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S1. CHARGE INVESTIGATIONS

In Fig. S1, we show the amplitude of the antisymmetric mode while scanning over the surface with a constant photon

pressure (laser) drive and with a constant tip voltage drive. For the laser drive, we observe a constant amplitude,

while the electrically driven amplitude varies significantly. This result is in agreement with our assumption that

inhomogeneous surface charges (‘voltage patches’) are responsible for the electrical interaction of the membrane

resonator with the scanning tip. Further systematic studies will hopefully allow us to quantify the charge distribution

and to identify potential microscopic origins of the phenomenon. We speculate that such inhomogeneous charge

distributions could contribute towards the linear and nonlinear damping of the resonators, as well as to frequency

fluctuations [1, 2].

S2. SECOND DEVICE DATA

We repeated the experiment shown in Fig. 4 with a second device with QA = 33× 106 and QS = 31× 106. The

steady-state amplitudes were recorded at the position (0/0) of Fig. S1(b) and at a distance of 100 nm. At this position,
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FIG. S1. Surface charge imaging. Tip scanned over the surface with (a) a laser drive and (b) a tip drive. This data was
recorded with a second device at a distance of 1.3 µm.
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FIG. S2. Steady-state amplitudes. Mode amplitudes as a function of VAC with a constant photon pressure drive at fd = fA
and parametric pumping at f∆ at a distance d =100 nm (left axis). Blue and pink: measured amplitude of the anti-symmetric
and symmetric mode, respectively. Black dashed lines: solutions of Eq. (2) for u̇S,A = v̇S,A = 0. Grey: ZS/ZA extracted from
the measurements (right axis). This data was recorded with a second device.

we find g = 0.245 rad s−1 for VAC = 10 V, which is roughly five times smaller than the coupling measured for the

device in the main text under similar conditions.

S3. SLOW-FLOW DERIVATION

We can model our system as two parametrically coupled, linear oscillators

z̈A + ΓAżA + ω2
AzA − JzS = FA/mA (S1)

z̈S + ΓS żS + ω2
SzS − JzA = FS/mS . (S2)

with driving frequency Ω, coupling J = λ cos(Ωt), dissipation Γ, displacements zA, zS , angular rotation frequencies

ω1, ω2, forces FA, FS , and masses mA, mS . We can set the force terms 0 for the moment, and insert them later if

needed. Alternatively it could also be simulated.[3]

We can split these equations of motion into two first order equations with zi = qj , żi = pj , i ∈ {A,S} and j ∈ {1, 2},

q̇1 = p1 , (S3)

ṗ1 = −ω2
1q1 + λ cos(Ωt)q2 − Γp1 , (S4)

q̇2 = p2 , (S5)

ṗ2 = −ω2
2q2 + λ cos(Ωt)q1 − Γp2 . (S6)

We change here from {A,S} to {1, 2} for nicer looking equations, but the indices have nothing to do with the defect

site labels 1 and 2. We then move to a rotating frame at an angular frequency Ω1 for Eqs. (S3) and (S4) and at Ω2 for

Eqs. (S5) and (S6) using van der Pol transformations [4]. By integrating the transformed equations over one period,

i.e. over 2π/Ω1 and 2π/Ω2 respectively, we arrive at the equation
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for the slow-flow coordinates ui and vi, i.e., the in-phase and out-of-phase oscillation amplitudes. The matrix

elements of P are

a12 =− a21 =
Ω1

2π

(
π − πω2

1

Ω2
1

)
, (S8)
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, (S9)
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a42 =− λ

−2Ω1

(
Ω2 − Ω2

1 + Ω2
2

)
+ (Ω− Ω1)(Ω + Ω1 − Ω2)(Ω + Ω1 + Ω2) cos

(
2π(Ω−Ω1)

Ω2

)
4π(Ω + Ω1 − Ω2)(Ω− Ω1 + Ω2)(−Ω + Ω1 + Ω2)(Ω + Ω1 + Ω2)

−
(Ω + Ω1)(Ω− Ω1 − Ω2) cos

(
2π(Ω+Ω1)

Ω2

)
4π(Ω + Ω1 − Ω2)(−Ω + Ω1 + Ω2)(Ω + Ω1 + Ω2)

 . (S18)

Looking at the off-diagonal 2 × 2 blocks in P that are responsible for mode coupling, we see that the coupling

coefficients are time dependent for most choices of Ω1 and Ω2. In our frame rotating at the resonance frequencies of

the two modes of interest, a coupling coefficient that varies over time averages out over long enough observation periods

and does not contribute significantly. A time-independent, strong coupling can be achieved for Ω = ±(Ω1 ±Ω2). We

will therefore only consider the cases of driving at the frequency difference and at the frequency sum.

A. parametric coupling at Ω = Ω1 − Ω2

For Ω = Ω1 − Ω2 the propagator takes the form
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The trigonometric terms with Ω1/Ω2 and Ω2/Ω1 lead to micro-motion, but we assume the rotating pictures to be

sufficiently close to one another, i.e., Ω1/Ω2 = Ω2/Ω1 = 1. With this approximation, we arrive at
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To simplify the notation, we define δ1 = Ω1−ω1, δ2 = Ω2−ω2, ω0 = 1
2 (ω1 +ω2) and λ = 2ω0g. For small detunings,

we can set Ω1

ω1
≈ 1 and Ω2

ω2
≈ 1 and reach the result of equation (2) of the main manuscript
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The only difference is that we labeled the symmetric (antisymmetric) mode with S (A) instead of 1 (2).

B. parametric coupling at Ω = Ω1 + Ω2

At Ω = Ω1 + Ω2 the propagator takes the form
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Using a similar set of assumption as in the previous case, we obtain

P =


−Γ

2 δ1ω0 0 − g2
−δ1ω0 −Γ

2 − g2 0

0 − g2 −Γ
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− g2 0 −δ2ω0 −Γ
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 (S23)

S4. DERIVATION OF EQ. (4) AND (5)

For the experiment presented in Fig. 4, the phases of both modes are depend on the external force. Equations (4)

and (5) can be derived as follows: an external force FA drives the symmetric mode to the standard linear response

ZA =
FA
mω0Γ

e−
π
2 = −i FA

mω0Γ
. (S24)
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FIG. S3. Non-contact friction. (a) Mode amplitudes as a function of distance d with laser driving on both modes. Blue
and pink: measured amplitude of the anti-symmetric and symmetric mode, respectively. Grey: ratio of the modes (right axis).
(b) Change in dissipation Γ = mω/Q due to non-contact friction. Blue and pink: measured dissipation of the anti-symmetric
and symmetric mode, respectively. Shaded grey: region where d <100 nm.

Adding a coupling term JzA with the component gω0ZA cos(ωSt) acting resonantly on ZS , we obtain via the same

mechanism

ZS =
gZA

Γ
e−

π
2 = −igZA

Γ
, (S25)

which we divide by ZA to obtain Eq. (5). ZS exerts a coupling force gω0ZS back on zA. The steady-state equation

we find for ZA is

ZA = −i FA
mω0Γ

− igZS
Γ

= −i FA
mω0Γ

−
( g

Γ

)2

ZA , (S26)

which we solve for ZA to obtain Eq. (4).

S5. NON-CONTACT FRICTION

In Fig. S3 (a) we present measurements of the tip-membrane non-contact friction. We drive both modes at

their individual resonance frequencies with the laser modulation technique and record their response amplitudes as a

function of the tip-surface separation d. In the plot, we can see that the amplitude decreases only for small distances

for both modes and that their ratio remains constant. The extracted non-contact friction as a function of d is plotted

in Fig. S3(b). Since it contributes less than 10 % to the membrane’s total friction up to d < 10 nm, we neglect this

additional dissipation channel in the following.

S6. MICROSCOPIC MODEL FOR TIP-SURFACE INTERACTION

In order to shed light onto the microscopic origin of the parametric drive, we start from a very simple model.

We assume that a single charge qsurf is located on the membrane surface at a tip-surface distance d and at a radial

displacement r, see Fig. S4(a). This charge experiences an electric force in z-direction, Fel = Ez(d, r)qsurf , in response

to the z-component of the electrical tip field at the charge’s location, Ez(d, r) =
∂Vtip

∂z . For convenience, we will drop
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FIG. S4. Charge model. (a) Sketch of the microscopic model. The background coloring shows the electric field in z-
direction, Ez, as simulated in Comsol. A charge qsurf is at a radial distance r and a z-distance d from the tip. The
platinum layer (white) around the silicon tip (black) is set to a potential of 1 V with a ground defined very far away. (b) Dark
blue to light blue: Calculated coupling g with the force stemming from the tip voltage and 500 elementary charges at r =
(0, 200, 400, 600, 800, 1000)nm. Red: Measured g with a parametric drive of VAC = 1 V. Dashed black line: Fit of the measured
data using 10 charged spots. (c) Distribution of roughly 540 elementary charges leading to the fit in (b).

the position indication in the following. The corresponding spring constant kel gives rise to a frequency shift of both

membrane modes, and corresponds to a time-dependent (parametric) coupling J with amplitude 2ω0g [5] as

kel

m
= − 1

m

δFel(t)

δz
= −qsurf

m

δEz(t)

δz
= J(t) = 2ω0g cos(2πfpt) . (S27)

For a quantitative analysis of the electrical interaction, we calculate the electrical field of the tip with a finite-element

simulation in COMSOL, see Fig. S4(a). We present the field derivatives δEz(t)
δz ∝ g at different r in Fig. S4(b).

In order to assess the validity of such a simple model, we compare it to experimental evidence. In the main text

in Fig. 4(b), we demonstrate how the parametric coupling strength g changes with tip-surface distance d. As Eq. (4)

tells us that g ∝ ZS
ZA

, we can use the measured amplitude ratio for a direct comparison with the power laws predicted

from our simple model. For d > 500 nm, the measured g fits well to the functional form of − δEzδz at r ≈ 800 nm, while

for d < 500 nm it fits better to the case of r ≈ 200 nm. None of the simulated single-charge traces can explain the

entire measurement.

We can improve the agreement between simulation and experiment by assuming a more realistic charge distribution.

The dashed line in Fig. S4(b) corresponds to a heuristic model of 10 charged spots spread between r = 0 and

r = 1000 nm, see Fig. S4(c). The surface angle of the charge locations does not enter our calculation, such that
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FIG. S5. Driving at the frequency sum. Experimental result of driving the two modes at the sum of their frequencies
fA + fS with a tip-voltage drive and with d = 1000 nm.

the model is not unique. Nevertheless, the realistic parameters employed, and the excellent agreement with the

experimental results in Fig. S4(b) and Fig. 4(b), demonstrate that the surface-charge model can fully explain the

parametric coupling observed with out membrane resonators. Unfortunately, the actual charge distribution was not

measured with our main device, but the result presented for a second device in Fig. S1 shows a similar spatial

distribution as in our calculation, and further supports our claim.

Using the 10 charged spots and the simulated field derivative of the tip, we can numerically calculate the parametric

coupling g for any combination of d and VAC. Based on this model, we find the steady-state responses of both modes

in Fig. 4(b) with the help of Eq. (2).

S7. DRIVING AT THE FREQUENCY SUM

We also tested parametric driving at the frequency sum fΣ = fA + fS . Here, owing to the symmetry in the

propagation matrix in Eq. (3), the two modes drive each other simultaneously instead of alternatingly. As a result,

there is a parametric driving threshold gth where the energy pumped into the system exceeds the energy lost through

linear damping [6, 7]. This threshold is reached when the gain factor

G =

[(
1 +mgω0

√
QSQA
kSkA

)(
1−mgω0

√
QSQA
kSkA

)]−1

(S28)

diverges [6]. With m = mA ≈ mS , QA ≈ QS and kA = mω2
A ≈ kS = mω2

S , this is the case for gth = Γ. With the

calibrations from Fig. 3 and 4, we expect this threshold around VAC = 2.5 V.

In Fig. S5 we observe the amplitude response of the two modes to a parametric sum drive in the absence of an

external force. The amplitudes, measured with a narrow-band filter in our lock-in amplifier, remain zero below the

threshold at roughly VAC = 1.8 V. Beyond the threshold, both amplitudes rise quickly and reach a high amplitude

limited by the nonlinearity, similar to a parametric oscillator [8]. The difference between the expected threshold

(VAC = 2.5 V) and the measured result could be due to slow drift of the nanopositioner relative to measurements

shown in the main text.
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S8. SPECTRAL SIGNATURES OF DRIVING

In Fig. S6, we demonstrate that the mode spectrum in the presence of external driving remains very clean. In

particular, no evidence of side peaks of limit cycles is observed.
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