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The nitrogen-vacancy (NV) center in diamond is well known in quantum metrology and quantum information
for its favorable spin and optical properties, which span a wide temperature range from near zero to over 600 K.
Despite its prominence, the NV center’s photophysics is incompletely understood, especially at intermediate
temperatures between 10–100 K where phonons become activated. In this paper, we present a rate model able to
describe the crossover from the low-temperature to the high-temperature regime. Key to the model is a phonon-
driven hopping between the two orbital branches in the excited state (ES), which accelerates spin relaxation via
an interplay with the ES spin precession. We extend our model to include magnetic and electric fields as well
as crystal strain, allowing us to simulate the population dynamics over a wide range of experimental conditions.
Our model recovers existing descriptions for the low- and high-temperature limits and successfully explains
various sets of literature data. Further, the model allows us to predict experimental observables, in particular
the photoluminescence (PL) emission rate, spin contrast, and spin initialization fidelity relevant for quantum
applications. Lastly, our model allows probing the electron-phonon interaction of the NV center and reveals a
gap between the current understanding and recent experimental findings.
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I. INTRODUCTION

The negatively charged nitrogen-vacancy (NV−) center in
diamond has become one of the most studied solid-state spin
defects [1] owing to its wide range of potential applications in
various quantum technologies [2,3]. Essential for its success is
an extraordinarily long spin coherence time [4] in the ground
electronic state (GS) combined with an optical preparation
and readout of the spin state [5–10], which are maintained
even at ultralow [11] and well-above room temperature [12].
The optical preparation and readout of the spin state relies on
an optical cycle that is mostly spin conserving [13,14]. Upon
optical excitation, the excited electronic state (ES) decays
either radiatively by emission of a photon, or nonradiatively
via an intersystem crossing (ISC) to a metastable singlet state
[1]. Since the ISC is strongly spin dependent, the NV− spin
states have different average emission rates and prolonged
illumination leads to preferential population of the mS = 0
spin state.

Although this basic mechanism for spin contrast and spin
polarization is well known, the detailed population dynam-
ics in the ES are not entirely understood [15]. In particular,
transitions between the ES sublevels show a marked temper-
ature dependence that can lead to rapid spin relaxation and
impair the optical readout. At cryogenic temperature, the ES
is known to be an orbital doublet, spin triplet consisting of
six distinct sublevels [14,16,17]. At room temperature, the
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ES is averaged to an effective orbital singlet, spin triplet
[1] through phonon-driven transitions [17–20]. This phonon
interaction within the ES has been attributed to a dynamic
Jahn-Teller effect [21,22]. The phonon-induced mixing rate of
the vibronic states of the ES has been determined in cryogenic
experiments [23–25]. However, the lack of a fundamental
model unifying the rate models at cryogenic [18,24,26] with
those at room temperature [13,27] remains a central gap in the
understanding of NV center population dynamics.

In this paper, we present a comprehensive model of the
NV− center’s spin dynamics spanning the full temperature
range from the low- to the high-temperature regime. We show
that the interplay of spin and orbital dynamics in the ES
leads to rapid spin relaxation at intermediate temperatures,
even for NV centers with zero intrinsic strain. We further
include the effects of applied magnetic and electric bias fields,
as well as crystallographic strain, on the level structure and
population dynamics. These parameters constitute key quan-
tities in metrology [28–32] and have previously been used to
fine-tune the NV− center properties [33,34] for information
technology. Using a master equation approach, we simulate
key experimental observables, including the photolumines-
cence (PL) emission rate, the spin contrast, and the spin-state
readout fidelity relevant for quantum applications. Finally, we
introduce a measurement approach to probe electron-phonon
interactions and contributing phonon modes, allowing us to
link recent experimental findings [18,35–37] with previous
theoretical studies [22–25,38].

Our paper is structured as follows: In Sec. II we present our
numerical model. We discuss the level structure at low temper-
ature (Sec. II A), introduce classical transition rates to model
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FIG. 1. NV center coordinate system used in this paper. Carbon
atoms are shown in black, the substitutional nitrogen atom in blue,
and the vacancy in gray. The x axis is along one of the carbon bonds.
�B is the applied magnetic field (red), �δ the strain or electric field
(green), and δ⊥ its in-plane component. The remaining symbols are
explained in the text.

the population dynamics under optical excitation (Sec. II B),
and add phonon-induced transition rates between orbital states
to include the influence of temperature (Sec. II C). We then
implement this rate model using the master equation approach
(Sec. II D), and describe how to obtain experimental observ-
ables (Sec. II E). In Sec. III we use our model to simulate
the temperature dependence of the ES spin dynamics. We
identify a prominent spin relaxation process at intermediate
temperatures (Sec. III A), which we verify with independent
Monte Carlo simulations. We then discuss implications of
the spin relaxation process for spin-state initialization and
readout (Sec. III B), and explain dependencies on magnetic
field (Sec. III C) and crystal strain or electric field (Sec. III D).
Finally, in Sec. IV, we put our model in context with previous
work. We verify the model over a wide-temperature range
(Sec. IV A), from low strain (Sec. IV B) to very high strain
(Sec. IV C), and reveal a gap in the current understanding of
the electron-phonon coupling (Sec. IV D). We summarize our
findings and implications for future work in Sec. V.

II. RATE MODEL

A. Level structure

We begin by introducing the coordinate system of the NV
center in the diamond lattice in Fig. 1. We define the z axis
by the unit vector along the symmetry axis of the NV center
pointing from the nitrogen atom towards the vacancy site, and
the x axis by one of the three in-plane vectors pointing from
the vacancy to one of the carbon atoms [1,39]. The in-plane
angles of the magnetic field φB and the strain field φδ are
defined relative to this x axis in the xy plane. An electric
field is equivalent to a strain field [1]. The magnetic field
misalignment angle θB is measured with respect to the z axis.

Next, we introduce the Hamiltonian of the NV− center. The
detailed level structure is discussed in Ref. [1]. The Hamilto-
nian of the 3A2 electronic GS is an orbital singlet and spin
triplet, and is given by

ĤGS/h = DGS
(
Ŝ2

z − 2
3 Î3

) + μBgGS �̂S · �B, (1)

TABLE I. Overview of the parameters used in our rate model.
The given values are based on fit results of sample NV-2 in a nanos-
tructured pillar in Ref. [35] and additional literature. For parameters
varied throughout this paper, default values are specified.

Interactions
DGS GS spin-spin int. 2.878 GHz [40]
gGS/ES GS/ES el. g factor 2.003 [1]
D‖

ES ES axial spin-spin int. 1.44 GHz [41]
D⊥

ES ES trans. spin-spin int. 1.541 GHz/2 [41]
λ

‖
ES ES axial spin-orbit int. 5.33 GHz [41]

λ⊥
ES ES trans. spin-spin/orbit int. 0.154 GHz [41]

gl ES orb. g factor 0.1 [18]

Fields
δ⊥ ES in-plane strain/el. field 40 GHz (default)
φδ strain/el. field in-plane angle 0◦ (default)
B mag. field magnitude 0 T (default)
θB mag. field misalignment angle 0◦ (default)
φB mag. field in-plane angle 0◦ (default)

Rates
kr opt. emission rate 55.7 µs−1

kE12 avg. ISC rate for mS = ±1 98.7 µs−1

kExy ISC rate for mS = 0 8.2 µs−1

rβ = βx/βy opt. excit. branching ratio 1
rS = kS0/kS1 SS branching ratio 2.26
�E SS emitted phonon energy 16.6 meV [13]
τS,0 SS decay time at T = 0 K 320 ns
T temperature 0 K (default)
η ES el.-phonon coup. strength 176 µs−1 meV−3


 phonon cutoff energy 168 meV

Setup
P laser power 2.34 mW (default)
b background 27.5 kcps mW−1

R collection over excit. eff. 88.4 kcps mWµs
A opt. alignment (excit. eff.) 136 W−1

where we neglect hyperfine interactions and electric and strain
fields, since their influence on the GS spin states is minor.
Here, Ŝi are spin–1 operators and Î3 is the associated identity
operator, �B is the external magnetic field, μB is the Bohr
magneton, and h is the Planck constant, which we use in
units of JHz−1. Values for the GS zero-field splitting DGS and
the g factor are listed in Table I. Note that DGS has a slight
temperature dependence [32,42], which we neglect here as
it has no influence on the population dynamics. Equally, we
neglect the mild temperature and strain dependence [19] of all
other interactions listed in Table I.

The Hamiltonian of the 3E electronic ES is an orbital
doublet and spin triplet that is spanned by the composite
Hilbert space HES = Horbit ⊗ Hspin. In the eigenstate basis of
the orbital σ̂z and spin Ŝz operators, the ES Hamiltonian reads

ĤES/h = D‖
ESÎ2 ⊗ (

Ŝ2
z − 2

3 Î3
) − λ

‖
ESσ̂y ⊗ Ŝz

+ D⊥
ES

[
σ̂z ⊗ (

Ŝ2
y − Ŝ2

x

) − σ̂x ⊗ (ŜyŜx + ŜxŜy)
]

+ λ⊥
ES

[
σ̂z ⊗ (ŜxŜz + ŜzŜx ) − σ̂x ⊗ (ŜyŜz + ŜzŜy)

]
+ μBgESÎ2 ⊗ �̂S · �B + μBgl Bzσ̂y ⊗ Î3

+ d⊥
ESξxσ̂z ⊗ Î3 − d⊥

ESξyσ̂x ⊗ Î3 + d‖
ESξzÎ2 ⊗ Î3.

(2)
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FIG. 2. (a) Energy levels of the ES as a function of strain at zero magnetic field. In (a) and (c), level names are printed where they are
approximately eigenstates, and level-anticrossings (LAC) are indicated by black markers. The dashed lines are the eigenlevels of Hspin, obtained
by a partial trace over the orbital subspace. They constitute the observed ES energy levels at room temperature. (b) Under strain, two orbital
branches Ex and Ey form, split by approximately 2δ⊥. The eigenstates of Horbit ⊗ Hspin are composite states of the orbital states |x〉 and |y〉
and superpositions of the spin states |0〉 and |±〉 ∝ (|+1〉 ± |−1〉). Only two spin states mix significantly in this example, with ε = ε|y〉|0〉,|y〉|−〉.
Level spacings ωx/y are given for the discussion in Fig. 4. (c) Energy levels of the ES as a function of axial magnetic field at δ⊥ = 20 GHz.
Under high strain and magnetic field, eigenstates of orbit and spin are formed, for example, |Ex,+1〉 = |x〉|+1〉. (d) Rate model employed in
this paper. The rates listed in Table I and the text are depicted by arrows. The dashed arrow indicates a low decay probability, allowing for the
optical initialization and readout of the GS spin state. Excitation by green light and emission of red light are indicated by wavy arrows. The two
bases z f [see left in (a)] and h f [right in (c)] are connected via basis transformations (dark gray arrows) to the ez basis of the ES Hamiltonian.

Here, σ̂i are the Pauli matrices and Î2 the identity operator of
the orbital subspace, and the vector �ξ is the sum of the electric
and strain-induced fields. The di factors are the respective
components of the electric dipole moment. All other parame-
ters are taken from the literature and are collected in Table I.
Note that an axial strain ξz only shifts the overall energy of
the ES, which does not affect our analysis. For simplicity, we
therefore will refer to δ⊥ = d⊥

ESξ⊥ as the in-plane strain.
The above Hamiltonians are given in the eigenstate basis of

the spin Ŝz and orbital σ̂z operators. We will refer to this basis
as the ez basis. Its states are formed under dominating axial
magnetic bias field Bz and in-plane strain δ⊥ along φδ = 0.
The states are given by

ez basis = (|+1〉, |0〉, |−1〉, ∣∣E0
x,+1

〉
,
∣∣E0

x,0

〉
,
∣∣E0

x,−1

〉
,
∣∣E0

y,+1

〉
,∣∣E0

y,0

〉
,
∣∣E0

y,−1

〉
, |ss〉), (3)

where the first three states form the spin-triplet of the GS, the
next six states form the orbital doublet and spin triplet of the
ES, and the last state is the spin singlet of the shelving state
(SS). The SS consists of more than one level [1] (1A1 / 1E),
but for our analysis, it is sufficient to model it by an effective
singlet level. x and y denote the two orbital branches Ex and
Ey of the ES, which form under strain as shown in Fig. 2(a).

We will make use of two further sets of basis vectors. For
the situation of zero-bias field and vanishing strain (δ⊥ → 0
at φδ = 0◦), the eigenvectors approximately assume the zero-
field (zf) basis,

z f basis = (|0〉, |−1〉, |+1〉, |E1〉, |E2〉,∣∣E0
y,0

〉
,
∣∣E0

x,0

〉
, |A1〉, |A2〉, |ss〉). (4)

All ES states of the zf basis have 〈Ŝz〉 = 0 and, apart from
|E0

x,0〉 and |E0
y,0〉, also orbital eigenvalue 〈σ̂z〉 = 0. While

|E0
y,0〉 and |E0

x,0〉 are eigenstates to mS = 0, the other eigen-
states are linear combinations to equal parts of the mS = ±1
and orbit x and y states. The basis transformation Tz f →ez to the
ez basis is given in Appendix A.

Finally, under a large axial bias field Bz and large strain δ⊥
with angle φδ �= 0, the eigenvectors are given by the high-field
(hf) orbit and spin eigenbasis,

h f basis = (|+1〉, |0〉, |−1〉, |Ex,+1〉, |Ex,0〉, |Ex,−1〉,
|Ey,+1〉, |Ey,0〉, |Ey,−1〉, |ss〉). (5)

The lower-lying branch is denoted by Ey and the upper-lying
branch by Ex. However, the axes no longer coincide with the x
and y directions of the NV center coordinate system (Fig. 1),
but rather with a coordinate system rotated by φδ . The hf basis
is shown in Fig. 2(c) and the basis transformation Th f →ez to
the ez basis is given in Appendix A.

B. Transition rates under optical excitation

We next consider the transition rates between energy levels
under optical excitation. The associated rates are collected in
Fig. 2(d) and Table I.

Optical excitation from the GS to the ES can be achieved
both resonantly (at cryogenic temperatures) and nonreso-
nantly (at all temperatures). If the excitation is nonresonant,
it is followed by a rapid phonon relaxation. Both excitation
methods are largely spin preserving. Optical transitions with
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spin flip occur with �2% [13] and are therefore neglected
here.

Since we aim to describe the population dynamics over
a wide-temperature range, we will focus on the nonresonant
case. The resonant case could be covered by introducing in-
dividual excitation rates for each ES level. While nonresonant
excitation is in general not branch selective, some selectivity
can be achieved by adjusting the linear polarization of the
laser [21,43]. The linear polarizations in the xy plane of the
NV center are associated with the Ex and Ey orbital branches
that are defined by the direction of the strain angle φδ [16,17].
Therefore, we introduce the excitation rates into Ex and Ey

in the hf basis. Since these rates depend on the power P of
the laser, it is convenient to use the dimensionless optical
saturation parameter β = βx + βy and ratio rβ = βx/βy as
depicted in Fig. 2(d). A value of β > 1 indicates the onset of
saturation [44]. To convert the laser power P into the optical
saturation parameter β, we define

β = PA (6)

with the alignment A combining the effect of optical excitation
efficiency and setup-specific conversion from laser power.
We assume a temperature-independent optical excitation ef-
ficiency and thus A as suggested by recent findings [36].

The radiative optical decay from the ES to the GS with rate
kr is independent of the spin and the orbital branch and also
largely spin conserving. The value of kr depends on the micro-
scopic structure the NV center is embedded in. Typical bulk
values are around 67 µ−1s [45], while those for NV centers in
nanostructures, such as nanocrystals [46] or nanopillars [35],
can be smaller.

The ES can also decay nonradiatively via the SS. Opposite
to the radiative kr decay, the decay rates from the six ES levels
into the SS vary: The two levels associated with the mS = 0
spin states (|E0

x,0〉 and |E0
y,0〉) have the same and comparatively

slow intersystem crossing (ISC) rate kExy . The average ISC
rate of the other four levels associated with the mS = ±1 spin
states is faster. They vary for the different zf basis states, as
depicted in Fig. 2(d). Following Goldman et al. [24], we use
kA1 = kE12/0.52 and kA2 = 0 with kE1 = kE2 = kE12 as given
in Table I. These ISC rates have to be introduced to the
model in the zf basis. By a basis transformation, we obtain the
corresponding decay rates of the hf basis states at high axial
magnetic field and high strain δ⊥. Levels with mS = 0 still
decay with the same rate kExy . Since the hf basis states with
mS = ±1 are linear combinations to equal parts of zf basis
states with mS = ±1, we find their decay rate by applying the
mean(kE1 , kE2 , kA1 , kA2 ), which evaluates to ≈ kE12 for the val-
ues introduced above. Likewise, the two rates kExy and kE12 are
the ISC rates commonly used in room-temperature models.
We note that there is an additional temperature dependence
of these ISC rates [24,25]. We neglect this effect as it is very
small up to room temperature.

Finally, the decay from the spin-singlet SS back to the
spin-triplet GS occurs with two characteristic rates kS0 and
kS1 into the GS spin levels mS = 0 and mS = ±1. It is com-
mon to introduce the SS branching ratio as rS = kS0/kS1. For
example, our branching ratio of rS = 2.26 [35] results in a
70% decay probability for ms = 0, and a 15% probability for
each of the ms = ±1 states. We assume that rS is independent

of temperature [47]. By contrast, the shelving state lifetime
(SSL), defined by

τS (T ) = (kS1 + kS0)−1 = τS,0
(
1 − e− �E

kBT
)
, (7)

varies with temperature T [13,14,47]. This dependence results
from a combination of spontaneous emission (τS,0) and stim-
ulated emission of a phonon with energy �E (see Table I). kB

is the Boltzmann constant.
Since τS > 100 ns for all temperatures, the SS lifetime

dominates the dynamics of the NV− center under optical ex-
citation together with 1/kExy ≈ 100 ns. An ES spin state with
mS = 0 will dominantly decay optically and not take the path
via the SS, maintaining its mS value. A spin state mS = ±1 on
the other hand is likely to decay via the SS, which is a com-
parably slow process due to τS . This selectivity leads to the
generation of spin contrast C in the photoluminescence (PL)
intensity, discussed in Sec. II D in Eq. (18). This selectivity
further leads to a preferential population of the mS = 0 spin
state after prolonged optical excitation, as we will discuss in
Sec. II E.

C. Phonon-induced transition rates

Next, we consider phonon-driven population dynamics
within the ES. The relevant effect for this paper is phonon-
mediated hopping between the two orbital branches. This
hopping arises from a coupling to the phonon bath where one-
and two-phonon processes (indices 1 and 2) drive transitions
between the orbital states of the NV− center. The temperature
dependence of the thermal occupation of phonon modes domi-
nates the temperature dependence of the NV− photodynamics.
We start by introducing the up- and down rates

Ey → Ex : k↑(T, δ⊥, η) = k↑,1 + k↑,2, (8)

Ex → Ey : k↓(T, δ⊥, η) = k↓,1 + k↓,2, (9)

respectively, which depend on the temperature T and the
strain-induced splitting h̄�⊥ ≈ 2hδ⊥ of the orbital branches
[c.f. Fig. 2(b)]. η parameterizes the coupling strength between
electronic orbital states and phonons. Importantly, k↑ and k↓
only act on the orbital subspace, leaving the state in the spin
subspace untouched.

The rates are related via the Boltzmann distribution as

k↑,1/2

k↓,1/2
= e− h̄�⊥

kBT , (10)

due to spontaneous emission. Derived in Appendix B, the
downwards one-phonon rate is given by

k↓,1(T, δ⊥) ≈ 32ηh3δ3
⊥[n(2δ⊥h) + 1]. (11)

Note that the +1 term, associated with the spontaneous emis-
sion of a phonon, gives a finite and temperature-independent
rate that needs to be considered even at T = 0 K if strain is
high. For a two-phonon Raman process, we find

k↓,2(T, δ⊥) � k↑,2(T, δ⊥) = 64h̄

π
η2k5

BT 5I (T, δ⊥). (12)
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Here, I (T, δ⊥) is the integral over the phonon mode energies
(in units of kBT ) in the Debye approximation

I (T, δ⊥) =
∫ 
/kBT

x⊥

exx(x − x⊥)[x2 + (x − x⊥)2]

2(ex − 1)(ex−x⊥ − 1)
dx, (13)

where x⊥ ≈ 2h̄δ⊥/(kBT ). Note that I (T, δ⊥ → 0) is nonzero,
meaning that two-phonon Raman transitions take place even
in the absence of strain. The integral is only mildly strain
dependent. Its temperature dependence is negligible if the
cut-off energy is larger than the relevant temperature scales
(
 � kBT ), which is the case in our paper. A thorough discus-
sion of the effect of the cut-off energy is given in Sec. IV D.

Equations (10)–(12) indicate that k↓,1 will dominate for
high strain at low temperatures. At elevated temperatures, up-
and down rates converge and k↑/↓,2 will dominate due to their
T 5 dependence. The temperature dependence of the hopping
rates is further discussed and plotted in Sec. III A.

D. Master equation

We now discuss how we numerically simulate the pop-
ulation dynamics of the above rate model. Because the
phonon-induced transitions k↑/↓ only act on the orbital sub-
space (leaving the coherent spin state undisturbed), dynamics
cannot be simulated using classical rate equations commonly
used at room temperature [13,27] and recently also at low
temperatures [26]. Instead, we use a master equation approach
that acts on quantum states yet includes the known classical
rates via jump operators. We note that for high strain, the
spontaneous emission rate k↓,1 can have a significant influence
even at zero temperature [35]; therefore, a classical rate model
might not be sufficient even in the low-temperature limit.

To combine quantum states of spin and orbit with classical
transition rates we use the master equation in Lindblad form
[48]. The Liouville equation describes the time evolution of
the density matrix ρ as

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] +

∑
k

(
L̂k ρ̂L̂†

k − 1

2
{L̂†

k L̂k, ρ̂}
)

≡ L(ρ̂ ), (14)

where [·, ·] and {·, ·} are the commutator and anticom-
mutator, Ĥ is the Hamiltonian, which we write as H =
diag(HGS, HES, 0) in matrix form, and L is the Liouvillian
superoperator. The first term in Eq. (14) is the von Neumann
equation. The second term is the dissipator, which is also a su-
peroperator. The jump operators L̂k are required to introduce
transition rates. A decay with Markovian statistics at rate ki, j

of basis state |i〉 into basis state | j〉 is associated with a jump
operator

L̂k = √
ki, j | j〉〈i|. (15)

Each decay channel in Fig. 2(d) is assigned an individual
jump operator. Examples in matrix form are provided in
Appendix C. Importantly, the jump operators for the orbital
branch hopping at rates k↓/↑ are constructed such that they
preserve the coherent spin state.

We solve Eq. (14) in Fock-Liouville space (FLS) with the
matrix L̃ and vector �ρ as

�ρ(t ) = exp(L̃t )�ρ0, (16)

since in our case, L is time independent (see Appendix F
for details). Note that parameters like the magnetic field and
strain alter the Hamiltonian Ĥ in Eq. (14) and thus lead to
a different time evolution. The steady state ρ∞ under given
jump operators (e.g., under optical excitation) is given by the
eigenvector of L̃ to eigenvalue 0.

E. Spin initialization and readout

The quantity observed in experiments is the PL intensity.
PL is generated by radiative emission (rate constant kr) of
the NV− center. In addition, contamination of the diamond
surface by sp2 carbon or adsorbed molecules, as well as
temporary switching to the NV0 charge state [49] cause a
fluorescent background. We thus model the observed PL of
the NV− center as

PL(t ) = AR

( ∑
i∈[4,9]

ρi,i(t )kr

)
+ bP, (17)

where ρi,i are the state populations and A, R, b, and P are the
setup-specific parameters as explained in Table I.

To simulate PL(t ), we first construct the magnetic field-
and strain-dependent Hamiltonian H [Eqs. (1) and (2)] and
determine the hf basis [Eq. (5)]. Next, for every rate ki, we
construct the jump operators Lki in the respective basis needed
for that rate [Eq. (15)]. The temperature is required here to
calculate the SSL [Eq. (7)] and orbital hopping rate [Eqs. (8)
and (9)]. We then transform the Lki ’s to the same ez basis as
H and solve the master equation for either the steady state ρ∞
or the time evolution ρ(t ) [Eq. (16)]. Finally, we calculate the
PL for the given setup parameters [Eq. (17)].

An important figure-of-merit for quantum applications is
the spin state readout fidelity, which can be quantified by the
signal-to-noise ratio (SNR) of a single spin initialization and
readout sequence [50]. To determine the SNR, we simulate
the sequence depicted in Fig. 3(a): First, we initialize the spin
state by an off-resonant laser pulse, followed by a waiting
time much longer than τS , until all populations have decayed
to the GS. The resulting spin state is defined as the mS = 0
initialized state. Note that due to kExy , kS0 > 0, this state is
a classical mixture of dominantly spin state |0〉 and minor
|±1〉 population and 〈mS = 0〉 < 1. To obtain the mS = −1
(+1) initialized state, we apply a state swap between the |0〉
and |−1〉 (|+1〉) states. Finally, we apply a second laser pulse
and integrate the PL of the mS = 0 (mS = ±1) initialized state
over a certain integration time tint to obtain the average PLmS=0

(PLmS=±1). We then define the spin contrast C [normalized
blue shaded area in Fig. 3(b)] by

C = 1 − PLmS=±1

PLmS=0
(18)

and the SNR of a single readout [50] by

SNR = √
PLmS=0 tint

C√
2 − C

. (19)

Note that this SNR accounts for both the spin-state initial-
ization as well as readout fidelities [35], which can be much
reduced if spin-state relaxation is present in the ES, as dis-
cussed in Sec. III B. Further, the NV− center’s photodynamics
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FIG. 3. (a) Sequence of the initialization and readout protocol
used to simulate the time t resolved PL(t ) for determining the SNR.
(b) Simulation of the expectation value 〈mS = 0〉 (sum of GS and
ES, black) and PL(t ) (orange). We start in a thermal state and obtain
the spin state defined as the mS = 0 initialized state (solid lines) by
a laser pulse, followed by a waiting time. The state defined as the
mS = ±1 initialized state (dashed lines) is obtained by an additional
π pulse. In a second laser pulse, the integration time tint for the
spin-state readout is marked by the blue shaded area. The duration of
the laser pulses and waiting time given here are typical experimental
values [35]. In simulations, we evaluate the steady-state solution for
each step.

change with temperature, magnetic field, and strain, and there-
fore the tint required for optimal SNR also changes. In this
paper, we optimized tint for best SNR in Eq. (19) at the
respective conditions. Since a faster spin relaxation in the
ES reduces the optimal tint, a short tint correlates with a low
SNR [see Fig. 5(b)]. We note that also the laser power could
be optimized [51] for each condition, as discussed further in
Sec. III B. However, this optimization is beyond the scope of
this paper.

III. SIMULATION OF SPIN RELAXATION

A. Temperature dependence

The phonon-induced hopping between orbital branches
(Sec. II C) results in a strong temperature dependence of the
ES spin dynamics. The interplay of orbital branch hopping
[Eqs. (8) and (9)] and (temperature-independent) spin-state
mixing in the ES Hamiltonian [Eq. (2)] leads to a spin re-
laxation between the mS = 0 and mS = ±1 states. As an
instructive example, we explain the spin relaxation process for
the level structure given in Fig. 2(b) while assuming a strain of
δ⊥ = 40 GHz (Table I). In that setting, the state |+〉 does not
mix into the other spin eigenstates. Therefore, we depict the
time evolution in the |0〉-|−〉-spin manifold and employ the
Bloch sphere picture in Fig. 4. In our description, we write
the mixed spin eigenstates as |0〉 − ε|−〉 etc., where |ε|2 =
|ε|y〉|0〉,|y〉|−〉|2 ≈ 0.1 is a small spin-mixing amplitude. Here,
ε|i〉,| j〉 between other states |i〉 and | j〉 are negligibly small
[35]. External magnetic fields, as well as the in-plane strain
angle φδ (here φδ = 0◦) and magnitude, alter the spin mixing
compared to this example. We will address these effects in
Secs. III C and III D, while noting that the general mechanism
described here remains valid. We further note that any spin
mixing requires a finite λ⊥

ES [14,16,37].

ES

FIG. 4. Illustration of the temperature-dependent spin relaxation
process in the ES. We use the parameters from Table I. In this setting,
the ES levels are ordered as in Fig. 2(b). (a) Orbital hopping rates and
their one- and two-phonon contributions as a function of temperature
(adapted from Ref. [35]). The inverse lifetime T −1

ES ≈ 1/10 ns of the
ES as well as the doubled Larmor frequencies 2ωx/y (units MHz)
are indicated by horizontal lines. Spin relaxation is most efficient
at temperatures where the hopping rates are resonant with 2ωx/y,
as indicated by the gray shaded area (here 30 K − 40 K). [(b)–(d)]
Exemplary realizations of 3 ns time evolution on the side and top
views of the Bloch sphere in the |0〉-|−〉-spin manifold, plotted for
three selected temperatures [marked in (a) and (h)]. The color of the
time trace encodes the current orbital branch (Ex: Blue, Ey: Pink).
Dashed lines show the quantization axes given by the energy eigen-
states in spin space of the two orbital branches, about which Larmor
precession occurs. [(e)–(g)] Values of mS after a time evolution of
duration TES under random discrete jumps (average: Black arrow)
with a corresponding prediction of the master equation with Lindblad
jump operators (red arrow). (h) Signal-to-noise ratio as a function of
temperature. The three cases from above mark three distinct regimes,
as discussed in the text. Prominently, the SNR reflects the rate of the
spin relaxation process.

To illustrate the spin relaxation mechanism, we start with
a Monte Carlo simulation of the time evolution of the spin
state in the ES levels, which we will later relate to our full
rate model. In these simulations, we exclusively model the

085203-6



MODELING TEMPERATURE-DEPENDENT POPULATION … PHYSICAL REVIEW B 108, 085203 (2023)

FIG. 5. (a) Simulated spin initialization fidelity after a long laser
pulse followed by a long waiting time (see Fig. 3) at different laser
powers. β = 0.3 corresponds to the laser power P = 2.34 mW used
elsewhere in this paper. When spin relaxation is maximal (around
35 K), increasing the laser power is beneficial, approaching a limit
related to the SS branching ratio rS (horizontal grey line). (b) Simu-
lated readout SNR (black), for which we assume an initialization of
〈mS = 0〉 = 1. We optimize the integration time tint (see Fig. 3) of
the readout for each temperature. The resulting optimal tint (orange)
follows the same trend as the readout SNR.

coherent evolution in the ES and realize orbital transitions by
random, discrete jump events with an average frequency given
by k↓ and k↑. We start in the |Ex,0〉 state and evolve the spin
state under the von Neumann equation while switching the
spin Hamiltonian to fit the respective orbital branch at every
jump.

The resulting time traces are shown in Fig. 4. The simu-
lation demonstrates the importance of both the spin mixing
amplitude ε and the hopping rates k↑/↓ [Fig. 4(a)] in the
spin relaxation process: Halting the Larmor precession in one
orbital branch and continuing it with the same coherent spin
state in the other orbital branch quickly moves the spin state
away from the Bloch sphere pole where mS = 0. For hopping
rates k↑/↓ � T −1

ES slower than the ES lifetime, hopping events
are rare and the spin state is mostly preserved.

At 5 K, only the k↓,1 process leads to a rare decay to the Ey

branch [Fig. 4(a)], which happens once in the exemplary time
trace shown in Fig. 4(b). At elevated temperature, hopping
events become more frequent due to the rapidly increasing
two-phonon Raman rates k↑/↓,2. Once

k↓/↑ ≈ 2ωx/y, (20)

we observe a resonance condition, where spin relaxation is
most effective. Intuitively, we find that if precession about
each quantization axis completes on average a one-half ro-
tation, the initial spin state is relaxing most efficiently. In
our setting, this occurs at around 35 K [Fig. 4(c)]. Our effect
is related to the T1 relaxation process in a two-level system
subjected to off-axis random telegraph noise (RTN). There,
the shortest T1 is found when k = πω0 [52]. In our example,
the two-level system is the |0〉-|−〉-spin space, the RTN is a

change in the Hamiltonian when alternating between the or-
bital branches, and the tilted quantization axis (due to ε > 0)
gives rise to the spin relaxation. We note that the magnitude
of λ⊥

ES, which is still under debate [1,47], does not affect the
resonance condition described here.

For hopping rates k↓/↑ � 2ωx/y much faster than the Lar-
mor precession frequency, the initial spin state is barely
influenced. This is plotted at 90 K in Fig. 4(d). The fast
orbital dynamics allow for a description by an effective room-
temperature Hamiltonian, which is obtained by performing
a partial trace over the orbital subspace [19] of the low-
temperature Hamiltonian [dashed lines in Figs. 2(a) and 2(c)
and Eq. (A5)]. In this description, |0〉 and |−〉 become eigen-
states. The orbital averaging is one reason why the NV− center
has such outstanding spin properties at room temperature.
This time-averaging process, which is analogous to motional
narrowing [18] in liquid-state NMR spectroscopy, has pre-
viously been addressed to explain the narrowing of the ES
optically detected magnetic resonance (ODMR) lines at [20]
and above room temperature [19,38]. In these studies, RTN
along the z axis of the NV− center (i.e., ωx �= ωy) gives rise
to the orbital averaging and ES ODMR line narrowing. The
spin relaxation process described in our paper requires the
presence of off-axis components in the RTN, which is caused
by different spin mixing in the two branches.

Finally, we compare the Monte Carlo approach to our rate
model [Eq. (14)], which is used elsewhere in this paper and in
Ref. [35]. In contrast to the discrete jumps in the Monte Carlo
approach, the jump operators of the orbital hopping process
in our rate model generate a continuous decay of the orbital
state. To ensure that our rate model stays in the ES, all decay
channels out of the ES were set to 0 for this comparison. In
Figs. 4(e)–4(g), we plot histograms of the the final population
of mS = 0 in Monte Carlo simulations after a time TES spent
in the ES, obtained from 10 000 (5 K, 35 K) resp. 500 (90 K)
realizations of random time traces. As expected, the average of
the histogram yields the same result as the expectation value
obtained from our rate model, validating both approaches.

B. Implications for initialization and readout

The temperature-dependent relaxation of the spin state
in the ES has direct implications for quantum applications.
Common off-resonant spin initialization and readout schemes
rely on a low spin-flip probability per optical cycle [13,14].
However, as one can infer from Fig. 3(b), spin relaxation in the
ES during laser excitation reduces 〈mS = 0〉, independently
affecting both the spin initialization and readout fidelities. In
combination, this leads to a strong temperature dependence
of the SNR, as plotted in Fig. 4(h). Following the previous
Sec. III A, three regimes can be identified [35]: (I) Around
5 K, the SNR is mostly constant and at a relatively high level.
(II) Around 35 K, the SNR is strongly reduced. The position of
the minimum depends on the level spacing and thus Larmor
frequencies of the given setting, while its depth additionally
depends on the degree of spin mixing. We will discuss such
dependencies in the next two sections. (III) Around 90 K, the
SNR has recovered and remains approximately constant up to
room temperature. Here, best SNR is observed.
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Our model allows us to study the individual contributions
of the spin initialization and readout processes to the total
suppression of SNR. We focus on the resonance at k↓/↑ ≈ 2ω,
where the spin relaxation erases most of the spin information
in the ES. We first discuss the spin initialization fidelity in
Fig. 5(a). In the limit of high laser power, the fidelity is deter-
mined by the decay of the SS as 〈mS = 0〉 ≈ (1 + 1/rS )−1.
This limit arises from a predominant occupation of the SS
before the initialization pulse ends (see Fig. 3 and Ref. [14]).
When the laser power is decreased, the SS population and thus
the initialization fidelity are reduced. The lower limit of the
fidelity is given by competing decay rates from the ES to the
SS and the GS. The latter promotes a thermal spin population
due to the ES spin relaxation. Consequently, a higher laser
power benefits the initialization fidelity around the resonance,
which is in stark contrast to the situation at room temperature,
where a lower laser power improves the initialization [51]
[see Fig. 5(a)]. The reduction in the readout fidelity, on the
other hand, only depends on the degree of the spin relaxation
and typically dominates the temperature dependence of the
overall SNR. For the parameters used in this paper, Fig. 5(b)
shows a drop of ∼70% in the readout performance at the
resonance compared to the low-temperature limit. Conversely,
the initialization fidelity is only reduced by 15% in Fig. 5(a).
We note that in the above discussion, we neglect NV center
charge state dynamics, which can become significant at high
laser power [51,53].

So far, we have discussed off-resonant spin initialization
and readout schemes. If resonant excitation, which requires
sufficiently narrow (T � 40 K [21]) and stable spectral lines
[54], is available, one can use optical pumping to circumvent
any spin-flip mechanism in the optical initialization cycle.
This yields a higher 〈mS = 0〉 initialization fidelity of >99%
[9]. Here, a spin mixing in the ES is even beneficial for the
duration of the initialization. However, single-shot resonant
readout will still suffer from the spin relaxation in the ES
[9,10]. Other readout schemes based on spin-to-charge con-
version [7,8,55], which are available at all temperatures, will
equally suffer from the spin relaxation process.

We briefly address the implications on the charge state
preparation of the NV center. The initialization of the NV−

charge state is commonly achieved by green laser illumination
[53] [as in Fig. 3(a)]. The temperature-dependent relaxation
of the spin in the ES of the NV− is expected to have a small
influence on the initialization of the NV− charge state: Previ-
ous studies have found spin-dependent ionization rates from
the ES [7,55] and from the SS [26,56,57] of the NV− to the
neutral charge state NV0 under green laser illumination. Since
spin relaxation reduces the mS = 0 population, a temperature-
dependent ionization rate to NV0 is expected and was recently
observed experimentally by Blakley et al. [36]. We neglect
this small effect in our model.

C. Magnetic field dependence

The temperature-dependent spin-state relaxation is influ-
enced by external magnetic bias fields as well as the strength
and direction of crystallographic strain or electric fields. We
first address the influence of an axial magnetic bias field. Two
changes to the spin relaxation process can be identified:

(i) First, increasing the axial magnetic field leads to a
dominating Zeeman term in the Hamiltonian and causes the
spin states to be better eigenstates. This reduces the spin
mixing amplitudes ε|i〉,| j〉 and, consequently, the strength of the
spin relaxation. In the Bloch sphere picture of Fig. 4(c), this
corresponds to a smaller inclination angle of the eigenstate
axis.

(ii) Second, since the Zeeman effect is linear in B, the level
spacing and thus Larmor frequencies ω increase. Therefore,
the condition k↓/↑ ≈ 2ω for maximal spin relaxation shifts to
a higher temperature. When only considering the dominant
k↓/↑ ∝ T 5 dependence in Eq. (12), the shift goes as B1/5

[35,37]. Further, if the condition for maximal spin relaxation
is met at higher temperature and smaller time scales, the relax-
ation rate at resonance increases. This is because the lifetime
TES of the ES is constant while the number of hopping events
increases.

As a result, the second effect (ii) partially compensates
for the first (i). Therefore, even a very low spin mixing, as
found at fields well above 1 T, can still result in an observable
minimum in the SNR [35,37].

Overall, applying a high axial magnetic field (�100 mT)
drastically improves SNR at low temperatures. At temper-
atures above � 50 K, the SNR at high and low (few mT)
magnetic fields becomes comparable [35].

D. Strain dependence

We next focus on the influence of strain or, equivalently,
an electric field on ES spin relaxation. We first discuss the
effect of the in-plane angle φδ for strain values δ⊥ � 20 GHz
at low temperature. The angle alters the degree of spin mixing
in the two branches. In the Ey branch, the degree of spin
mixing is maximal at φδ = 0◦ and vanishes toward φδ = 60◦.
In the Ex branch, this is exactly reversed and the spin mixing
amplitudes are generally a fraction of the mixing that occurs
in the Ey branch. If we assume equal optical excitation into
both branches (i.e., rβ = 1), this results in suppressed SNR
at a strain angle of φδ = 0◦ (and multiples of 120◦, due to
the C3v symmetry of the NV− center), as plotted in Fig. 6(a)
for T = 0 K. The effect of φδ disappears in the motional
narrowing regime at elevated temperatures, as can be seen
in Figs. 6(b) and 6(c). We note that since this effect occurs
at cryogenic temperatures, mitigation is possible by selective
resonant excitation into the ES branch with the lower spin
mixing at a given φδ [16].

Next, we consider the effect of the strain magnitude δ⊥.
Toward zero strain [flat eigenenergies in Fig. 2(a)], as found
in NV centers in bulk diamond, the spin state |0〉 has very
small mixing with the spin states |±1〉 (|ε|i〉,| j〉|2 � 0.03). This
leads to optimal SNR at cryogenic temperature. Since the
level spacing and thus Larmor frequencies between eigen-
states are large [see Fig. 2(a)], the maximal spin relaxation
around k↓/↑ ≈ 2ω is met at a temperature of around 50 K
[Figs. 6(b) and 6(c)]. This constitutes an upward shift from
the previously found minimum at 35 K at higher strain and
smaller Larmor frequencies. Even at zero strain, however,
there is still a well-pronounced minimum, caused by the same
mechanisms (i) and (ii) explained in Sec. III C for the Zeeman
effect at high magnetic fields.
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FIG. 6. (a) Effect of strain δ⊥ or electric field and its angle φδ on the SNR. ES LACs as indicated in Fig. 2(a) lead to regions of reduced SNR.
[(b), (c)] Effect of strain or electric field on the SNR as a function of temperature. The lines at 0 K for the two angles φδ in (b) and (c) correspond
to the lines indicated by markers in (a). A multifaceted landscape of regions with reduced SNR is predicted by these simulations.

Interestingly, this also implies that at temperatures above
50 K, higher strain can be beneficial for the SNR since the
averaging process is already effective. Below �50 K, low
strained bulk NV centers will yield the best SNR. In both
Figs. 6(b) and 6(c), the effect of the strain-dependent one-
phonon process [Eq. (11)] at low temperatures [35] becomes
apparent as a reduction of the SNR with increasing strain
(compared at a constant T � 20 K). Overall, targeted applica-
tion of electric fields [16,33] or tuning of the strain magnitude
and direction [34] can substantially improve the SNR.

IV. COMPARISON TO EXPERIMENTAL DATA

A. Temperature dependence of PL intensity and spin contrast

Based on the same parameters in Table I and the dis-
cussion in Sec. II B we compare our master equation model
with the established rate model at room temperature [13,27].
In Fig. 7, we verify that our model, which is based on the
zero-temperature Hamiltonian and rates, recovers complete
quantitative agreement with the classical rate model at room

FIG. 7. Comparison of our master equation model, evaluated at
different temperatures, to the common rate model at 300 K (“Classi-
cal Model”). (a) Simulated steady state PL as a function of magnetic
field. The two LACs of the ES average to a single LAC at room tem-
perature {see Fig. 2(c) and Ref. [35]}. Here, we use θB = 1.9◦ and
φB = 194◦ (NV-2 in Ref. [35]), and other parameters from Table I.
(b) PL(t ) dynamics during a readout laser pulse as in Fig. 3(b). In
both panels, complete quantitative agreement with the classical rate
model is recovered at room temperature.

temperature. Further, we simulate the temperature dependence
of PL and spin contrast and compare it with an extensive set
of experimental data. We find excellent agreement between
simulation and experiment over a wide-parameter range in
Ref. [35]. Here, we will further verify the predictions of our
model by comparing it to previous work.

B. Intersystem crossing rates at cryogenic temperatures

In Fig. 8 we plot the effective ISC rates kISC for the differ-
ent ES levels of the zf basis as measured by Goldman et al.
[23]. In their paper, resonant laser excitation into the individ-
ual low strain eigenstates was used in the temperature range
5 K − 26 K. Probing the ISC rates at higher temperatures is
experimentally not possible by resonant laser excitation due
to the broadening of the spectral lines. We find remarkable
agreement between our model and data from Ref. [23] (for
implementation details, see Appendix D). First, we observe
that the ISC rates with the same |mS| average with increas-
ing temperature, as reported previously [23]. Second, in the

FIG. 8. Simulation of effective ISC rates obtained from a single
exponential decay fit of the PL after exciting into the various states
of the ES in conditions where zf basis states are almost eigenstates
(labels). Experimental data and parameters are taken from Goldman
et al. [23].

085203-9



ERNST, SCHEIDEGGER, DIESCH, AND DEGEN PHYSICAL REVIEW B 108, 085203 (2023)

region of maximal spin relaxation, our simulation shows an
increase of the effective ISC rate of the mS = 0 states and
the corresponding decrease of the |mS| = 1 states. We note
that the different ISC rates below 20 K can only result from a
model where rates are introduced in zf basis, as discussed in
Sec. II B (independent of whether a classical rate model or a
master equation model is used).

C. Strain dependence at room temperature

In Sec. III D we discussed that the strain dependence of
the ES disappears towards room temperature. However, previ-
ous studies found a remaining strain dependence of the ES
at room temperature. Initially, an additional empirical term
was introduced to the room-temperature model [58,59] to
account for observations in highly strained NV centers, as
found in nanodiamonds. It was then shown analytically by
Plakhotnik et al. [19] that this term arises from a sufficiently
large imbalance in the Boltzmann-distributed [Eq. (10)] ES
branch population, caused by the large branch splitting at very
high strain (2δ⊥ ≈ 1 THz in their paper). This prevents the
orbital averaging process from completing and thus leads to a
remaining influence of the low-temperature strain dependence
even above room temperature.

To compare our model with the experimentally verified
model by Plakhotnik et al., we simulate the strain dependence
of the averaged ES LAC around 51 mT [see Fig. 2(c)]. As
discussed in Refs. [26,35], LACs of the GS and time-averaged
ES cause a strong reduction in the PL. The LAC position gives
insight into the level structure and can be used to compare
the levels of a room-temperature model with the numerically
time-averaged levels as predicted by our model. To that end,
we extend the classical rate model by Plakhotnik et al. to take
applied magnetic fields into account (details in Appendix E).

In Figs. 9(a) and 9(b), we compare the two models. We
first recall that the accepted room-temperature rate model does
not contain an explicit dependence on crystal strain in the
ES [see dashed lines in Fig. 2(a)]—orbital averaging removes
any strain dependence of the ES. However, for the high strain
values in Fig. 9(a), a classical model that includes the Boltz-
mann distribution predicts a strain dependence of the ES LAC.
Likewise, in Fig. 9(b) we plot the master equation model de-
veloped in this paper. We find quantitative agreement between
the two models. Our model, which includes the Boltzmann
distribution using different upward and downward hopping
rates [Eq. (10)], readily predicts the behavior observed under
extreme strain at room temperature. This was previously seen
as a central challenge for a model covering the entire temper-
ature range [1].

Remarkably, both models predict a nontrivial strain de-
pendence of the width of the LAC, as plotted in Figs. 9(a)
and 9(b). The width of the LAC as a function of magnetic
field varies with the in-plane strain direction φδ , and the strain
position of the smallest width shifts with the magnetic field
direction θB and φB. This field dependence could be employed
to characterize the order of magnitude of crystal strain and its
direction. Since strain strongly affects the SNR of the NV−

center at low temperatures (see Fig. 6), this feature could be
used for all-optical precharacterization at room temperature.
As simulated with the analytical model by Plakhotnik et al. in

FIG. 9. Simulated steady state PL at the ES LAC as a function of
magnetic field and strain at 300 K. (a) Room-temperature classical
rate model with the additional temperature reduction factor in the
Hamiltonian as derived by Plakhotnik et al. [19]. The LAC (mini-
mum in PL) is marked by the dotted line. A magnetic field alignment
of θB = 1.9◦ and φB = 194◦ (NV-2 in Ref. [35], other parameters
as in Table I) is used. (b) The master equation model developed in
this paper. The same line plotted in (b) is shown to demonstrate the
excellent overlap with the predicted position of the LAC. (c) For
a given magnetic field alignment angle θB (here: 0.3◦), a sweep of
the in-plane magnetic field angle φB is predicted to reveal the strain
angle φδ and magnitude δ⊥. White lines are contours of constant PL.
(d) Full width at half maximum (FWHM) of the LAC at the narrowest
(φB = φδ + 180◦, red line) and widest (φB = φδ , blue line) in-plane
magnetic field angle φB as a function of δ⊥. Magnetic field sweeps to
determine the FWHM are indicated in (c) for one value of δ⊥.

Figs. 9(c) and 9(d), elevated strain leads to a δ⊥ characteristic
narrowing of the LAC at an in-plane magnetic field angle
φB = 180◦ + φδ .

D. Probing of spin-phonon interactions

The spin relaxation process discussed above is dependent
on the number of available phonons in thermally activated
modes and the strength of their coupling to the ES orbital
states. Characterizing this spin relaxation process thus sug-
gests a new tool for investigating the interaction of the NV
center with the phonon bath. As the temperature dependence
of the orbital hopping rate is still under debate [15], we will
put recent experimental findings into context with previous
studies and show how our model allows probing electron-
phonon interactions based on simple PL measurements.

Multiple studies have determined the electron-coupling
strength η and reported similar values [22–25,35,37,38]. De-
termining η requires the evaluation of the integral over the
phonon spectrum I (T, δ⊥) for the two-phonon Raman process
in Eq. (12), which all of those studies solve in the Debye ap-
proximation. However, different studies use different phonon
cut-off energies. We consider the following studies:

085203-10



MODELING TEMPERATURE-DEPENDENT POPULATION … PHYSICAL REVIEW B 108, 085203 (2023)

FIG. 10. (a) Steady-state PL as a function of temperature for
several phonon cutoff energies 
. The 
 values correspond to the
discussion in Sec. IV D. The increase in PL above 100 K is due to
the decreasing SSL [Eq. (7)]. The effect of the SSL can be distin-
guished from the ES phonon-driven averaging by comparison with
the classical room-temperature model (gray curve). (b) Phonon mode
integral I (T, δ⊥) plotted for the different 
 values. Vertical gray lines
indicate the onset of the cut-off at T ≈ 0.1 · 
/kB. (c) k↓ plotted for
the different 
 values.

(i) Our related paper [35] reports measurements of the
ODMR contrast and PL intensity in a temperature range from
T = 3 K – 300 K. We assume the Debye energy of diamond

 = 168 meV for the cut-off.

(ii) Goldman et al. [23] uses resonant photoluminescence
excitation (PLE) spectroscopy to probe the ES dynamics up
to 26 K. At higher temperatures, the spectral broadening does
not allow the use of PLE spectroscopy. They use 
 = ∞.

(iii) Abtew et al. [22] determine the cut-off energy by
fitting measurements [21] of the line width of the zero phonon
line (ZPL) from T = 3 K – 250 K and obtain 
 = 50 meV.

(iv) Plakhotnik et al. [38] perform measurements of the ES
ODMR line width in the temperature range 300 K − 550 K.
Since their measurements rely on the time-averaged ES, they
extrapolate their model to cryogenic temperatures. They fit a
cut-off energy of 
 = 13.4 meV.

We test the different cut-off energies by inspecting their
effect on our rate model. First, in Fig. 10(a), we simulate
the temperature-dependent PL to show that there is a negli-
gible difference between our cut-off (168 meV) and the lower
cut-off from Abtew et al. (50 meV). This is because the time-
averaging sets in at much lower energies (kBT ∼ 3 meV for
T = 35 K) than both cut-offs. In extension, no discernible
effect arises when using 
 → ∞.

By contrast, the low cut-off value of 
 = 13.4 meV from
Plakhotnik et al. results in a slower increase in the hopping
rates toward high temperature [Fig. 10(c)]. Consequently,
the recovery of the PL does not complete up to room tem-

perature [Fig. 10(a)]. This is in contradiction with several
recent experimental studies [35–37], as well as initial work
by Rogers et al. [18], which found in good agreement that
the averaging process and thus the PL recovery completes
around 100 K. Plakhotnik et al. explain the much higher
value of 
 found by Abtew et al. for the ZPL line width
by contributions of A1-symmetric phonon modes. However,
this does not apply to the orbital averaging underlying our
rate model, which is caused by E-symmetric phonons. To
gain further insight, we expect that our model, coupled with
a detailed phonon spectrum as well as a PL or spin con-
trast measurement in the range 80 K − 150 K, has to be
used.

V. CONCLUSIONS

In summary, we present a master equation model of the
NV− center population dynamics that unifies the existing
rate models developed for the low- and high-temperature
limits. We include the effect of temperature by introduc-
ing phonon-induced hopping between the ES energy levels,
which, together with spin mixing, is the key mechanism for
spin-state relaxation in the ES. The relaxation process is most
effective when the hopping rate between the orbital states is
resonant with the ES spin level spacing, explaining the reduc-
tion in the PL intensity at intermediate temperatures. Since
the ES level spacing and mixing are dependent on strain and
magnetic field, the resonance condition can be tuned by these
parameters. Using numerical simulations of the population
dynamics, we extract several important experimental observ-
ables, including the dynamic and steady-state PL intensity, as
well as the SNR for spin-state readout, which is relevant for
quantum applications.

We further show that by systematic modeling of the PL
intensity as a function of temperature, we can probe electron-
phonon interactions. This approach is applicable in regimes
where resonant laser PL excitation spectroscopy [23] and
measurements of motional narrowing on ES ODMR lines
[38] are unavailable, providing an avenue for experimental
probing of the contributing phonon modes. Applying our
analysis to recent experimental data [35–37], we find in-
consistencies between the experimental observation and the
present theoretical understanding [15] of the spin-phonon
interaction.
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APPENDIX A: BASIS TRANSFORMATIONS

The transformation for a basis change from z f to ez basis of the matrix representation of an operator M̂ is [60]

Mez = Tz f →ez Mz f
(
Tz f →ez

)−1
, (A1)

with

Tz f →ez =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 −i/2 1/2 0 0 −i/2 −1/2 0
0 0 0 0 0 0 1 0 0 0
0 0 0 −i/2 −1/2 0 0 −i/2 1/2 0
0 0 0 1/2 i/2 0 0 −1/2 i/2 0
0 0 0 0 0 1 0 0 0 0
0 0 0 −1/2 i/2 0 0 1/2 i/2 0
0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A2)

Likewise, the transformation matrix to the ez basis from the
hf basis analog to Eq. (A1) can be constructed as

Th f →ez = diag
(
I3, T ES

h f →ez
, 1
)
, (A3)

with T ES
h f →ez

= T orbit
h f →ez

⊗ I3. T orbit
h f →ez

is construed columnwise
from the eigenvectors written in ez basis of the Hamiltonian
in the orbital subspace with

Horbit = 1/3 × Trspin(HES), (A4)

which can be obtained from Eq. (2) by the partial trace over
the spin subspace. Likewise, we define the Hamiltonian in the
spin subspace with

Hspin = 1/2 × Trorbit(HES). (A5)

APPENDIX B: DERIVATION OF PHONON INDUCED
ORBITAL HOPPING

We now derive the orbital hopping rate that is introduced
to the orbital electronic state of the NV− ES via coupling to
the phonon bath. In our derivation, we closely follow previous
work by Walker [61] that was first adapted to the NV− center
by Fu et al. [21] and further developed by Abtew et al.[22],
Goldman et al.[24], and Plakhotnik et al.[19,38]. For a recent
review of the topic in the context of vibronic states of the NV−

center we refer the reader to Ref. [15]. But here, in contrast,
we aim to provide all steps of the derivation, which allows
us to understand how all terms arise. Also, in contrast to the
high temperature and high strain approximations in [38] or
the low temperature and low strain approximations in [24],
we will keep the full equations allowing us to model the wide
range of parameters covered in this paper. In the following,
index i should denote the ith vibrational mode. pi ∈ {x, y}
be the polarization of that mode. States |O〉 ∈ {|x〉, |y〉} are
orbital eigenstates [Eq. (5)]. A vibrational level is |O〉|χm〉
with |χm〉 = ∏

i |ni〉 and energy εm = ∑
i niωi h̄. m denotes the

set of occupation numbers {ni} of modes i (in contrast to the
Larmor frequencies ωx/y in the main text, these ωi are in units
rad/s). Under the influence of the dynamic Jahn-Teller effect,
the electron-phonon interaction with E-symmetric phonons of

the ES is [21]

He-p =
∑

i

[δpi,x h̄λi(|x〉〈x| − |y〉〈y|)(ai + a†
i )

− δpi,yh̄λi(|x〉〈y| + |y〉〈x|)(ai + a†
i )]. (B1)

The effect of the annihilation ai and creation a†
i operators for

mode i on phonon states is denoted as

ai|χm〉 = √
nm,i|χm,i−〉, (B2)

a†
i |χm〉 = √

nm,i + 1|χm,i+〉. (B3)

For the derivation, we will assume to start in a state |s〉 of the
lower branch Ey and find the rate with which it decays to a
final state | f 〉 of the upper branch Ex. Thus,

|s〉 = |y〉|χs〉, (B4)

| f 〉 = |x〉|χ f 〉, (B5)

and the energy splitting (final minus initial) between the or-
bital electronic states is given by

h̄�⊥ = 〈x|Horbit|x〉 − 〈y|Horbit|y〉 ≈ 2δ⊥h > 0, (B6)

with the eigenenergies of the orbital subspace Horbit from
Eq. (A4). The approximation holds as long as glBz is small,
which is usually the case but recent observations suggest a
larger gl in high strained NV centers at Bz � 1 T [26]. The
transition rate between the two orbital branches can be calcu-
lated by Fermi’s golden rule

k↑ = 2π

h̄

∑
f

|Tf s|2δ(h̄�⊥ + ε f − εs), (B7)

where Tf s is the transition matrix element. Up to second order,
Tf s can be found from

Tf s = T (1)
f s + T (2)

f s + ..., (B8)

T (1)
f s = 〈 f |He-p|s〉, (B9)

T (2)
f s =

∑
m

1

Es − Em
〈χ f |〈x|He-p|Om〉|χm〉

× 〈χm|〈Om|He-p|y〉|χs〉, (B10)
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with the sum over all possible intermediate states |Om〉|χm〉
with energy Em for the second-order process.

1. One-phonon process

First, we derive the first-order transition matrix element,
which is a one-phonon process. The energy gap h̄�⊥ is
overcome by the absorption of one phonon with exactly that
energy,

T (1)
f s = 〈 f |He-p|s〉

= −
∑

i

δpi,yh̄λi(〈χ f |ai|χs〉 + 〈χ f |a†
i |χs〉)

= −
∑

i

δpi,yh̄λi(
√

ns,iδ f ,si− + √
ns,i + 1δ f ,si+). (B11)

Here, δ f ,si− denotes that |χs〉 differs from |χ f 〉 only in the
occupation number ni (that has polarization pi) reduced by
one. This is in contrast to T (2)

f s , where all terms will demand
a difference between |χs〉 and |χ f 〉 in exactly two-phonon
modes. Therefore, in Eq. (B7) no states |s〉 and | f 〉 exist that
would give a nonvanishing T (1)

f s and T (2)
f s at the same time. This

allows us to separate the overall hopping rate into a one- and
a two-phonon contribution as

k↑ = k↑,1 + k↑,2 + .... (B12)

We then find for

k↑,1 = 2π

h̄

∑
f

∣∣T (1)
f s

∣∣2δ(h̄�⊥ + ε f − εs)

= 2π h̄
∑

f

∣∣∣∣∣∑
i

δpi,yλi[
√

ns,iδ f ,si−δ(h̄�⊥ − h̄ωi )

+ √
ns,i + 1δ f ,si+δ(h̄�⊥ + h̄ωi )]

∣∣∣∣∣
2

, (B13)

where the second term vanishes since �⊥, ωi > 0. Note that
for each f there is at most one term in the sum over i that is
nonzero. On the other hand, for each i there is exactly one f .
Thus, for any Fi,

∑
f

∣∣∣∣∣∑
i

δ f ,si+/−Fi

∣∣∣∣∣
2

=
∑

i

|Fi|2. (B14)

Instead of summing over all modes i we integrate over all
energies ε and use the average |Fi|2 of all modes i with
energy h̄ωi = ε. Inserting the identity

∫ 


0 δ(ε − h̄ωi )dε, with
the cutoff energy for E-symmetric phonons 
 (see discussion
in Sec. IV D), we find

k↑,1 = 2π h̄
∫ 


0

∑
i

δpi,y|λi|2δ(ε − h̄ωi )ns,iδ(h̄�⊥ − h̄ωi )dε = 2π h̄
2

π h̄

∫ 


0
Jy(ε)n(ε)δ(h̄�⊥ − ε)dε = 4Jy(h̄�⊥)n(h̄�⊥),

(B15)

where the Bose-Einstein distribution

n(ε) = 1

eε/kBT − 1
(B16)

describes the thermal occupation of phonon modes with energy ε at temperature T in |χs〉. Here, the polarization-specific phonon
spectral density of E-symmetric phonons

Jx/y(ε) = π h̄

2

∑
i

δpi,x/y|λi|2δ(ε − h̄ωi ) = π h̄

2
ρ(ε) |λi|2

∣∣∣
pi=x/y,h̄ωi=ε

(B17)

was introduced with the phonon modes density ρ(ε). Assuming a linear dispersion relation and a wavelength of the acoustic
phonons much larger than the lattice spacing, the Debye model gives ρ(ε) ∝ ε2 and the coupling strength can be approximated
[22,24] to be λi ∝ √

ε. Then, the spectral density is independent of polarization and given by

J (ε) = ηε3. (B18)

Here, η is a measure of the coupling strength to phonons. Finally, we find for the one-phonon orbital hopping rate Ey → Ex,

k↑,1(T, δ⊥) = 4η[h̄�⊥]3n(h̄�⊥) ≈ 32ηh3δ3
⊥n(2δ⊥h). (B19)

The rates for the opposite direction, Ex → Ey, can be found from the detailed balance ratio k↑,1/2/k↓,1/2 = exp[−h̄�⊥/(kBT )]
[Eq. (10)], which, as a consequence of Eq. (B12), holds for both the one-phonon and two-phonon processes separately. The
result was given in Eq. (11),

k↓,1(T, δ⊥) ≈ 32ηh3δ3
⊥[n(2δ⊥h) + 1].

For elevated temperatures kBT � 2δ⊥h (5 K =̂ 50 GHz strain), the up- and down rates of Eqs. (B19) and (B11) become the same
and are, to second order in 2δ⊥h/kBT , given by [24],

k1(T � 2δ⊥h/kB, δ⊥) ≈ 16ηh2δ2
⊥kBT . (B20)
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2. Two-phonon processes

Next, we derive the second-order transition matrix element in Eq. (B10), again for going from the lower to the upper branch,
as given in Eqs. (B4) and (B5): Using the same relations as before [Eq. (B11)], this yields

T (2)
f s =

∑
m

h̄2

Es − Em

(∑
i

[
δpi,xλiδOm,x〈χ f |ai + a†

i |χm〉 − δpi,yλiδOm,y〈χ f |ai + a†
i |χm〉])

×
(∑

j

[ − δp j ,xλ jδOm,y〈χm|a j + a†
j |χs〉 − δp j ,yλ jδOm,x〈χm|a j + a†

j |χs〉
])

=
∑

m

h̄

(∑
i

λi[
√

n f ,i + 1δm, f i+δpi,xδOm,x︸ ︷︷ ︸
1©

−√
n f ,i + 1δm, f i+δpi,yδOm,y︸ ︷︷ ︸

2©

−√
n f ,iδm, f i−δpi,xδOm,x︸ ︷︷ ︸

3©
−√

n f ,iδm, f i−δpi,yδOm,y︸ ︷︷ ︸
4©

]

)

×
(∑

j

λ j

[
−√

ns, jδm,s j−δp j ,xδOm,y
1

ω j︸ ︷︷ ︸
a©

−√
ns, jδm,s j−δp j ,yδOm,x

1

−�⊥ + ω j︸ ︷︷ ︸
b©

−√
ns, j + 1δm,s j+δp j ,xδOm,y

1

−ω j︸ ︷︷ ︸
c©

−√
ns, j + 1δm,s j+δp j ,yδOm,x

1

−�⊥ − ω j︸ ︷︷ ︸
d©

])
. (B21)

Since both factors specify attributes of the intermediate state m, in the factored-out equation less than 16 terms remain. For
example 1© a©: δOm,xδOm,y = 0. On the remaining terms, we will use relations like

δm, f i+δm,s j− = δ f i+,s j−δm,s j− = δ f ,si− j−δm,s j− (B22)

and for that specific example

n f ,i = ns,i − 1. (B23)

From the above, one can see that the one intermediate state m for which each term is nonzero is already specified by j and the
δOm,x/y. To that end, the sum over m can simply be dropped,

T (2)
f s =

∑
i, j

h̄λiλ j

[√
ns,i

√
ns, jδpi,xδp j ,y

−1

−�⊥ + ω j
δ f ,si− j− 1© b©

+ √
ns,i

√
ns, j + 1δpi,xδp j ,y

−1

−�⊥ − ω j
δ f ,si− j+ 1© d©

+ √
ns,i

√
ns, jδpi,yδp j ,x

1

ω j
δ f ,si− j− 2© a©

+ √
ns,i

√
ns, j + 1δpi,yδp j ,x

1

−ω j
δ f ,si− j+ 2© c©

+ √
ns,i + 1

√
ns, jδpi,xδp j ,y

−1

−�⊥ + ω j
δ f ,si+ j− 3© b©

+ √
ns,i + 1

√
ns, j + 1δpi,xδp j ,y

−1

−�⊥ − ω j
δ f ,si+ j+ 3© d©

+ √
ns,i + 1

√
ns, jδpi,yδp j ,x

1

ω j
δ f ,si+ j− 4© a©

+ √
ns,i + 1

√
ns, j + 1δpi,yδp j ,x

1

−ω j
δ f ,si+ j+

]
4© c©. (B24)
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There are three kinds of processes:
(i) Terms 1© d©, 2© c©, 3© b©, 4© a© describe a two-phonon

Raman process in which one phonon is absorbed and one is
emitted.

(ii) Terms 3© d©, 4© c© are processes in which two phonons
are emitted. Since the orbital state needs energy h̄�⊥ for the
transition Ey → Ex considered here, these processes cannot
be energy conserving and thus do not contribute.

(iii) Terms 1© b©, 2© a© are processes in which two phonons
are absorbed. Since their sum of energy has to be h̄�⊥, there
are only few modes that contribute.

To determine the significance of processes where two
phonons are absorbed (Ey → Ex) or emitted (Ex → Ey), we
compare their rates with the respective Raman process. For
most strains studied here (δ⊥ < 100 GHz), and for all temper-
atures where the two-phonon process is relevant (T > 10 K),
the contribution to the hopping rate is below 1% . We will
therefore neglect two phonon emission and absorption pro-
cesses.

We now determine the orbital hopping rate for the two-
phonon Raman process. In terms 1© d© and 2© c© one can swap
the names of indices i and j to make their appearance similar
to terms 3© b© and 4© a©. Then, i is the emitted phonon (“i+”)
and j the absorbed (“ j−”),

T̃ (2)
f s =

∑
i, j

h̄λiλ j

√
ns,i + 1

√
ns, jδ f ,si+ j−

×
[
δpi,yδp j ,x

−1

−�⊥ − ωi

1© d©

+ δpi,xδp j ,y
1

−ωi

2© c©

+ δpi,xδp j ,y
−1

−�⊥ + ω j

3© b©

+ δpi,yδp j ,x
1

ω j

]
4© a© (B25)

Fermi’s golden rule requires the conservation of energy, which
means for the process we look at

�⊥ = ω j − ωi > 0. (B26)

With that, terms 1© d©/ 2© c© and 4© a©/ 3© b© will become the
same, giving a factor 2 and two terms in T̃ (2)

f s of which only
one can be nonzero for given i, j due to the required polariza-
tion. Relation (B14) also holds here for

∑
i, j and we use the

spectral density (B17) and (B18) twice with δ(ε1 − h̄ωi ) and
δ(ε2 − h̄ω j ). This gives

k↑,2 = 2π

h̄

∑
f

|T̃ (2)
f s |2δ(h̄�⊥ + ε f − εs)

= 2π

h̄

(
2

π h̄

)2

4h̄2
∫ 


0

∫ 


0
J (ε1)J (ε2)[n(ε1) + 1]n(ε2)

×
⎛⎝∣∣∣∣∣ h̄2

h̄�⊥ + ε1

∣∣∣∣∣
2

+
∣∣∣∣∣ h̄2

ε1

∣∣∣∣∣
2
⎞⎠δ(h̄�⊥ + ε1 − ε2)dε1dε2

= 32h̄

π

∫ 


h̄�⊥
J (ε2 − h̄�⊥)J (ε2)[n(ε2 − h̄�⊥) + 1]n(ε2)

×
(∣∣∣∣ 1

ε2

∣∣∣∣2 +
∣∣∣∣ 1

ε2 − h̄�⊥

∣∣∣∣2
)

dε2. (B27)

Likewise, with the detailed balance 10 we find for the rate
Ex → Ey,

k↓,2 = 32h̄

π

∫ 


h̄�⊥
J (ε − h̄�⊥)J (ε)[n(ε) + 1]n(ε − h̄�⊥)

×
(

1

ε2
+ 1

(ε − h̄�⊥)2

)
dε. (B28)

Using the expressions for J (ε) (B18) and n(ε) (B16) and
the substitutions x = ε/(kBT ) and x⊥ = h̄�⊥/(kBT ) (B6) we
find, for example, k↑,2(T, δ⊥) as given in Eqs. (12) and (13),

k↑,2(T, δ⊥) = 64h̄

π
η2k5

BT 5I (T, δ⊥),

I (T, δ⊥) =
∫ 
/kBT

x⊥

exx(x − x⊥)[x2 + (x − x⊥)2]

2(ex − 1)(ex−x⊥ − 1)
dx.

Using the detailed balance Eq. (10), one can directly obtain
k↓,2(T, δ⊥), which is similar to k↑,2(T, δ⊥) at elevated tem-
perature kBT � 2δ⊥h. In Ref. [35], we plot the hopping rates
derived in this section as a function of temperature for various
strain values.

The hopping processes discussed in this section are like a
T1 process on the orbital state towards the mixed state in the
detailed balance equilibrium. It will therefore inherently also
cause a T2 process on the coherent orbital state, which has the
same rate as k↓/↑. Coupling to A1-symmetric phonon modes
also contributes to the overall orbital dephasing [38], which
we did not include in our model. These modes can only influ-
ence the PL in case of resonant optical excitation into levels
of the zf basis, i.e., in very low strain conditions, as zf basis
states are coherent superpositions of the orbital eigenstates
[Eq. (A2)]. This might slightly influence the picture given in
Fig. 8.

APPENDIX C: JUMP OPERATORS

As an example for incoherent transition rates, there are
six jump operators to describe the optical decay. An example
expressed in hf basis [Eq. (5)] is

L̂r,+1 =
√

kr |+1〉〈Ex,+1|. (C1)

On the other hand, for example, there is one jump operator
to describe the ISC of state |A1〉. Thus, expressed in zf basis
[Eq. (4)]

L̂ISC,A1 = √
kA1 |ss〉〈A1|. (C2)

To use L̂r,+1 and L̂ISC,A1 in the master Eq. (14), the matrix rep-
resentation of it in hf basis or zf basis, respectively, needs to be
basis transformed to the ez basis (basis in which H is written)
via the transformation matrices given in Eqs. (A2) and (A3).
We note that these jump operators destroy coherences between
states. For example, an initial state |ψ〉 = 1/

√
2(|Ex,+1〉 +

|Ex,−1〉) will decay to a 50:50 classical mixture of |+1〉 and
|−1〉 under the influence of jump operators L̂r,+1 and L̂r,−1.
This behavior is intended for all rates in this model with the
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exception of the orbital branch hopping k↓/↑. Here, a jump
only leads to a decay of the orbital state and therefore to the
destruction of coherences in the orbital subspace Horbit. Cru-
cially, coherences in the spin subspace Hspin are maintained
when jumping from one orbital branch to the other. To that
end, there are two jump operators for orbital branch hopping,

L̂ES
↓ = √

k↓|y〉〈x| ⊗ Î3, (C3)

L̂ES
↑ = √

k↑|x〉〈y| ⊗ Î3. (C4)

To arrive at the representation in the full hf basis, the matrix
representation has to be extended by 0-block matrices.

We note that while maintaining spin-state coherences
during orbital hopping is crucial, adding ES spin-state deco-
herence to our model is found to not alter the temperature-
dependent behavior noticeably. A decoherence of around
10 ns was observed at [20] and above [38] room temperature
and attributed to the motional narrowing also caused by the or-
bital hopping process. We therefore assume no spin T2 process
in this study.

In this paper, we assume off-resonant optical excitation but
with respective adaptions in the jump operators, also resonant
laser excitation into selected eigenstates of the excited state
can be simulated, as done for Fig. 8.

APPENDIX D: COMPARISON WITH GOLDMAN et al.

We look at the ISC rates and their temperature dependence
at low temperature to verify that our model yields the be-
havior observed in previous work. To obtain the ISC rates,
we mimic the experiments by Goldman et al. [23]. First, we
initialize the system in the respective eigenstates. Then, we
evolve the state in time and calculate the PL from Eq. (17).
Finally, we fit a single exponential decay to it with a decay
rate of kr (known) plus the effective ISC rate kISC (wanted).
We use parameters as found by Goldman et al., in particular
η = 276.5 µ−1sm−3eV, but we do not use their T0 = 4.4 K
shift. We note that fitting with a single-exponential decay is
systematically not correct, as around 15 K (where averaging
of the ES levels ISC rates happens as the optical lifetime
is similar to the orbital hopping rate) contributions form the
different states can be observed. The ISC rates plotted here
should thus be seen as an approximation. The ISC rate dif-
ference of E1 and E2 at low temperature originates from a
finite strain splitting of 2δ⊥ = 3.9 GHz. This behavior could
not be resolved in the experiment since the states are spectrally
too close together for explicit resonant excitation [23]. Also,
we note that contributions from A1-symmetric phonon modes
might matter here, which are not considered in this paper (see
discussion at the end of Appendix B 2).

APPENDIX E: COMPARISON WITH PLAKHOTNIK et al.

We employ our model at room temperature and very high
strain to examine the predicted behavior. Plakhotnik et al. [19]
derived that in the absence of a magnetic field, an additional
term

ĤTRF/h = −D⊥
ESR(T, δ⊥)

[
cos φδ

(
Ŝ2

y − Ŝ2
x

)
+ sin φδ (ŜyŜx + ŜxŜy)

]

− λ⊥
ESR(T, δ⊥)[cos φδ (ŜxŜz + ŜzŜx )

+ sin φδ (ŜyŜz + ŜzŜy)] (E1)

with the temperature reduction factor

R(T, δ⊥) = eh̄�⊥/kBT − 1

eh̄�⊥/kBT + 1
(E2)

and the strain splitting h̄�⊥ ≈ 2hδ⊥ from Eq. (B6) has to be
added to the Hamiltonian of the ES after orbital averaging
[Eq. (A5)]. We corrected a sign error in Eq. (E1) compared
to the derivation given in Ref. [19]. In this, we still assume
that constants as D⊥

ES (see Table I) have no temperature and
strain dependence. Such intrinsic dependencies are discussed
in Ref. [19] but ignored here, as they affect all models
equally and thus do not matter for the comparison done
here.

We note that in the presence of a magnetic field, Eq. (E1)
is not analytically correct due to the orbital gl -factor term
in the ES Hamiltonian [Eq. (2)]. But the ES LAC at Bz ≈
51 mT shows a very small shift of �BLAC ≈ 2 µT compared to
Eq. (E1) at a strain of δ⊥ = 1 THz and at 300 K with gl = 0.1
[18] (�BLAC ≈ 20 µT with gl = 1.0). Therefore, Eq. (E1) still
constitutes a good approximation as long as the gl Bz term is
small. But at high magnetic fields and if a significant strain
dependence of the orbital gl factor exists, as recent measure-
ments by Happacher et al. [26] indicate, the glBz term could
become relevant. In general, the ES averaged Hamiltonian
reads [19]

HES, avg = Hspin + HTRF

= D‖
ES

(
S2

z − 2
3I3

) − λ
‖
ESσ2Sz

+ D⊥
ES

[
σ3
(
S2

y − S2
x

) − σ1(SySx + SxSy)
]

+ λ⊥
ES[σ3(SxSz + SzSx ) − σ1(SySz + SzSy)]

+ μBgES �S · �B + μBglBzσ2I3

+ d⊥
ESξxσ3I3 − d⊥

ESξyσ1I3 + d‖
ESξzI3 (E3)

with σ1/2/3 = Tr(σx/y/zρorbit ),

ρorbit = T orbit
h f →ez

(
e−h̄�⊥/kBT 0

0 1

)
· T orbit

h f →ez

−1

× (
1 + e−h̄�⊥/kBT

)−1
(E4)

and T orbit
h f →ez

as used in Eq. (A3). All I3 terms in Eq. (E3) cause
an overall energy shift of the ES and are thus irrelevant to our
analysis.

APPENDIX F: IMPLEMENTATION OF THE MODEL

Our model is openly accessible via github [62], is written
in Python, and was optimized for fast computation speed
by the open access numba package [63]. It has 10 levels
[c.f. Eq. (3)]. Thus, the FLS has a dimension of 100 with
L̃ ∈ C100×100. It is computationally expensive to calculate the
matrix exponential exp (L̃t ) in Eq. (16) for each time step in
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a PL(t ) time trace of Eq. (17). Therefore, we first calculate
U�t = exp (L̃�t ) for a single time step �t . We then obtain
the time trace PLn over tn = n�t , n ∈ [0, N], from �ρn =

U�t �ρn−1 at reduced computational cost. The accumulated nu-
merical errors were found to have negligible effect on our
results.
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