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We demonstrate parametric coupling between two modes of a silicon nitride membrane. We achieve the
coupling by applying an oscillating voltage to a sharp metal tip that approaches the membrane surface to
within a few 100 nm. When the voltage oscillation frequency is equal to the mode frequency difference, the
modes exchange energy periodically and faster than their free energy decay rate. This flexible method can
potentially be useful for rapid state control and transfer between modes, and is an important step toward
parametric spin sensing experiments with membrane resonators.
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Optomechanical resonators made from silicon nitride are
a key resource for future technologies [1–8]. Owing to their
very large quality factors, these devices are highly coherent
and extremely sensitive to external forces [9]. They can
interact with mechanical, electrical, optical, and magnetic
signals, and their mechanical mode shapes and resonance
frequencies can be tailored to specific situations. Promising
applications of such resonators include demonstrations of
fundamental light-matter interactions [10–12], gravita-
tional-wave detection [13], quantum-coherent signal con-
version between the microwave and optical domains
[14,15], scanning force microscopy [9], and nanoscale
magnetic resonance imaging [16,17].
One crucial ingredient for harnessing optomechanical

resonators for applications involves parametric coupling,
also known as parametric frequency conversion, mode
locking, or three-wave mixing. This method for coupling
nondegenerate modes, long-employed in electronics and
nonlinear optics [18], can also be applied to nanomechan-
ical resonators [19]. In parametric coupling, two modes
with frequencies fi and fj are coupled through a pump tone
at the frequency difference fp ¼ jfj − fij. Because of the
pump tone, the modes experience each other’s oscillations
as resonant forces, similar to coupled degenerate resona-
tors. However, implementing efficient parametric coupling
with ultracoherent optomechanical devices is difficult—the
very shielding from the environment that facilitates excep-
tionally high quality factors [5,6] makes the implementa-
tion of a strong pump tone challenging. As a result, strong
parametric coupling [20,21], where the rate of energy
exchange between two nondegenerate modes exceeds their
individual decay rates, has so far not been demonstrated
with ultrahigh Q resonators.

In this Letter, we demonstrate strong parametric coupling
between two shielded mechanical modes in a silicon nitride
membrane. We circumvent the shielding issue with a sharp
metallic tip that approaches the membrane to a few 100 nm,
enabling local and precise control of the electrical inter-
action force gradient. With this control, we demonstrate
parametric coupling with a time tΔ ¼ 4.8 s required to
transmit energy from one mode to the other and back,
roughly 7 times faster than the mechanical decay time τ.
Our method can be further improved by increasing the
power delivered by the electrical pump tone, the electrical
makeup of the membrane surface, and the quality factor of
the mechanical modes, leading ultimately to quantum
coherent state transfer between nondegenerate modes.
At the heart of our experiment is a silicon nitride

membrane resonator whose displacement is detected with
a power-balanced laser interferometer at 1550 nm; see
Fig. 1(a). The time-dependent light intensity is transformed
into an electrical signal and measured with a Zurich
Instruments HF2LI lock-in amplifier. A sharp (rigid) metal
tip can be scanned over the membrane surface with a three-
axis stage [9]. The 20 nm–thick membrane features a hole
pattern that implements a phononic crystal [5]. Two “lotus”
defect [22] islands in the pattern with a separation of
roughly 1.2 mm and with quality factorsQ ¼ 1.4 × 108 act
as isolated resonators 1 and 2. The symmetric (S) and
antisymmetric (A) normal modes of these resonators,
shown in Fig. 1(b), extend over both defect sites and have
an effective mass m of around 6.9 ng [23]. In the spectra in
Figs. 1(c) and 1(d), the normal modes appear as narrow
lines at frequencies fA;S inside the band gap created by the
phononic crystal. To achieve these high quality factors, the
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experiment is placed in a vacuum chamber at around
1 × 10−7 mbar and thermally stabilized at a temperature
of 30 °C.
We can apply resonant driving forces to the two modes

and measure their oscillatory response; see Fig. 2. First, we
drive mode A with the photon pressure of a 980 nm laser
whose intensity Ilaser is modulated at fd ¼ fA [9], gen-
erating a force FA ∝ Ilaser. Second, we drive the same mode
by modulating the voltage applied to the scanning tip as
V tip ¼ VAC cosð2πfdtÞ [9]. The response for fd ¼ fA

exhibits the same nonlinear saturation at large amplitudes
as obtained with the photon drive. There are three possi-
bilities for how an electrical force can arise: (i) for a
conducting sample, a Coulomb force is generated between
the charged tip and mirror charges on the membrane
surface. Since our membrane is made from a dielectric,
we think this to be an unlikely option. (ii) The dielectric
membrane material can become polarized in response to the
applied voltage [24]. For both (i) and (ii), we expect FA ∝
V2
AC and that the force appears at 2fd instead of fd.

However, our measurements indicate FA ∝ VAC and the
vibrational response when driving at fd ¼ fA=2, shown in
Fig. 2 for comparison, is negligible. (iii) We finally propose
that the force is caused by the interaction of the tip with
“voltage patches” on the membrane surface [25–31]. A
similar interaction was recently observed with a different
nanomechanical system [32]. This model can qualitatively
explain all phenomena in Figs. 2–4. Additional data in the
Supplemental Material [33] support this interpretation.
Our system can be modeled with a set of coupled

equations of the form

̈zA þ ω2
AzA þ ΓA _zA − JzS ¼ FA=mA ð1aÞ

̈zS þ ω2
SzS þ ΓS _zS − JzA ¼ FS=mS: ð1bÞ

Here, zi is the displacement (with dots signifying time
derivatives), ωi ¼ 2πfi the angular resonance frequency,

(c)

(b) (d)

(a)

fA = fS = fA = fS = 

FIG. 1. Setup and characterization. (a) Sketch of the setup, showing the phononic crystal hole pattern with two defect sites labeled 1
and 2. The interferometric readout and driving lasers are centered on defect site 1 and the scanning tip is centered at a distance d above
defect 2. (b) Simulated displacement of the antisymmetric (left) and symmetric (right) membrane modes in arbitrary units.
(c) Displacement power spectrum obtained by slowly sweeping the frequency of the laser drive. Shaded blue region: modes outside
of the band gap. Shaded red region: frequency range shown in (d). (d) Displacement power spectral density of the membrane modes
shown in (b), driven by thermomechanical force noise. The left and right peaks are the antisymmetric and symmetric modes,
respectively, color coded in light blue and pink throughout the Letter.

FIG. 2. Comparison of different driving methods. The ampli-
tude ZA of the antisymmetric mode driven with a photon pressure
modulated at fd ¼ fA (dark blue), with a voltage applied to the
tip at fd ¼ fA (medium blue) and with a tip voltage at fd ¼ 1

2
fA

(light blue).
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Γ ¼ ðωi=QiÞ the dissipation coefficient of mode i with
quality factor Qi, mi the effective mass, and Fi the force
acting on mode i. For perfectly degenerate defect reso-
nators 1 and 2, the normal modes S and A are fully
decoupled. Finite detuning between the defect resonators,
in contrast, leads to finite coupling J [40]. Consequently, a
modulation of the detuning between the resonators at a
frequency fp, which is chosen to be equal to fΔ ¼ fS − fA
or fΣ ¼ fS þ fA, leads to a coupling term Jzj ¼
2ω0g cosð2πfptÞzj that has a component that is resonant
with fi, with ω0 ¼ ðωS þ ωAÞ=2 [17,40]. This “parametric
coupling” can be used for an efficient energy exchange
between modes at very different frequencies [19,20,41] and
represents a bosonic, classical analog to Rabi oscillations.
We derive a formal description of the parametric cou-

pling process via the averaging method [33]. In a frame
rotating at favi ≈ fi, the displacement zi can be expressed in
terms of in-phase and out-of-phase oscillation amplitudes
ui and vi, respectively. The time evolution of the system is
then obtained from the coupled slow-flow equations

2
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_uS
_vS
_uA
_vA

3
7775 ¼ 1

2

2
6664
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0
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3
7775;

ð2Þ

where δi=2π ¼ favi − fi are small detunings from the ideal
rotating frame, and we use the notation σ ¼ 1 (σ ¼ −1) for
driving at fp ¼ fΔ (fp ¼ fΣ). Our choice of zero phase
offset for FA and FS leads to force terms that act solely on
the vA and vS coordinates on resonance. The result we
obtain for pumping at fp ¼ fΔ is identical to the one
previously derived with a different method [40]. Below, we
concentrate on results obtained by driving at fΔ. We refer
the reader to the Supplemental Material for an example of
driving at fΣ [33].
A time-dependent detuning J between the resonators 1

and 2 is achieved by applying an electrical drive tone V tip ¼
VAC cosð2πfptÞ to resonator 2 via the scanning tip. The
corresponding force gradient gives rise to an electrical
spring constant kelðtÞ ¼ −½dFelðtÞ=dz� that modifies the
resonator’s resonance frequency f2 as a function of time.
This detuning effectively couples the normal modes with a
coefficient J ¼ kel=m [33,40].
In Fig. 3, we experimentally investigate parametric

coupling at fp ¼ fΔ in the absence of an external force.
In Fig. 3(a), the antisymmetric mode is initially driven to
high amplitude by a resonant laser drive. The laser drive is
then switched off and a parametric pump tone at fΔ is
switched on. The two modes exchange energy periodically
in additional to an overall ringdown. The theoretical fit
yields a coupling frequency of g ¼ ð2π=tΔÞ ¼ 1.3 rad s−1,

which is the highest coupling frequency we achieved
with this device (for VAC ¼ 10 V and d ¼ 100 nm). In
Fig. 3(b), we collect the measured values of g for different
VAC and d. We find a linear dependence on VAC, while the
increase in coupling frequency is stronger than linear
with d.
When applying a resonant laser (photon pressure) drive

to mode A and a parametric pump tone at fΔ simulta-
neously, the system reaches an out-of-equilibrium steady
state after a time t ≫ Q=πf [17,19]. The amplitudes of this
steady state depend on VAC ∝ g, offering an alternative way
to measure the coupling. The measured and calculated
results are shown in Fig. 4(a). For increasing parametric
coupling, the steady-state amplitudes begin to equalize and
cross at ≈2.5 V, whereafter mode A has the smaller
amplitude of the two modes. To understand this, we need
to remember that the phase of mode S follows the force
exerted by the coupling term with a phase lag of −π=2, and
that mode S in turn drives mode A with a second phase lag
of −π=2. In total, mode A damps itself through this
feedback loop, and its amplitude follows the simple closed
form (see the Supplemental Material [33])

(b)

(a)

FIG. 3. Parametric pumping at fΔ. (a) Parametric pumping with
VAC ¼ 10 V at d ¼ 100 nm and with initial conditions
ZSð0Þ ¼ 0, ZAð0Þ ¼ 3.25 nm. Blue and pink: measured ampli-
tudes Zi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i þ v2i

p
of the antisymmetric and symmetric

modes, respectively. Black dashed line: theory fit using
Eq. (2) with g ¼ 1.3 rad s−1 and δS;A ¼ 0. Gray dotted line:
exponential decay with the average of the ringdown times
τi ¼ Qi=πfi. (b) Coupling strength g versus tip voltage. From
light to dark blue at each voltage: d ¼ 1000 nm, 500 nm, 200 nm,
and 100 nm. Dashed lines are linear fits.
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ZA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2A þ v2A

q
¼ −i

FA

mω0Γ

�
1þ

�
g
Γ

�
2
�
−1
; ð3Þ

while the ratio between the two amplitudes is

ZS

ZA
¼ −i

g
Γ
: ð4Þ

We find excellent correspondence between the measure-
ments and Eqs. (3) and (4), using FA and g as free
parameters. The value g ¼ 0.25 rad s−1 obtained for VAC ¼
10 V and d ¼ 1000 nm is the same (within fit errors) as the
one we found for identical conditions in Fig. 3. For fixed
VAC, we can increase the coupling g by reducing d; see
Fig. 4(b). To model these data, we simulate the tip field and
the interaction with a surface charge distribution in
COMSOL. We heuristically find a surface charge distri-
bution that fits the measured gðdÞ; cf. the Supplement
Material [33].
The agreement between experiment and theory serves as

a foundation for future applications. In particular, the linear
relationship between the two mode amplitudes in Fig. 4(a)
is an important “dress rehearsal” for nuclear spin detection

with a membrane resonator [17]. In this proposal, the
parametric pumping is provided by an ensemble of peri-
odically inverted nuclear spins, whose number can then be
estimated from the amplitude of the undriven mode (ZS in
Fig. 4). Our experiment shows that the parametric energy
exchange between modes follows a simple mathematical
form and is not significantly affected by the modes’
nonlinearities [17,23] in the studied amplitude range.
Parametric mode conversion can also be of potential use

for purely electrical applications of scanning force micros-
copy. For instance, a deeper understanding of the micro-
scopic origin of mechanical damping will require highly
resolved and ultrasensitive imaging of trapped charges on
resonator surfaces [25–32]. For a single charge, the force
sensitivity of the parametric frequency conversion method
(cf. Fig. 4) can be compared to the direct-drive method,
which we illustrate here with a simplified example. Direct
driving between a single surface charge qsurf and a spherical
tip with a charge qtip results in the Coulomb force

FS ¼
1

4πϵ0

qtipqsurf
ðdþ RÞ2 ; ð5Þ

where ϵ0 is the permittivity of free space and dþ R the
separation between the effective charge positions, with R
the tip radius. The force is the first derivative of the
resonator’s electric potential Ec in the presence of a charged
tip. In contrast, the parametric method probes the second
derivative of Ec and yields

Fpar ¼ JzA ¼ −
1

2πϵ0

qtipqsurf
ðdþ RÞ3 zA: ð6Þ

The two forces become equal for zA ¼ ðdþ RÞ=2, which
can in principle be attained for d > R. Note that the electric
force in Eq. (5) and its derivative in Eq. (6) may differ for a
realistic tip geometry. Nevertheless, we expect that both
methods will generally yield good signals. Inserting into
Eq. (6) the numerical values qtip ¼ qsurf ¼ 0.16 aC (one
elementary charge), d ¼ R ¼ 50 nm, and zS ¼ 10 nm, we
obtain Fpar ¼ 4.6 fN. This force should be routinely
detected with our ultrasensitive membrane resonators
whose force noise will drop below 1 aNZ−1=2 at cryogenic
temperatures [9]. Significantly higher forces can be gen-
erated by increasing the tip charge—for the self-capaci-
tance Cself ¼ 4πϵ0R of a sphere with radius R ¼ 50 nm, a
tip voltage V tip ¼ 10 V induces 350 elementary charges.
We propose to implement the direct and parametric
methods simultaneously to gain access to complementary
information, i.e., the first and second derivatives of the tip-
surface interaction energy, to improve the determination of
the electrical fields.
To conclude, we have demonstrated strong (classical)

parametric coupling between two membrane modes
induced by the time-dependent voltage on a scanning

(b)

(a)

FIG. 4. Steady-state amplitudes. (a) Mode amplitudes as a
function of VAC with a constant photon pressure drive at fd ¼ fA
and parametric pumping at fΔ at a distance d ¼ 1000 nm (left
axis). Blue and pink: measured amplitude of the antisymmetric
and symmetric modes, respectively. Black dashed lines: solutions
of Eq. (2) for _uS;A ¼ _vS;A ¼ 0. (b) Mode amplitudes as a function
of d with VAC ¼ 1 V. Black dashed lines: solutions of Eq. (2), a
finite-element numerical charge distribution model; see the
Supplemental Material [33]. Gray lines and right axes: ZS=ZA
extracted from the measurements.
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tip. This achievement unlocks a large toolbox that vastly
increases the range of possible experiments using such
resonators. First, strong mode coupling was shown to be a
useful way to avoid long transient dynamics and to obtain
rapid resonator control [42]. Second, our experiment serves
an electrical test for parametric spin sensing experiments
that will couple two resonator modes via coherently
inverted nuclear spins [17,19]. Third, our study motivates
additional investigations of the membrane’s electrical sur-
face states, allowing deeper insights into the surface
chemistry and the microscopic nature of noncontact friction
[9,32,43]. Finally, with further improvements of the para-
metric coupling strength g, we could accomplish quantum-
coherent state transfer between nondegenerate modes.
Similarly, when combined with optomechanical techniques
that remove entropy, the techniques presented here can
enable quantum squeezing and entanglement of the
mechanical modes [44,45], which can enhance the sensi-
tivity in the measurement of small forces [46,47]. The best
dissipation-limited quantum coherence times for membrane
resonators are on the order of milliseconds at 4 K [11] and
already exceed 100 ms at dilution refrigerator temperatures
[22]. This means that our experimental approach requires
only a moderate improvement to overcome the decoherence
stemming from dissipation, while decoherence caused by
frequency noise is currently not well characterized in this
system. Our scanning probe–based approach is, in addition,
very flexible with regard to different modes of vibration,
whose optimal coupling points (in real space) are located at
different positions.
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