. In
addition, conservative tip–surface interactions can cause bending and mechanical instability of cantilevers
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and impede high-resolution scans [28]. In general, the impact of non-contact friction is thought to scale
roughly with 1/ω0 [22], while static bending decreases with increasing spring constant as 1/k= 1/mω2

0 .

2. Dissipation dilution

Between 1994 and 2011, various studies investigated the impact of tensile stress on the quality factor Q in
doubly clamped resonators [29–32]. It was found that tensile stress can increase the angular frequency ω0

without affecting the overall damping coefficient γ (or the massm), implying that Q∝ ω0. This effect
became known under the term ‘dissipation dilution’, illustrating the fact that the dissipation γ remains the
same while the ratio γ/ω0 ∝ Q−1 is reduced [33]. For a force sensor, this provides an opportunity for
engineering higher spring constants without any loss in sensitivity.

Dissipation dilution has become a key feature of optomechanical resonators. Quality factors in excess of
106 were implemented in silicon nitride membranes [34, 35] and strings [36] in 2008. Paired with
optomechanical detection schemes for precise displacement measurements [37–40], these devices enabled
high-impact results in fundamental [41–44] and applied science [45, 46]. In an additional step, phononic
crystal engineering allowed researchers to reach the material dissipation limits of nanomechanical resonators
by elimination of radiation to the substrate [32, 47–54] and clamping losses [55, 56]. Further improvement
was made by the realization that the dissipation dilution of a resonator can be increased by appropriate
mode-shape engineering, resulting in various geometrical solutions [57–64]. In parallel, experimental
demonstrations of the properties of silicon nitride resonators in extreme parameter regimes laid the basis for
future applications [65–73].

Table 1 contains a selection of silicon nitride device parameters sorted by the publication year. It is worth
noting that Q increased from ‘simple’ dissipation-diluted devices to the latest generation of resonators by
more than three orders of magnitude, while the typical resonance frequency and mass remained in a similar
range (for similar resonator types). This signifies a reduction of γ and Sth, as desired for force sensing
applications. Silicon nitride resonators therefore offer the prospect of unprecedented force experiments: the
best device by Bereyhi et al [62] has a room-temperature force noise PSD of Sth = 0.16 aN2Hz−1. In
principle, this would be enough to detect a single proton spin with a magnetic moment of
µp = 1.4× 10−26 J T−1 inside a nanomagnetic field gradient of G= 6× 106 Tm−1 (achievable with a sharp
magnetic tip [76]) within an averaging time of Sth/(µpG)2 = 22 s. The device by Gisler et al [74],
characterized in a dilution refrigerator, offers a nominal PSD of 100 zN2Hz−1, reducing the required
averaging time for single-proton spin detection to 14ms.

3. Steps to applications

The bare sensitivity values shown in table 1 are impressive, but translating these numbers into real scanning
force applications requires a number of steps that we address in the following.

3.1. Additional noise sources
While thermal fluctuations (due to Sth) usually dominate the noise budget of a nanomechanical sensor, there
can be other important noise sources in a force sensing experiment. Most importantly, detector noise with a
PSD denoted by Sdet adds uncertainty to a measurement of the resonator displacement. Typically, Sdet is
white to a good approximation and appears in the same way as an additional force noise of the form Sdet/χ2.

In order to reduce Sdet, an efficient detection mechanism is required. In cavity optomechanics [77],
efficient readout is achieved by coupling the resonator displacement dispersively to an electromagnetic
cavity. Both optical and microwave cavities have been applied to silicon nitride membranes [37, 43, 45–47]
and strings [38, 40, 78], and it is currently not clear which cavity variant will be most useful for scanning
force microscopy: while optical cavities are versatile and generally offer the lowest detection uncertainty, the
absorption of photons by the resonator may lead to heating at cryogenic temperatures [74]. Superconducting
microwave cavities, on the other hand, have been tested to very low temperatures [43, 71], but have the
drawback that they require metallization of the resonator and cannot operate at ambient temperatures or in
high magnetic fields.

As the detection uncertainty becomes low, quantum backaction sets in. The force noise PSD added by
quantum backaction is given by Sqba = ℏ2/4Sdetη [77], where ℏ is the reduced Planck constant and η
quantifies the measurement efficiency, which can approach unity [65]. Note that Sqba corresponds to an
(approximately) white force noise, while the contribution of Sdet/χ2 increases with the detuning from
resonance roughly as (ω2 −ω2

0)
2. For this reason, the optimal balance between the detector noise and

quantum backaction depends on the bandwidth (i.e. the temporal resolution) desired in a measurement.
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Table 1. Selection of parameter values of silicon nitride devices extracted from the literature and sorted by year of publication. The work
by Beccari et al is marked with a star because it is achieved with a crystalline material (strained silicon). Note the large increase of Q with
time while other parameters show no systematic change.

References Type T (K) m (kg) f 0 (MHz) Q (×106) γ (kg s−1)

Thompson et al [35] Membrane 293 4× 10−11 0.13 1.1 3.1× 10−11

Zwickl et al [34] Membrane 0.3 4× 10−11 0.13 11 3.1× 10−12

Verbridge et al [36] String 293 — 1.0 1.3 —
Wilson et al [47] Membrane 293 — 1.0 4 —
Schmid et al [32] String 293 1× 10−12 0.17 6.9 1.6× 10−13

Yu et al [49] Membrane 293 — 0.78 6 —
Gavartin et al [40] String 293 9× 10−15 2.9 0.48 3.4× 10−13

Faust et al [41] String 10 — 7.5 0.2 —
Purdy et al [42] Membrane 4.9 7× 10−12 1.6 3.3 2.1× 10−11

Chakram et al [51] Membrane 293 — 2.0 50 —
Tsaturyan et al [52] Membrane 8 — 2.7 5.2 —
Yuan et al [43] Membrane 0.01 1× 10−10 0.24 127 1.2× 10−12

Reinhardt et al [58] Trampoline 293 4× 10−12 0.04 45 2.3× 10−14

Norte et al [57] Trampoline 293 1× 10−12 0.14 98 9.0× 10−15

Tsaturyan et al [55] Membrane 293 1.6× 10−11 0.78 210 3.6× 10−13

Ghadimi et al [56] String 293 5× 10−15 1.3 800 5.1× 10−17

Rossi et al [65] Membrane 11 2.3× 10−12 1.1 1030 1.6× 10−14

Guo et al [68] String 293 7.4× 10−14 0.95 27 1.6× 10−14

Fischer et al [69] Trampoline 293 5× 10−13 0.41 2.4 5.4× 10−13

Gisler et al [74] String 0.05 9× 10−15 1.4 2300 3.6× 10−17

Seis et al [71] Membrane 0.08 1.5× 10−11 1.5 1500 9.3× 10−14

Bereyhi et al [62] String (perimeter) 293 1.7× 10−14 0.35 3600 1.0× 10−17

Bereyhi et al [63] String (hierarchical) 6 3.8× 10−14 0.11 1100 2.3× 10−17

Shin et al [64] String (spiderweb) 293 5.3× 10−13 0.13 1800 2.5× 10−16

Beccari et al∗ [75] sSi string 7 8.8× 10−15 1.4 13000 6.0× 10−18

Figure 1. (a) Calculated force noise budget as a function of the frequency offset |ω−ω0|/2π for the perimeter device in [62],
assuming the device is passively cooled to 50mK and measured with a detection noise PSD of 1× 10−29 m2 Hz−1 and a
measurement efficiency of η= 0.5. The sum of all contributions is shown as a solid black line labeled Stot. Within a bandwidth of
50Hz, the total noise has a standard deviation of 0.65 aN. (b) Illustration of possible scanning force microscopy setup using a
string resonator as the sensor. A single spin (or a sample comprising a spin ensemble) is approached by a sharp, rigid scanning tip.
The resulting changes in the resonator vibrations are probed with an on-chip optical waveguide whose light field is evanescently
coupled to the resonator displacement [40]. A metal microstrip is used to apply ac magnetic fields for spin inversion.

A calculated example for different force noise contributions is shown in figure 1(a). We note that with the
parameters chosen for this calculation, the total force noise is dominated by Sqba up to a frequency offset of
about 10Hz. The optimal compromise between high detection precision and low quantum backaction is
termed the ‘standard quantum limit’ (SQL). While representing a general property of interferometers, the
SQL is not a fundamental limitation to quantum measurements. Various methods have been proposed and
tested to enable displacement detection with an imprecision below the SQL [66, 79–86]. In the context of
scanning force microscopy, these methods offer a strategy for improving the sensitivity beyond
backaction-dominated situations, such as shown in figure 1(a).
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For very low temperatures, the thermal noise becomes negligible and the resonator approaches its
ground-state motion set by quantum fluctuations. For the purpose of this article, quantum fluctuations are
not an important limit, as we expect to remain in the regime kBT

ℏω0
≈ n≫ 1, where n is the number of average

phonons occupying the bath at the resonance frequency. Quantum fluctuations also pose no fundamental
limit for feedback damping [87], which is often used to match the sensor bandwidth to that of the
signal [4, 88].

One additional aspect we need to keep in mind is non-contact friction. Even at MHz frequencies, this
effect can eventually become dominant when all other noise sources are sufficiently small. Previous
experiments found an added non-contact dissipation coefficient of γncf ≈ 5× 10−14 kg s−1 at room
temperature and at tip–surface distances around 1 nm [70, 72]. It is to be expected that this value can be
significantly reduced at cryogenic temperatures, larger tip–surface distances, and with suitable surface
treatment techniques that minimize the presence of adsorbant layers [27].

3.2. Instrumentation
To become a scanning force sensor, the resonator must be mounted in a dedicated measurement apparatus.
In contrast to singly clamped cantilevers, doubly clamped beams or membranes are more difficult to utilize
as scanning probes. This problem can be solved by inverting the typical geometry found in most atomic force
microscopes: using the resonator as a sample plate and as the vibrating sensor at the same time, a sharp (but
rigid) scanning tip is employed to probe interactions with the samples [70, 72]. The same design can
potentially be used with trampolines and strings, as long as the resonator surface is large enough to allow
sample deposition (see figure 1(b)). In the case of NanoMRI, the relevant sample scale is of the order of
100 nm [4, 28].

3.3. Sample deposition
Suitable methods for loading samples onto fragile resonators must be developed. One possibility is direct
deposition from liquid droplets through micropipettes [70] or hollow cantilevers [89]. The main drawback
of this method is the creation of residues from the liquid that can potentially reduce the resonator’s
sensitivity. Alternative methods that avoid contamination include laser-induced desorption of particles from
a substrate in a vacuum [90] or spray injection through a finely tuned valve [91, 92]. For biological samples,
freeze-drying is advantageous to avoid structural damage during chamber evacuation [93]. However, it
appears unlikely that nanomechanical resonators can survive direct dipping into liquid nitrogen. This issue
has previously been overcome by a modular sample preparation procedure for cantilevers [28, 94].

3.4. Sensing protocols
In this subsection we take a look at some spin detection protocols. In general, moving from topography
scanning force microscopy to the special case of spin detection requires two additional components. The first
of these is a magnetic field gradient G that translates a magnetic moment µp into a measurable force µpG.
The best nanomagnets used in previous NanoMRI demonstrations yielded values between G= 2.3× 106

MTm−1 [6] and 6× 10−6MTm−1 [95] at distances of several tens of nanometers. Nanoscale magnets used
in hard disk write heads even reach 28× 10−6MTm−1 [96], indicating the potential for further
improvements in NanoMRI. From simulations, the field generated by a magnetic coating layer on a sharp tip,
as shown in the illustration in figure 1(b), is expected to reach 6× 10−6MTm−1 or more [76].

The second component that is indispensable in most NanoMRI protocols is a source for oscillating
magnetic field pulses. These pulses are used to periodically manipulate the spins at their Larmor frequencies
(in the MHz to GHz range) to induce spin–mechanics coupling. In order to minimize the amount of electric
current needed to create the magnetic field pulses, and hence the heating imposed on the instrument, it is
advantageous to place the field source as close as possible to the sample. Metallic microstrips have become a
popular choice because they can easily be fabricated on chips and cover a wide range of frequencies [97].

With cantilevers in the kHz range, various protocols have been developed and tested [1, 4, 98–102]. They
typically rely on periodic spin inversions (induced by ac magnetic field pulses) to create a force acting on the
cantilever. When contemplating resonators in the range of 100 kHz to 10MHz as force sensors, most of these
protocols are impractical because adiabatic inversion of nuclear spins at such high frequencies requires too
much power to be implemented in a cryogenic environment.

A technique developed especially for nanowires at a frequency close to 1MHz makes use of switchable
magnetic field gradients to create a force resonant with the sensor [5, 10]. This protocol could be translated
to membrane and string resonators if switchable magnetic tips can be fabricated. Alternatively, it was
proposed to invert spins at the frequency difference between two modes, giving rise to parametric
coupling [103, 104]. Membrane resonators can be engineered to have two normal modes split by a few kHz
in frequency [60, 72], which offers a convenient tool for nuclear spin detection [76]. Finally, nanoscale
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resonant coupling between nuclear spins and a mechanical resonator, as originally envisioned [105], could at
long last be realized with this new class of sensors. Resonant coupling allows not only the detection of nuclear
spins but also their manipulation via the mechanics. Such manipulations have already been demonstrated
with the electron spin ensembles of large atomic clouds [106, 107].

In general, ensembles of electron spins are more accessible to mechanical detection than nuclear spins,
due to their larger magnetic moment and because adiabatic inversion can be achieved much faster. For this
reason, pioneering experimental demonstrations of spin detection with membrane [108] and
trampoline [69] resonators targeted electron spins in diphenyl picrahydrazyl samples with a size of a few tens
of micrometers. These experiments, albeit not on the nanoscale, fuel our optimism that silicon nitride
resonators will make excellent NanoMRI sensors.

4. Outlook

Looking forward, we can only speculate what the next step in the evolution of nanomechanical sensors will
be. While the majority of dissipation dilution experiments so far were conducted with silicon nitride
resonators, there are efforts for extending the concept to crystalline materials with potentially lower intrinsic
damping [75, 109–111]. Pushing the limits to lower temperatures or cleaner surfaces will certainly allow for
yet another increase in sensitivity. A major breakthrough could be achieved if the microscopic origin of
intrinsic nanomechanical dissipation is precisely understood and can be addressed. With regards to concrete
spin detection protocols, the possibilities afforded by geometrical design and pulsed spin control are far from
exhausted. Here, we will hopefully see a host of interesting new ideas over the next few years.

Much remains to be done before silicon nitride membranes or strings can be used for scanning force
microscopy, and in particular for nuclear spin detection and NanoMRI. Nevertheless, the prospects offered by
this new class of mechanical sensors are truly encouraging. With all of the exciting developments taking place
in the optomechanics community, it may well be that these sensors pave the way to realizing an old dream.
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