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Ising machines with strong bilinear coupling
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Networks of coupled parametric resonators (parametrons) hold promise for parallel computing architectures.
En route to realizing complex networks, we report an experimental and theoretical analysis of two coupled
parametrons. In contrast to previous studies, we explore the case of strong bilinear coupling between the
parametrons, as well as the role of detuning. We show that the system can still operate as an Ising machine
in this regime, even though careful calibration is necessary to ensure that the correct solution space is available.
Apart from the formation of split normal modes, new states of mixed symmetry are generated. Furthermore, we
predict that systems with N > 2 parametrons will undergo multiple phase transitions before arriving at a regime
that can be equivalent to the Ising problem.
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I. INTRODUCTION

Driven nonlinear systems were first considered as logic
elements at the dawn of the digital era [1–3]. Their non-
linearity induces several stable oscillation states that can be
used as elementary information units for computation and
data storage. A prominent example of a nonlinear system is
the parametric resonator, also known as the “Kerr nonlin-
ear resonator” or “parametron” [1,2,4,5]. In a space spanned
by the driving amplitude λ and driving frequency fd , the
parametron exhibits a well-defined “instability lobe” around
the eigenfrequency fd ≈ f0 and above the threshold value
λth. When driven inside this lobe, the parametron locks onto
one of two “phase states” that have the same oscillation am-
plitude but differ by π in phase [6–8], cf. Figs. 1(a) and
1(b). These phase states represent the binary information
unit of the device. Parametron-based logic operations are
experiencing a resurgence of interest due to the recent devel-
opment of nanomechanical, electrical, and optical resonators
that offer long-lived, error-resilient, and tunable phase logic
states [5,9–19].

Several research fields are currently racing towards phys-
ical implementations of parametron networks for parallel
computing, and their corresponding operation protocols
[18,20–26]. In a parallel network, a given task is encoded in
the coupling between nodes. Under the influence of a para-
metric drive and the node coupling, the entire system evolves
towards a stable “optimal” configuration, i.e., a particular os-
cillation mode involving all resonators. This oscillation mode
represents the computational output, cf. Fig. 1(c) [27–31].
This behavior can be exploited to solve many optimization
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problems that are nearly intractable with sequential comput-
ers. Examples include the famous traveling salesman problem
[32], the number partitioning problem [33], and the MAX-
CUT problem [34,35], but also fundamental questions in
physics such as the ground state of the Ising spin model
[36–38] or the structure of complex molecules [39].

Recently, parametron networks were explored in “coher-
ent Ising machines” with dissipative coupling, corresponding
to simultaneous mutual feedback between the resonators
[22,25,34,40–42]. The feedback allows some parametric os-
cillation modes of the system to exist at a lower driving
threshold λth than others. The network is composed of identi-
cal resonators and is operated by slowly ramping up a global
parametric drive amplitude at the driving frequency fd = f0.
The mode that profits from maximum positive feedback will

FIG. 1. Parametron networks. (a) In response to a paramet-
ric drive at frequency 2 fd (black), two possible stable oscillation
states with a phase difference of π (wine red, orange) emerge at
subharmonic frequency fd ≈ f0; x is displacement and t is time.
(b) Rotating-frame energy landscape of the parametric resonator in
a phase space rotating at fd , with x = u cos(2π fdt ) − v sin(2π fdt ).
The stable phase states are indicated by spheres. (c) Schematic rep-
resentation of a network of parametrons, with a coupling rate γ to a
bath and nearest-neighbor coupling rate J . Each parametron acts as a
bistable element.
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appear at the lowest drive power. Note, however, that the
efficiency of this coherent Ising machine as a way to solve
computational tasks is under scrutiny [43].

Alternative types of Ising simulators are based on bilinear
coupling, that is, conservative energy exchange between res-
onators [24,33,37,44–46]. Previous proposals are based on the
assumption of very weak coupling, such that the individual
resonator states are barely affected by the interaction with
other resonators. At the same time, the proposals also rely
on the notion of (quantum) adiabatic state evolution, which
implies that the damping rate γ is the smallest energy scale in
the system; in particular, this requires that the coupling domi-
nates over the dissipation. This condition, which is commonly
referred to as “strong coupling,” ensures that the exchange of
energy (and thus information) between individual resonators
is faster than the loss-induced decoherence of the network.
Strong coupling, however, is expected to impact the phase
diagram of the network; for instance, the available oscilla-
tion configurations (the computational solutions) can depend
critically on the selected driving frequency. The behavior
of a parametron network in the strong coupling regime has
never been explored, and its equivalence to an Ising machine
remains speculative.

In this work we establish the validity of the adiabatic bi-
furcation simulator for the Ising problem in a system of two
nearly identical (classical) parametrons with strong bilinear
coupling. The coupled system forms normal modes that are
split in frequency, such that their corresponding instability
lobes no longer have their “tips” at the same frequency [8,47].
In addition, the interplay between the coupling and nonlin-
earities leads to unexpected “mixed-symmetry” states and to
hidden bifurcations that erase certain network solutions in
part of the phase diagram. Nevertheless, with proper calibra-
tion, we find that the two-parametron system can be used as
an Ising machine. For N > 2 parametrons, the normal-mode
perspective allows us to predict a surprising problem, arising
in all instances of Ising machines: the number of available
network solutions does not scale with 2N close to threshold.
We discuss this “state space” problem along with a potential
explanation to reconcile our findings with the operational
functionality of an Ising machine.

II. RESULTS

Experimental setup: We built a setup of capacitively cou-
pled parametrons using electrical lumped-element resonators,
see Fig. 2(a). Each resonator (marked by index i) comprises
a resistance R = 47 M�, an inductance L = 87μH, a tuning
voltage Ui ≈ 2 V, and a nonlinear capacitance C ≈ 20 pF in
the form of a varicap diode. The resonators are driven and read
out inductively through auxiliary coils. Using Kirchhoff’s
laws, our electrical circuits are described by coupled equations
of motion [15],

ẍi + ω2
i [1 − λ cos (2ωdt )]xi + αix

3
i + γiẋi −

∑
j �=i

Ji jx j = 0.

(1)
Here dots indicate time derivatives, xi = ui cos(ωt ) −
vi sin(ωt ) is the measured voltage with quadrature amplitudes
ui and vi, ωi = 2π fi is the angular resonance frequency, αi

is the coefficient of the Duffing nonlinearity, γi = ωi/Qi is

the damping rate, and Qi is the quality factor of the ith
resonator. Our resonators are (nearly) identical in their bare
characteristics and are tuned via Ui to have (nearly) degenerate
eigenfrequencies, ωi ≈ ω0 = 2π f0. They are linearly coupled
with coefficients Ji j (i �= j) and are all driven with the same
parametric modulation depth λ = 2Ud/(UthQ) at an angular
rate 2ωd = 4π fd ≈ 2ω0, where Ud is a driving voltage and
Uth is the corresponding threshold voltage for parametric os-
cillations. For further details on the individual resonators, cf.
Ref. [15].

Slow flow: We measure the system with a lock-in ampli-
fier, and are thus primarily interested in changes of the slow
coordinates (ui, vi ) on timescales much longer than 1/ω0. We
compare the observed results with calculated stationary states
of a slow-flow treatment [47–50] of our model (1), which
is equivalent to a rotating mean-field analysis of the corre-
sponding quantum system. Specifically, we obtain coupled
equations of motion for the “slow” order parameters

u̇i = −γ ui
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where X 2
i = u2

i + v2
i . Our method is valid since λ, γ /ω0,

J/ω2
0, and (α/ω2

0 )x2
i are all of order ε with 0 < ε � 1 [51].

The stationary states are obtained by solving the polynomial
Eqs. (2) for u̇i = v̇i = 0. Note that we assumed here homoge-
neous dissipation γi = γ , nonlinearities αi = α, and coupling
Ji j = J . Since the nonlinearity α can be eliminated by
rescaling ui and vi with

√
α, the magnitude of α only changes

the amplitudes of ui and vi. In coupled systems, working in
the normal mode basis can be very helpful. The symmetric
and antisymmetric eigenmode are shifted to

√
ω2

0 ± J and
parametric excitation around these frequencies are expected.
As the Duffing nonlinearity mixes the normal modes, several
nonlinear coupling terms appear (see Appendix B), and for
brevity’s sake, we remain in the bare mode notation.

Measurement protocol: Following standard protocols
[13,15,47], we characterize the independent circuits (for van-
ishing J) by sweeping fd for different Ud , see Appendix A.
We then couple two such devices capacitively and perform
similar sweeps with increasing fd (upsweep) to probe the
system’s stationary states, see Fig. 2(b). For Ud = 2.5 V, the
sweep yields two frequency segments with large responses.
In one of them, the two resonator oscillations are in phase
and virtually identical (“symmetric” = S). In the other seg-
ment, the oscillations are out of phase; above 2.36 MHz, the
amplitudes are approximately identical (“antisymmetric” =
A), while below 2.36 MHz, the amplitudes differ significantly
(“mixed-symmetry” = M). When increasing the parametric
drive to Ud = 3.7 V, the response segments merge and the
system directly jumps from the A-state to the S-state response
slightly above 2.36 MHz.

Measured phase diagram: To obtain the full measured
stability diagram of the two-parametron system, we repeat
the frequency sweeps as in Fig. 2(b) for a wide range of
driving voltages Ud , see Fig. 2(c). The overall shape is that
of two normal modes with partially overlapping instability
lobes. From the mode splitting and the observation that the
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FIG. 2. (a) Experimental setup of two capacitively coupled (C0) RLC circuits with individual tuning voltages U1,2. (b) Response v1 and v2 of
the two resonators in a sweep from low to high frequency fd . The system switches between the 0-state (v1,2 = 0), S-state [sgn(v1) = sgn(v2)], A
state [sgn(v1) = −sgn(v2)], or M-state. (c) Diagram characterizing the stable solutions measured in frequency upsweeps. Blue and red intensity
mark the absolute value of the symmetric and antisymmetric combination of v1,2, |vS| = |v1 + v2|/

√
2 and |vA| = |v1 − v2|/

√
2, respectively

(analogous graphs can be drawn for uS,A). The resulting diagram shows regions in white, red, blue, and purple, corresponding to measured 0, S,
A, and M-states, respectively. The brown line is calculated from theory, see Eq. (3). (d) In total there are up to nine stable solutions at any point
in the phase diagram, which can be characterized by their symmetry. (e) and (f) Schematic representation of the steady-state solutions and
bifurcation points. Solid lines: stable; dashed lines: singly unstable, i.e., one characteristic exponent has a positive real part [50]; dotted lines:
doubly unstable, i.e., two characteristic exponents have positive real parts. Squares (circles) indicate bifurcations that involve only unstable
(stable and unstable) solutions. Their colors match the lines from (g). (g) Calculated stability phase diagram. White: 0-state is stable; blue:
only the S-state is stable; red: S and A-states are stable; purple: S and M-states are stable; dark red: S, A, and M-states are stable. Circle and
squares represent bifurcations from (e) and (f).

antisymmetric mode appears at a lower frequency than the
symmetric mode, we extract J = −1.28 MHz2. Surprisingly,
however, the transition from A- to S-oscillation states does
not occur at the boundaries of the individual lobes; rather,
the S-region protrudes to the left at Ud ≈ 3.5 V, and then
proceeds along a diagonal line. In addition, we observe that
the M-state appears first along the upsweep in some parts of
the lower left lobe. Crucially, the M-state and the reduced
region of A-oscillations are unexpected from a naive weak
coupling perspective [24,37,44,46,47]. As we discuss below,
they arise due to an interplay between the coupling and the
negative nonlinearity.

Stability analysis: To better understand the measured phase
diagram and the validity of different regions for Ising compu-
tation, we solve for the stationary stable states of Eqs. (2).
According to Bézout’s theorem, four cubic equations have
maximally 34 roots. For the case of a single oscillator it has
been shown that the relevant solution space comprises three
stable and two unstable states [7,49]. Consequently, in the
limit of weak coupling, we expect for two oscillators up to 25
physical solutions, with maximally nine stable physical states,
depending on the drive amplitude and detuning [52]. Although
we consider coupling strengths beyond that limit, we did not
observe any additional steady state solutions. Furthermore, in
our time-dependent numerical analysis and the experiment,
we did not see any periodic states in the rotating frame, which
might appear for such coupled systems [43].

In Fig 2(d), the state at the origin of the coordinate system
(0) indicates that all resonators are at zero amplitude. The

S- and A-states correspond to the parametron phase states of
the system’s normal mode solutions, where the two resonators
oscillate at the same amplitude either in phase or with opposite
phase. These solutions can, in principle, be used for Ising
simulation and be interpreted as ferromagnetic and antiferro-
magnetic spin configurations. The other four solutions have
no simple symmetry and are mixed-symmetry states (M).

Calculated phase diagram: We map the system’s phase
diagram by tracking the stability of the the different oscillation
states in the parameter space spanned by fd and Ud . We use
in our analysis the experimentally determined parameters for
f0 and J , while Q = 265 was chosen for both resonators to
achieve optimal agreement. In our system, all transitions are
of Z2 spontaneous symmetry-breaking type (pitchfork bifurca-
tions) [50]. For consistency with literature in the field, we refer
to them as phase transitions [50]. For Ud = 2.5 V [Fig. 2(e)],
from high to low frequencies, the system transitions from zero
amplitude (0-state), to parametron S-states, to coexistence
of the 0 and S-states, to coexistence of S and A-states, to
coexistence of M and S-states, and finally to coexistence of
M, S, and 0-states. Correspondingly, we identify that along
the experimental upsweep in the left panel of Fig. 2(b), the
system jumps along the states 0-M-A-0-S-0. For Ud = 3.7 V
[Fig. 2(f)], from high to low frequencies, the system transi-
tions from the 0-state, to S-states, to coexistence of the S and
A-states, to coexistence of M, S, and A-states, and finally to
coexistence of all nine solutions. In the experimental upsweep
in the right panel of Fig. 2(c), the system jumps along the
states 0-A-S-0. Based on this methodology, we find which
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states appear in a measured phase diagram as a function of
fd and Ud , compare Figs. 2(g) and 2(c).

The most prominent feature in both Figs. 2(c) and 2(g) is
the phase transition at the solid brown line. This transition
arises from an interplay between the nonlinearity and the in-
terparametron coupling which induces a parametric coupling
of the S and A-states, cf. Eq. (1), see Appendix B. In an
upsweep, the brown line marks the gradual transition from
M to A-oscillations (below Ud ≈ 3.5 V) or the sharp jump
from A to S-states (above Ud ≈ 3.5 V). Its position λA(ω) is
obtained by a stability analysis against small fluctuations [50],
which yields the expression

λA =
2
√

γ 2ω2 + [
2J − (

ω2 − ω2
0

)]2

ω2
0

. (3)

Note that only the sign of α impacts the position of λA, but
not its magnitude as α only rescales ui and vi. Consequently,
as the coupling coefficient J is decreased (increased), the
stability boundary of the A-state approaches (recedes from)
the right boundary of the antisymmetric instability lobe. This
effect bears important implications when using parametron
networks for Ising machines, as it reduces the regions of the
phase diagram where the A-oscillation states are stable.

III. DISCUSSION

Our network of two coupled parametrons realizes the
smallest classical form of an “adiabatic bifurcation” simulator
[24,33,44], but in the unexplored regime of strong coupling.
In general, the standard operation protocol for using such
a simulator is as follows: first, initialize the network in its
0-state with λ = 0 and 	 < −|J|/ω0, where 	 = ωd − ω0 is
the detuning. Second, increase the parametric drive Ud ∝ λ to
push all of the individual resonators across their parametric
threshold λth, such that they all ring up to a phase state. Due
to the mutual coupling between the resonators, certain phase
state configurations (symmetries) will be favored over others.
Numerical simulations for the case of two parametrons predict
that this favored oscillation mode is the ferromagnetic (S)
state for J > 0 and the antiferromagnetic (A) state for J < 0
[33,44]. Presumably, a measurement of the final oscillation
state can therefore be used to find the ground state of the
corresponding Ising Hamiltonian

HIsing = −
∑
i, j

Ji, jσiσ j, (4)

where σi ∈ {−1, 1} is the classical state of a spin that points ei-
ther up or down. Measuring the S-state of our two-parametron
network at the end of the protocol is then associated with a
ground state σ1 = σ2, while the A-state corresponds to σ1 =
−σ2. Other protocols, by contrast, rely on HIsing as an effective
description of the parametron network [46].

From our results, we reveal crucial additional under-
standing of adiabatic bifurcation protocols and their validity
range for Ising machines. Effectively, our upsweep scans in
Figs. 2(b) and 2(c) follow exactly a bifurcation simulator
operation protocol, where (without loss of generality) we
chose to sweep fd at constant Ud , rather than vice versa.
We start in the 0-state and evolve into the instability regions

FIG. 3. (a) Numerical simulations of three identical resonators
with the same parameters as our experimental devices, and with cou-
pling coefficients J1,2 = −2J , J1,3 = −0.6J , and J2,3 = 0.6J . When
sweeping the parametric drive from low to high frequencies at λ =
1.5λth, we observe the instability lobes I to III of the network normal
modes. The three-parametron phase states of II and III can be inter-
preted as the Ising states ±(1, −1, 1) and ±(−1, 1, 1), respectively.
Within lobe I, resonator 3 has amplitude 0, which makes it difficult
to map this three-parametron state to a particular spin configuration.
(b) For λ = 10λth, between states I and II, we find a mixed-symmetry
state (M) that reflects the ground state of the corresponding Ising
Hamiltonian Eq. (4).

to obtain, at sufficiently high Ud , the correct outcome of the
computation, i.e., the antiferromagnetic (A) state. At the same
time, our result highlights key important differences to what
is commonly discussed in the literature: on the one hand,
we found up to nine stationary oscillation configurations, cf.
the M-states in Figs. 2(e)–2(g); these go beyond the solution
space of the Ising mapping. Extrapolating our discussion on
two parametrons, we expect that a network of N parametrons
can form up to 3N stable states which the system will explore
in certain parameter regimes. On the other hand, in the opera-
tion protocol presented above, it turns out that the outcome of
the computation relies on “which mode has the lower eigen-
frequency.” The problem is thus mapped to the linear splitting
of the normal modes, which does not scale with 2N but with
2N (N normal modes with two phase states each). Our net-
work has the same solution space as expected from an Ising
system only by coincidence because 2N = 2 × N for N = 2.

The discrepancy between the normal-mode picture and
the Ising mapping becomes more acute when generalizing
the above recipe to networks with N > 2 resonators. As we
have established, the oscillation states and the correspond-
ing instability lobes are inherited from the normal modes of
the underlying coupled resonator system, of which there are
precisely N . The number of available many-body parametron
phase states is therefore 2N . The number of Ising configu-
rations, on the other hand, must be 2N , which is larger than
2N for any N > 2. From this argument it follows directly
that there can be no one-to-one mapping between the normal
modes and the possible Ising configurations. Indeed, as we
show with a numerical example in Fig. 3(a), the stable solu-
tions of the network can deviate from the naively expected
combination of resonator phase states with equal amplitudes.
We can therefore not trust the ordering of the normal modes
in frequency to find the ground state solution of the Ising
problem.

How can one still reconcile our observations with the
predicted operation of adiabatic bifurcation Ising machines
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FIG. 4. (a) Schematic illustration of N (almost) identical uncou-
pled, parametrically driven resonators. When sweeping the driving
strength λ versus the detuning 	, each resonator undergoes a phase
transition into parametron phase states at the same threshold, see
gray dot. Above the threshold, the system is described by the combi-
nations of N bistable states, offering 2N possible many-body states.
(b) Schematic illustration of N (almost) identical coupled, paramet-
rically driven resonators. The coupling leads to the formation of N
normal modes involving all resonators. Each mode undergoes a phase
transitions to parametron phase states at an individual threshold value
during the sweep, see white dots. Each of the 2N possible normal-
mode phase states then branches into mixed-symmetry states due to
the interaction with other normal modes, see black dots. In total, it
is expected that the system will feature up to 2N states far above the
last threshold, corresponding to the case of negligibly small coupling
relative to the influence of the drive. In this simplified view, we have
neglected details such as saddle-node bifurcations, and we do not
explicitly differentiate between stable and unstable solutions of the
system. An example of this qualitative picture manifests for N = 2
in Fig. 2(f).

[24,33,44,46]? Far beyond the parametric threshold, it is
generally assumed that each parametron occupies one of its
individual (uncoupled) phase states, giving rise to 2N possible
oscillation states, see the simulation results in Fig. 3(b) and the
schematic illustration in Fig. 4(a) [24,33,44,46]. It is at present
not clear, however, how the transition from a normal-mode
regime with 2N states (λ � λth) to an Ising regime with 2N

states (λ � λth) takes place in detail. We tentatively propose
that this transition involves mixed-symmetry states similar to
the ones we found in our system—as an illustration, the simu-
lation with N = 3 in Fig. 3(b) clearly shows mixed-symmetry
states that approximate Ising configurations for λ = 10λth. As
a result, the simulated network has 2N solutions in the center
region between roughly 2.325 and 2.375 MHz. Furthermore,
mixed-symmetry states can even increase the solution space
up to 3N , which is >2N and therefore beyond the scope of
the Ising model. Indeed, in the simulation, additional I states
appear below 2.325 MHz that have no analog in an Ising spin
system. In Fig. 4(b) we schematically sketch how cascades of
bifurcations, branching off from the N normal mode states in
the central “trunk” line, can form an Ising network with 2N

states for a hypothetical optimal trajectory through the phase
diagram.

We emphasize that the discrepancy between the normal-
mode regime and the Ising regime should occur in every
system of coupled parametrons, without regard to the coupling
strength and coupling type (dissipative or bilinear). However,
the region of the phase diagram over which the transition

occurs should depend on the relative strength of J , α, and
λ. For very small coupling, this transition could take place
close to the threshold, such that it may be overlooked. Note
that it was recently observed that coherent Ising machines
have a higher probability of finding the correct solution for
large driving than directly above the threshold [43]. This could
potentially be explained by the transition discussed here.

The system we present in this work is entirely classical.
Here one particular state is chosen at every phase transi-
tion, depending on the instantaneous boundary condition (e.g.,
thermal fluctuations prior to or during the transition). In the
presence of sufficiently small noise, this solution is then stable
over long timescales. Our discussion regarding the solution
space of an Ising machine, however, is equally relevant for
quantum systems with strong Kerr nonlinearities [17]. There,
the mean photon number of each resonator is small, and
each phase transition leads to a quantum superposition of the
branching coherent states [18,24,33,44]. Using this superposi-
tion to find the ground state of an Ising problem (with 2N spin
configurations) is only possible if the right solution space is
available. However, as we show above, the solution space can
vary between 2N states (which is too small a number for any
N > 2) up to 3N states (which is too large). Understanding in
detail the phase diagram of a system of coupled parametrons
is therefore of fundamental importance for quantum adiabatic
Ising machines.

IV. OUTLOOK

As coupled networks of parametric resonators are one
of the main candidates for future parallel computation ar-
chitectures, our study provides crucial input for a growing
community working towards classical and quantum analog
computation [18,20–24,33,46]. Furthermore, it provides ad-
ditional incentive for the fundamental exploration of complex
driven-dissipative nonlinear networks in a multitude of fields
[8]. Future experimental and theoretical research will address
the transition between regimes with 2N , 2N , and 3N states,
and provide concrete recipes how the correct solution space
can be selected. Additionally, the discussion will be extended
to classical and quantum “Boltzmann machines” that operate
with fluctuations to anneal the network into an optimal many-
body state [45].
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APPENDIX A: SINGLE PARAMETRON
CHARACTERIZATION

We characterize the independent circuits and recover their
characteristic parametric instability lobes following standard
characterization protocols [13,47]. When decoupled from one
another (vanishing J), each resonator can be driven into
parametric resonance when Ud � Uth [6,7]. In Fig. 5(b) we
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show experimental sweeps with increasing and decreasing fd

for constant Ud , exhibiting the standard nonlinear parametric
response and hysteresis of the parametron labeled as 1 (similar
results were obtained for parametron 2). Inside the region
marked as (ii), the linear resonator becomes unstable, bifur-
cates, and settles into one of the two phase states that are
stabilized by α [7]. In region (iii), the phase states coexist
with a stable solution at X1 = 0. Repeating the upsweeps
(increasing fd ) for different Ud , we recover the characteristic
parametric instability lobe, cf. Fig. 5(c).

Using Eqs. (2), we can describe all of the measured re-
sults of the single parametron [13,49] by comparing to the
calculated steady-state amplitudes X1. From a mathematical
point of view, our stationary order parameters are obtained
by solving a quintic characteristic polynomial. We obtain up
to three different stable states (attractors) in phase space, cf.
Fig. 5(d). As a function of fd , phase transitions occur as the
number of stable solutions changes at specific “bifurcation
points.”

In the single decoupled parametrons, we observe a
second-order continuous (first-order discontinuous) time-
translation Z2 symmetry-breaking phase transition, a.k.a.
period-doubling bifurcation, when the zero amplitude mode
continuously splits into the two phase state at the (i) and
(ii) [(ii) and (iii)] boundary, cf. Fig. 5(e). Fitting the model
to the measurement data, we determine the values Q1 =
295, f0 = 2.6784 MHz, α1 = −9 × 1017 V−2s−2, and Uth =
1.21 V [13,15]. In particular, from the fact that region (iii)
appears at fd < f0, we infer that α < 0 [53]. The corre-
sponding parameter characterization of the coupled system
studied in the main text yielded Q = 265, f0 = 2.3670 MHz,
α = −6.5 × 1017 V−2 s−2, and Uth = 1.73 V.

APPENDIX B: NONLINEAR COUPLING BETWEEN
NORMAL MODES

A system of two, nearly identical, coupled linear resonators
can be described in terms of uncoupled normal modes by
moving to symmetric and antisymmetric coordinates. Non-

FIG. 5. Characterization of a single parametron. (a) Schematic of
a parametron realization in the form of an RLC circuit with resistance
R, inductance L, nonlinear capacitance C, and tuning voltage U1.
(b) Amplitude response X1 (orange lines) of the parametric resonator
measured with a lock-in amplifier as a function of frequency fd at
a driving strength of Ud = 3 V. Arrows indicate the sweep direction.
Thin gray solid (dashed) lines are calculated stable (unstable) steady-
state solutions using the rotating steady states of Eq. (1) [cf. Eqs. (2)]
with λ1 = Ud

Uth

2
Q = 0.017, and α1 = −9 × 10−17 V−2 s−2 used as a

fit parameter [13]. (c) X1 measured as a function of Ud and fd

using upsweeps (arrow) at constant Ud , showing a typical parametric
instability lobe. The solid line is a theory fit to the lobe boundaries
that allows for estimation of Q = 295. (d) Schematic representation
in phase space of the parametron phase states (wine red, orange),
and the 0-amplitude state (gray). (e) Schematic representation of the
steady-state solutions and bifurcation points as a function of fd . Solid
(dashed) lines indicate stable (unstable) solutions. (f) Calculated
stability phase diagram. (i) White: only the 0-amplitude solution is
stable; (ii) orange: only the phase states are stable; (iii) light orange:
0-amplitude and phase states are both stable. The regions (i)–(iii)
manifest in (b) and (e).

linearities will then generally couple the symmetric and
antisymmetric modes. For our nonlinear parametric system,
the slow-flow equations for (uS, vS) are given by

(
u̇S

v̇S

)
=

⎛
⎝− vS[−J+ 3

4 α(u2
A+v2

A )−ω2
d +ω2

0]
2ωd

− vS[4λω2
0−3α(u2

A−v2
A )]

16ωd
− 3αuAuSvA

8ωd
− 3αvS(u2

S+v2
S )

16ωd
− γ uS

2
uS[−J+ 3

4 α(u2
A+v2

A )−ω2
d +ω2

0]
2ωd

− uS[4λω2
0−3α(u2

A−v2
A )]

16ωd
+ 3αuAvAvS

8ωd
+ 3αuS(u2

S+v2
S )

16ωd
− γ vS

2

⎞
⎠. (B1)

Note that because of the Duffing nonlinearity, the effec-
tive eigenfrequency of the symmetric mode, ω2

0 − J → ω2
0 −

J + 3
4α(u2

A + v2
A), as well as its parametric driving strength,

4λω2
0 → 4λω2

0 − 3α(u2
A − v2

A), now explicitly depends on the
coordinates (uA, vA) of the antisymmetric mode change. In
addition to the usual expected bifurcations for both normal
modes, the aforementioned interplay triggers a further bi-

furcation, cf. brown point in Fig. 2(e), which heralds the
mixed-symmetry state (M). At this bifurcation, the oscilla-
tions of the antisymmetric mode are strong enough to drive
parametric oscillations of the symmetric mode through the
nonlinearity, leading to the mixed-symmetry state. This effect
takes place in the instability lobe with lower (higher) eigen-
frequency for negative (positive) α.
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