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Energy landscape and flow dynamics measurements of driven-dissipative systems
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Many experimental techniques aim at determining the energy landscape of a system given and compare it
to a model Hamiltonian. This landscape governs the system’s evolution in the absence of dissipation. Here, we
theoretically propose and experimentally demonstrate a method to measure the energy landscape of a system
without knowing its functional form. A crucial ingredient for our method is the presence of dissipation, which
enables sampling of the landscape over a large area of phase space through ringdown-type measurements,
overcoming the main limitation of previous techniques. We apply the method to a driven-dissipative system–a
parametric oscillator–observed in a rotating frame. We first measure the phase-space flow dynamics of the system
via ringdown measurements, unveiling its attractors and separatrices. With these measurements, we reconstruct
the (quasi-)energy landscape of the system. Furthermore, we demonstrate that our method provides direct experi-
mental access to the so-called symplectic norm of the stationary states of the system, which is tied to the particle-
or holelike nature of excitations of these states. In this way, we establish a method to identify qualitative differ-
ences between the fluctuations around stabilized minima and maxima of the nonlinear out-of-equilibrium station-
ary states. Our method constitutes a versatile approach to characterize a wide class of driven-dissipative systems.
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I. INTRODUCTION

The evolution of any physical system is governed by an
interplay between conservative and nonconservative forces.
The former are generated by an energy landscape, i.e., the sum
of all energy terms within a closed system. Understanding
and controlling an experiment usually requires knowledge of
the system’s model Hamiltonian. In a realistic setting, how-
ever, it can be difficult to compute the Hamiltonian from first
principles, as it requires full insight into all microscopic con-
stituents. Alternatively, extracting the effective Hamiltonian
from a measurement provides direct access to the system
dynamics even when its theoretical model is incomplete.
Once the functional form of the Hamiltonian is known, such
measurements allow extracting the precise parameters of a
system [1]. A prime example is the calibration of qubits,
whose gate operations rely on precise Hamiltonian estima-
tions [2–5]. The situation is generally more challenging when
the functional form is not known.

Additionally, a vast majority of systems are inherently
open, i.e., the dissipative coupling to an environment cannot
be ignored. An open system experiences fluctuations that
cause it to sample the available landscape over time. This
allows estimating a system’s Hamiltonian by measuring
the probability of finding it in a certain state while it is
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subject to fluctuations [6–13]. This method was used in
experimental studies of the escape dynamics [13] and
Kramers turnover [11] of a particle trapped in an optical
potential, investigations of the force fields acting on these
particles [14,15], or the stability of coupled nonlinear systems
[16,17]. Probabilistic methods have the drawback that certain
states are rarely explored. As such, these methods are often
inadequate in situations where regions of interest (in phase
space) are separated by large energy differences. In addition,
these methods are insensitive to temporal correlations in the
system, which pertain to the notion of causality of excitations,
as quantified by, e.g., out-of-time-ordered correlators [18,19].

In the presence of dissipative coupling to an environment,
it is also possible to probe a system’s Hamiltonian from its
deterministic relaxation. This becomes feasible when the mea-
sured variables of interest are large enough to neglect the
impact of fluctuations. By initializing a system in a well-
defined state using an external drive and then turning off
the drive, the system decays into a stationary state due to
dissipative coupling to a large and, most often, Markovian
reservoir. By measuring such a ringdown into a stationary
state (attractor), both the nonlinearity of a system close to a
stable solution [20–23] and the curvature of engineered energy
landscapes [24] have been measured in the absence of a drive.

In principle, such ringdown-type experiments can be ex-
tended to driven-dissipative systems. This is particularly
interesting for driven nonlinear systems with multiple sta-
ble oscillation states. In a rotating frame, such oscillations
can appear as stationary states within their respective basins
of attraction [25,26]. There, the system dynamics can be
described by a rotating-frame quasi-Hamiltonian that, for
instance, allows understanding out-of-equilibrium phase tran-
sitions [27–31] in lattices of cold atoms [24], optical
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oscillators [32], or cavity magnonic systems [33]. Interest-
ingly, such systems can stabilize out-of-equilibrium phases
where seemingly anticausal excitations can manifest [29,34].
However, to our knowledge, no full reconstruction of such a
rotating-frame energy landscape has been reported to date.

In this paper, we demonstrate a deterministic method
for qualitatively reconstructing the full rotating-frame flow
dynamics and quasi-Hamiltonian of a driven-dissipative non-
linear system using systematic ringdown measurements.
Notably, the presence of dissipation enables sampling of a
large section of a Hamiltonian from a limited number of ring-
down measurements. The method we demonstrate here can be
used to reconstruct the flow dynamics and energy landscape
of systems with unknown functional form, and in the pres-
ence of damping. This is in contrast to typical Hamiltonian
learning algorithms in quantum systems that aim at estimat-
ing very precisely the coefficients of a known or supposed
Hamiltonian model, e.g., coupled qubits [35–37]. Our method
provides high resolution even far from stationary solutions,
where stochastic approaches typically fail. Furthermore, our
method yields a picture of the phase-space flow dynamics,
steady-state solutions, and separatrices of the system. We
obtain a direct measurement of the symplectic norm of each
solution [29,30], providing a qualitative understanding of the
different phases the system can enter, including a dissipation-
stabilized maximum with hole-like quasiparticle excitations.
Importantly, our method can be extended and applied to both
undriven and driven-dissipative oscillating systems far from
equilibrium, making it a valuable tool in many contemporary
fields of physics.

We first present in Sec. II our electromechanical resonator
system. In Sec. III, we introduce the general method to re-
construct the Hamiltonian from ringdown measurements. In
Sec. IV, we reconstruct the effective Hamiltonian of our res-
onator in the absence of a drive, i.e., demonstrating the method
for a standard damped harmonic oscillator. Then, in Sec. V,
we subject the resonator to a large parametric drive to allow
multiple stable oscillation solutions, and measure its phase-
space flow dynamics. With this measurement, we extract the
rotating-frame quasienergy and compare it to theoretical pre-
dictions. Finally, in Sec. VI, we discuss the extraction and
implications of the symplectic norm as a tool for exploring
and understanding out-of-equilibrium stationary solutions.

II. ELECTROMECHANICAL DEVICE

Our device is a micro-electromechanical resonator, as
illustrated in Fig. 1(a). It consists of a mechanical can-
tilever [38] biased with voltage Ubias ≈ 32 V, used to tune
the mechanical resonance frequency ω0 [39], and which in-
duces a Duffing nonlinearity β (due to the non-linearity of
the electrostatic force between the mechanical element and
the electrodes [38]). To generate a weak near-resonant forcing
term F , we apply a voltage Ũr = Ur cos(ωrt + θ ) to one of the
electrodes, where Ur is the amplitude, θ is a phase offset, and
ωr ≈ ω0. A large off-resonant voltage Ũp = Up cos(2ωrt + ψ )
periodically modulates ω0 with a modulation depth λ ∝ Up,
making it possible to parametrically drive the resonator [40].
We read out the mechanical displacement x via the output
voltage Uout ∝ x with a lock-in amplifier (Zurich Instruments

FIG. 1. Microelectromechanical resonator and Hrot reconstruc-
tion of a simple damped harmonic oscillator from ringdown
measurements. (a) A cantilever, biased at voltage Ubias, with oscilla-
tion displacement x and natural frequency ω0, is capacitively coupled
to two conductors. Typically, an input voltage Uin = Ũr + Ũp with
frequency ωr (2ωr) can drive the mechanical resonator resonantly
(parametrically), when ωr ≈ ω0. The mechanical motion induces a
voltage Uout , which we read out. (b) Several ringdown measurements
for a few initialization points (dots) in rotating (i.e., at demodulated
frequency ωr) phase space (u, v) for blue detuned demodulation,
(ωr − ω0)/2π ≈ 91 Hz. The point-to-point error is too small to
be visible. (c) Several ringdown measurements in phase space for
red detuned demodulation, (ωr − ω0)/2π ≈ −209 Hz. (d) Recon-
structed Hamiltonian for positive detuning, i.e., from measurements
of (b), using Eq. (5), shown in three dimensions and as a two-
dimensional colorplot. (e) Reconstructed Hamiltonian for negative
detuning, i.e., from the measurements of panel (c).

MFLI), and ignore the proportionality coefficient for conve-
nience (i.e., we define Uout ≡ x) [41]. The device displace-
ment is described by the equation of motion (EOM)

d2x

dt2
+ ω2

0[1 − λ cos(2ωrt + ψ )]x + �
dx

dt
+ βx3 = F, (1)

with time t . The device has a mechanical resonance fre-
quency ω0/2π ≈ 1.12 MHz, energy decay rate �/2π ≈
112 Hz (quality factor Q = ω0/� ≈ 104), and Duffing non-
linearity β ≈ −9.9 × 10−16 V−2s−2. The forcing term (in
units of Vs−2) is F = AŨr with a conversion factor A ≈
16 × 106 s−2 and with the oscillator’s mass absorbed in the
definition of F . The parametric drive voltage amplitude Up can
be converted to a parametric modulation depth λ = 2Up/QUth

by measuring the parametric drive threshold amplitude Uth ≈
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1.98 V. Above the parametric threshold, the system can be
driven into an out-of-equilibrium stationary oscillation via a
spontaneous time-translation symmetry breaking [4,8,40,42–
50]. The full device characterization is shown in Appendix A.

III. HAMILTONIAN RECONSTRUCTION

We now introduce our method for reconstructing the
Hamiltonian from measured coordinates along a trajectory.
The evolution of a classical lossless system in the laboratory
frame with coordinate x and its conjugate p is given by Hamil-
ton’s EOMs

dx

dt
= +∂H (x, p)

∂ p
,

d p

dt
= −∂H (x, p)

∂x
, (2)

where H (x, p) is the Hamiltonian. Here, for any initial condi-
tions and without drive, trajectories form closed loops along
energy contour lines in coordinate space (x, p) since there is
no energy loss. This means that only a single energy contour
of the Hamiltonian can be sampled when following any given
trajectory. To sample all energy elevations, one has to initial-
ize the system at infinitely many different initial conditions.

In many cases, we are interested in the slowly varying
in-phase and out-of-phase quadratures u(t ) and v(t ) observed
in a frame rotating at ωr ≈ ω0, which are defined via x(t ) =
u(t ) cos(ωrt ) − v(t ) sin(ωrt ). The demodulated quadrature we
measure with our lock-in amplifier at frequency ωr are pre-
cisely u and v. By applying the averaging method [51] on an
equation of motion such as Eq. (1), we obtain the so-called
slow-flow equations (see Appendix B). We open the system
by adding dissipative terms ∝ �, i.e., we consider rotating
Lagrangian dynamics, such that the equations of motion can
be formulated in a similar structure as Eq. (2):

du

dt
= +∂Hrot (u, v)

∂v
− �

2
u,

dv

dt
= −∂Hrot (u, v)

∂u
− �

2
v. (3)

In this frame, the energy-conserving evolution of the system is
governed by a rotating-frame quasi-Hamiltonian Hrot. For our
resonator, subjected to both parametric and external drives,
Hrot reads [52]

Hrot = ω2
r − ω2

0

4ωr
(u2 + v2)

− 3β

32ωr
(2u2v2 + u4 + v4)

+ λω2
0

8ωr
(2uv sin ψ + (u2 − v2) cos ψ )

+ AUr

2ωr
(u cos θ + v sin θ ). (4)

This Hamiltonian Hrot is a function in the rotating phase space
spanned by u and v [20], and is the quantity we reconstruct in
this paper.

The addition of dissipation in Eq. (3) is crucial. On the
one hand, in the presence of dissipation, a trajectory is no
longer confined to a single closed loop, but samples different
energy contours. On the other hand, dissipation causes the

system to converge towards one of the stable stationary states
of the system, see Fig. 1(b). This allows us to probe Hrot by
experimentally measuring u(t ) and v(t ) using rotating-frame
ringdown measurements. By initializing the system in an ini-
tial state (ui, vi ) and letting it evolve to a final state (uf , vf ),
we can extract the change in the Hamiltonian 
Hrot at any
point (u j, v j ) along this ringdown’s trajectory. We isolate Hrot

in Eq. (3) and integrate over the slow coordinates from (ui, vi )
to (u j, v j ) to obtain


Hrot =
∫ v j

vi

[
du

dt
+ �

2
u

]
dv −

∫ u j

ui

[
dv

dt
+ �

2
v

]
du. (5)

In practice, the values (u j, v j ) are measured in discrete steps,
allowing us to compute 
Hrot only at these points. Measuring
multiple ringdowns with different initial (ui, vi ), 
Hrot can be
deterministically sampled and reconstructed over a large area
of phase space, with a resolution limited by the measurement
uncertainty or fluctuations (e.g., thermal or quantum noise) in
u and v. Note that Eq. (5) does not provide the relative change
of 
Hrot between different ringdown measurements.

To compare different traces, we make use of the fact
that Hrot (uf , vf ) should be single-valued at stationary points.
This means that all traces sharing the same final coordi-
nates (uf , vf ) should have the same final value Hrot (uf , vf ).
We thus find the relative Hamiltonian offset between differ-
ent ringdown traces sharing the same (uf , vf ) by comparing
Hrot (uf , vf ). Finding the offset between traces is more compli-
cated when they have different values of (uf , vf ), i.e., they do
not share a common end point. Here, the offset can be calcu-
lated by making the Hamiltonian continuous, i.e., by finding
the offset that minimizes the difference between nearby start-
ing points (ui, vi ) that decay into different final (uf , vf ), see
Appendix C.

We emphasize that our method can reconstruct a Hamilto-
nian without assuming its functional form. In other words, it
allows us to measure the energy landscape of an arbitrary sys-
tem. The main assumption is that the impact of noise is small,
see Appendix D, and that we know the form and magnitude of
the dissipation. The dissipation coefficient � can be measured
in a standard ringdown experiment, from which we can also
confirm the absence of nonlinear damping [23,53,54], cf. Ap-
pendix A. Importantly, if nonlinear damping was measured in
the ringdown experiment, the EOMs [Eq. (3)] can be modified
to include it, and our method will still work. Note also that
a Hamiltonian reconstruction analogous to Eq. (5) can also
be performed in the nonrotating frame, i.e., for a dissipative
Eq. (2). We concentrate here on the case of a rotating-frame
Hamiltonian to be in line with the theory. In the following,
we will test the Hamiltonian reconstruction before discussing
what information we can extract from it.

IV. HARMONIC OSCILLATOR CASE

As a first demonstration, we reconstruct the rotating-frame
Hamiltonian of a damped harmonic oscillator. In Figs. 1(b)
and 1(c), we show multiple measured trajectories for the case
λ = 0, and with amplitudes that are small enough to neglect
the effect of the Duffing non-linearity, i.e., only considering
the first line in Eq. (4). For each of those ringdown trajec-
tories, we first displace the resonator in phase space using a
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near-resonant drive with fixed Ur and ωr, and with an individ-
ually selected θ . In a frame rotating at ωr, the corresponding
initial resonator coordinates (ui, vi ), shown as dots, are sta-
tionary under the resonant drive. Then, we switch off the
drive (Ur = F = 0), and track the ringdown trajectory while
the system decays to the state (uf = 0, vf = 0). We measure
the demodulated signal with a sampling rate 54 kHz � �

in order to resolve the ringdowns [55]. During this decay,
the angle of the state in phase space evolves in time since
the rotating frame’s frequency is detuned from the resonance
frequency [21]. For ωr − ω0 > 0 in Fig. 1(b), the trajectories
spiral towards (0, 0) with a clockwise orientation, while for
ωr − ω0 < 0 in Fig. 1(c), they spiral in the counterclockwise
direction. The chirality of the ringdown trajectory therefore
shows whether the oscillator moves with a lower or higher
frequency than ωr near the stable state. Note that the choice of
the rotating frame impacts the chirality of the ringdowns and
associated effects.

We reconstruct the energy landscape, i.e., the rotating-
frame Hamiltonian Hrot, from the ringdown trajectories using
Eq. (5). For the reconstructions in Figs. 1(d) and 1(e), the
resolution was improved by using more ringdown traces than
shown in Figs. 1(b) and 1(c). The residuals of these two re-
constructions are shown in Appendix E. The resulting Hrot is a
paraboloid whose sign of curvature depends on ωr − ω0. This
is predicted in Eq. (4) and reflects the fact that Hrot describes
energy relative to a rotating frame. Indeed, for ωr − ω0 = 0,
the rotating energy landscape would be entirely flat. Note
that the origin (0, 0), which appears as a maximum of Hrot

in Fig. 1(e), remains the only stable solution of the system
irrespective of the detuning. As a (local) maximum can ap-
pear as a stationary state, this example demonstrates that the
rotating-frame Hamiltonian cannot be interpreted as a simple
energy function as is the case in the nonrotating frame [51].
After successfully reconstructing the rotating frame energy of
a harmonic oscillator, we now apply our method to a more
complex system.

V. PARAMETRIC OSCILLATOR CASE

The reconstruction of Hrot can also be applied to driven
nonlinear systems with multiple stable solutions. Here, we
demonstrate this principle on the example of the electrome-
chanical resonator described in Sec. II when subjected to a
parametric drive, cf. Eq. (4) and Fig. 1(a).

We first analyze a single rotating-frame ringdown into an
out-of-equilibrium stationary state in phase space. In Fig. 2,
we study an example trajectory of our system in the pres-
ence of parametric driving beyond the instability threshold
(λ > λth) [51], where two time-translation symmetry-broken
high-amplitude solutions are stabilized due to the interplay
between the drive and the nonlinearity, see Appendix A. As
shown schematically in Fig. 2(a), the system is initialized in
(ui, vi ) by a near-resonant force at ωr, followed by a para-
metric drive tone whose amplitude λ ∝ Up and frequency 2ωr

define the stationary solutions of the system in the readout
frame rotating at frequency ωr [51,56,57]. In Fig. 2(b), we
show a typical ringdown trajectory of our resonator in phase
space, noting that (uf �= 0, vf �= 0).

FIG. 2. Ringdown of a parametric oscillator. (a) For a ringdown
measurement, the resonator is first displaced with a near-resonant
drive Uin (ωr ) with ωr ≈ ω0. This resonant drive is turned off and a
parametric drive Uin (2ωr ) is immediately turned on, while the slowly
varying (i.e., demodulated at ωr) quadratures u and v are read out.
(b) Ringdown in phase space for fixed parametric drive Up = 10 V
(λ ≈ 10−3) and frequency (ωr − ω0)/2π ≈ −253 Hz. The dark blue
curve is the predicted ringdown with the linearized model in Ap-
pendix B [Eq. (B6)]. (c) In (i) the in-phase ũ and out-of-phase ṽ

displaced quadratures, (ii) amplitude R̃ = √
ũ2 + ṽ2, and (iii) in-

stantaneous rotating-frame frequency ω̃ = ∂t φ̃/2π with phase φ̃ =
arctan(ṽ/ũ) are plotted as a function of time for the same ringdown
as in (b). These measurements are referenced to the attractor in which
they ringdown into, i.e., ũ ≡ u − uf with uf ≈ −538 µV the final
value of u (the position of the attractor), and similarly for ṽ with
vf ≈ −572 µV.

To facilitate the Hamiltonian reconstruction, we define
displaced quadratures ũ ≡ u − uf and ṽ ≡ v − vf , with the
final coordinates of the ringdown (uf , vf ) (i.e., the attrac-
tor position). In this shifted reference frame, the relaxation
into the stable solution resembles a ringdown process in an
equilibrium system, with ũ and ṽ performing damped oscilla-
tions towards a final state (ũf = 0, ṽf = 0), see Fig. 2(c)(i).
The damping rate associated with these trajectories is
quantified by the same � as we introduced in Eq. (1),
while the rotation around (uf , vf ) depends on Hrot. The

043012-4



ENERGY LANDSCAPE AND FLOW DYNAMICS … PHYSICAL REVIEW RESEARCH 6, 043012 (2024)

dynamics of these shifted quadratures are well captured by
linearizing the equations of motion [Eq. (3)] around the at-
tractors, see derivation in Appendix B.

In contrast to undriven relaxation processes in the labora-
tory frame (x, p), the amplitude R̃ = √

ũ2 + ṽ2 does not decay
monotonically. Instead, we observe oscillations imposed on
top of the exponential decay in Fig. 2(c)(ii). These oscilla-
tions stem from the fact that the shape of Hrot around (uf , vf )
is not rotationally symmetric, such that the system samples
different ∂uHrot and ∂vHrot as it moves around the Hamilto-
nian landscape. We emphasize that despite the fact that we
observe oscillations growing in amplitude at certain times, this
does not violate any law of conservation, as we are dealing
with a driven system. The nonrotationally symmetric Hamil-
tonian also manifests in Fig. 2(c)(iii), where an instantaneous
rotating-frame frequency ω̃ = ∂t φ̃/2π is defined by the phase
φ̃ = arctan(ṽ/ũ) relative to the attractor.

There are clear oscillations in the frequency ω̃ due to the
resonator sampling different ∂uHrot and ∂vHrot as it moves in
phase space. This behavior is also well captured by the aver-
aged and linearized dynamics near the attractors (cf. Eq. (3)
and Appendix B). Note that for smaller parametric drives
or for dynamics further away from the attractors, one needs
to consider a model that goes beyond the linearization we
employ (i.e., expand the equations to higher-order terms) to
fully capture the dynamics.

In a next step, we measure multiple trajectories with
various initialization conditions, but fixed parametric drive
strength and frequency, allowing us to reconstruct the rotating
frame Hamiltonian Hrot of our driven nonlinear system. In
Fig. 3(a), we show such sets of trajectories for three different
parametric drives: (i) below threshold with a single squeezed
state, (ii) above threshold with two stable phase states, and
(iii) at large driving and large detuning with a combination
of phase states and a zero-amplitude state (see Appendix A
for a phase diagram of the device). Each ringdown is color-
coded by the state it eventually approaches, allowing us to
identify the corresponding attractor pools. From ringdown
measurements, we can thus directly identify the number of
stable solutions in the given phase-space area, as well as
the separatrices of the system—the regions where the color
of nearby ringdown measurements changes. In addition, we
obtain a visualization of the stream flow in phase space, as
governed by Eq. (3). We stress that the main assumption of
this reconstruction is that the damping is linear, cf. Eqs. (3),
though these equations could be adapted to include other types
of damping. The reconstruction does not assume linearized
dynamics.

The reconstructed Hamiltonians Hrot are shown in Fig. 3(b)
alongside theoretical Hamiltonians in Fig. 3(c), as calculated
from Eq. (4) using parameters ω0, β, and λ extracted from
independent calibration measurements in Appendix A. We
find excellent qualitative agreement between measurement
and theory, see Appendix E for the residuals, with typical
deviations <10%. We stress that only the parametric drive
phase ψ is a fit parameter. In Appendix D, we also show the
residuals when all the parameters are fitted, showing devia-
tions of a few percents, and discuss the effect of noise on
the reconstruction. Crucially, the quality and resolution of the
Hamiltonian reconstruction is consistently high over the entire

sampled phase space, which would be hard to achieve with
statistical methods [6–13]. In the reconstructed Hrot, we can
clearly see the appearance of one, two, and three stable states
in the three cases (i)–(iii), respectively, indicating different
phases of the driven system [27,28,58]. Our reconstruction
method confirms the theoretical prediction that the stationary
solutions can qualitatively differ in the rotating frame; while
the phase states at finite amplitude in the cases (ii) and (iii)
are marked by a minimum in Hrot, the stable state appearing at
(u = 0, v = 0) in (iii) corresponds to a maximum, signaling
a fundamentally different type of solution, i.e., a dissipation-
stabilized state [29,30]. In the following, we analyze this
difference using the symplectic norm of the individual solu-
tions, and we show that this quantity yields valuable insights
into the behavior of driven-dissipative systems.

VI. SYMPLECTIC NORM

In Secs. IV and V, we successfully reconstructed rotating-
frame Hamiltonians Hrot using ringdown measurements. One
of the most prominent distinctions of a rotating-frame Hamil-
tonian, compared with a Hamiltonian in a laboratory frame
such as in Eq. (2), is that both maxima and minima of Hrot can
constitute stable oscillation states of the system, unlike what
we expect from the minimal action principle in equilibrium
systems. This counterintuitive feature can be clearly observed
in row (iii) of Fig. 3, where two minima at finite amplitudes
are separated by a stable local maximum at (u = v = 0).
Importantly, the minima in Fig. 3 are stable due to the nonlin-
earity β, while the maximum is stabilized by dissipation [30].
This fundamental difference, however, is difficult to quantify
in standard measurements, such as frequency sweeps and sta-
bility diagrams [44,59].

A method tailored to classify and distinguish minima and
maxima in Hrot is the symplectic norm ds2 [29,30]. When an
excitation is created on top of a stationary state with a negative
(positive) symplectic norm, it reduces (increases) the energy
of the system relative to the rotating frame, that is, relative
to an excitation at the driving frequency ωr. Similar to how
the Dirac scalar quantifies particles and holes in relativistic
quantum theory [60], the symplectic norm quantifies whether
a Bogoliubov excitation in the rotating frame is more particle-
or holelike. This difference manifests in the Hamiltonian: sta-
tionary solutions with a negative (positive) symplectic norm
appear as maxima (minima) in Hrot and are formally associ-
ated with a holelike (particlelike) excitation, see Appendix B.
We can therefore use the reconstructed Hamiltonians in Fig. 3
to directly determine the symplectic norm of the stable oscil-
lations states, and to classify the corresponding excitations.

A careful study of Fig. 3 reveals additional information.
Namely, the trajectories leading to Hamiltonian extrema as-
sume clockwise or counterclockwise rotations. We show in
Appendix B that for a wide class of systems, the symplec-
tic norm is directly linked to the sense of rotation of the
trajectories close to an attractor: an excitation behaves hole-
(particle-) like in the rotating frame if it moves slower (faster)
than the rotating frame and hence backward (forward) in time
relative to the clock given by the rotating frame. The notion of
hole- and particlelike excitations is therefore always relative
to the rotating frame.
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FIG. 3. Ringdown measurements and Hamiltonian reconstruction in parametric phase space. (a) Multiple ringdown measurements in phase
space under different parametric drive strength and frequency. Each ringdown’s starting point is indicated by a dot, and color-coded for the
attractor in which it rings down: purple the zero-amplitude, orange the top-right, and green the bottom-left attractor. The attractors extracted
from the ringdown measurements are indicated by black dots. The parametric drive is (i) below threshold, (ii) above threshold, and (iii)
above threshold and far detuned, cf. Appendix A for the locations of the measurements relative to the device’s phase diagram. (b) Rotating-
frame Hamiltonian reconstruction from the ringdown measurements in (a), cf. Eq. (5). (c) Theoretical plots of the rotating-frame Hamiltonian
[Eq. (4)] using angle (i) ψ ≈ −2.1 rad, (ii) ψ ≈ −1.76 rad, and (iii) ψ ≈ −1.86 rad as the only fit parameter, while fixing the independently
measured mechanical parameters, see Appendix A. Note that the attractors are not necessarily at the minima of the quasi-Hamiltonian due to
dissipation [20].

We use the chirality of the rotations to extract the sym-
plectic norm ds2 of the different attractors directly from the
measured ringdown trajectories, without a full reconstruction.
To capture this observation mathematically, we define a cor-
relator characterizing the direction of rotation of a ringdown,

Gc(t ′ − t ) = �(t ′ − t )〈ṽ(t )ũ(t ′) − ũ(t )ṽ(t ′)〉t , (6)

with the Heavyside step function �(t − t ′), and 〈...〉t indi-
cating an average over all times t . This quantity Gc(t − t ′)

is a classical analog to the quantum Green’s function used
in Refs. [30,34,61]. Following these works, we calculate the
corresponding spectral response A of a stable oscillation state

A(ω) = −2Im[Gc(ω)]

= |ζ |2ds2

2

[
1

(ω − ωlin )2 + �2

4

− 1

(ω + ωlin )2 + �2

4

]
,

(7)
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FIG. 4. Spectral response of a parametric oscillator. With ũ and ṽ

obtained during a ringdown measurement, we can extract the spectral
response A using Eqs. (6) and (7) (dots) [cf. Figs. (2) and (3)]. These
spectral responses are in good agreement with the fitted theoretical
curves of Eq. (7), with ω0 left as a free parameter to account for
small frequency drifts. All measurements are done with the same
parametric drive strength Up = 10 V (λ ≈ 10−4), and different de-
modulation frequencies ωr . The detuning is (ωr − ω0)/2π ≈ 170 Hz
(orange) and (ωr − ω0)/2π ≈ −222 Hz (green) for ringdowns into
high amplitude states, and (ωr − ω0)/2π ≈ −865 Hz (purple) for the
zero amplitude state.

where Gc(ω) is the Fourier transform of Gc(t − t ′), ζ is a
constant related to the ringdown starting conditions, and ωlin

is the oscillation frequency of the quadratures. The linear
response function in the second line is only valid near the
attractor of interest.

Looking at A, we see that the spectral response has peaks at
±ωlin, with width �, and an overall sign which is determined
by the symplectic norm ds2. Therefore, if the resonator rings
down with a counterclockwise (clockwise) rotation in phase
space, the final steady state of the system has a negative
(positive) symplectic norm and a negative (positive) peak
in A.

With this knowledge, we can extract the sign of ds2 from
the spectral response of ringdown measurements, as shown
in Fig. 4. We record ũ and ṽ during one trajectory, calculate
the correlator Gc(t − t ′) [Eq. (6)], take its Fourier transform,
and compute the spectral response A according to Eq. (7). In
Fig. 4, we present the measured result for each of the three
stable states of a parametric oscillator at different detunings.
We compare these measured spectral responses with those ex-
pected from theory, calculated using independently measured
parameters and the linearized slow-flow equations [Eq. (7)],
and obtain very good agreement. As expected, for a stable so-
lution corresponding to a maximum in Hrot (purple curve), the
spectral response is a dip, while the two other solutions, which
are minima in Hrot (orange and green curves), correspond to
peaks in the spectral response. These measurements show the
link between the orientation of rotation, the symplectic norm,
the spectral function, and the rotating frame Hamiltonian Hrot.

We emphasize that the notion of maxima and minima of
the rotating quasienergy depend on the chosen rotating frame

frequency, and that stabilized maxima are a manifestation of
out-of-equilibrium stationary states. The classification of the
different stationary states can for example be harnessed to find
a topological classification of driven-dissipative systems [62].

VII. OUTLOOK

We report a precise method to reconstruct the Hamilto-
nian of a system via ringdown measurements. The method
allows for a full characterization of the energy landscape, in-
cluding multiple stable solutions, saddle points, and attractor
pools. The method is particularly suited for studies in the
growing field of driven-dissipative nonlinear systems, where
a Hamiltonian characterization from first principles is often
very difficult. Furthermore, it bestows the ability to char-
acterize the symplectic norm of different stable oscillation
solutions in the rotating frame with a connection to rela-
tivistic quantum mechanics and causality. We expect that this
approach will allow the classification of a broad variety of
systems, including nanomechanics, superconducting circuits,
light-matter systems, and nonlinear optics.
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APPENDIX A: EXPERIMENTAL CHARACTERIZATION

In this Appendix, we characterize the resonator with
various measurements. We first perform parametric sweeps
in Sec. A 1 and extract the resonator energy decay
rate �/2π = 112(2) Hz, resonance frequency ω0/2π =
1.1198294(3) MHz, Duffing nonlinearity β = −9.894(4) ×
1016 (V · s)−2, and parametric drive conversion factor C =
9.88(5) × 103 V. In Sec. A 2, we perform a resonant drive
sweep to extract the factor A = 16.22(1) × 106 s−2 converting
from resonant applied voltage to force. Finally, in Sec. A 3, we
perform ringdown measurements showing that the resonator
experiences linear damping.

1. Parametric sweeps

In this section, we describe how we measure the para-
metric response of our resonator in order to extract its
resonance frequency ω0, energy decay rate �, and Duffing
nonlinearity β.

We send a parametric tone Ũp = Up cos(2ωrt ) to our device
and read out the induced displacement at frequency ωr. In
Fig. 5(a), we show the system’s response while sweeping
the frequency of the parametric drive from high to low fre-
quencies for fixed parametric drive voltage Up = 4.54 V. By
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(a)

(b)

(c)

FIG. 5. Parametric response. (a) Measured response of our
resonator to a parametric drive Ũp = Up cos(2ωrt ) with voltage am-
plitude Up = 4.54 V. The frequency is swept from high to low values.
(b) Response to a parametric drive as in (a) for different values of
Up. The dashed grey line indicates the measurement of (a), the red
dashed line corresponds to the fitted Arnold tongue outline [see (c)],
while the dots indicate the parameters used in Fig. 3. (c) Response to
a parametric drive as in (a) for different values of Up when sweeping
from low to high frequencies.

repeating this measurement for different parametric drive volt-
ages, we obtain the phase diagram of our parametric oscillator,
shown in Fig. 5(b). Now, performing the same measurement
but instead sweeping the frequency from low to high fre-
quencies (i.e., “against” the Duffing nonlinearity), we obtain
a different diagram commonly referred to as Arnold Tongue,
shown in Fig. 5(c).

Comparing with theoretical predictions [51], Figs. 5(b)
and 5(c) allow us to read out the different phases and number
of solutions of our resonator depending on the parametric
drive strength and frequency. Indeed, the outline of the Arnold
tongue, shown as a red dashed line, indicates the (frequency-
dependent) parametric threshold, above which the resonator
has exactly two stable states (the parametric phase states),
both of which have finite-amplitude but opposite phases. The
orange region outside the Arnold tongue in Fig. 5(b) features
a zero-amplitude state in addition to the two parametric phase
states. Which state is selected depends on the initial condition
of the resonator. Finally, in the white region in Fig. 5(b) only
the zero-amplitude state is stable.

To find the equation predicting the parametric response
of our device, we use the slow-flow equations [cf. Eq. (3)
and (B1)], and find the steady state amplitude response R =√

u2 + v2 by setting u̇ = v̇ = 0, yielding [51][
−λ2

4
+
(

�ω

ω2
0

)2

+
(

1 − ω2

ω2
0

+ 3

4

βR2

ω2
0

)2
]

R2 = 0 . (A1)

Equation (A1) has the trivial solution R = 0. For the case
R �= 0, we can divide Eq. (A1) by R2 to obtain the nontrivial
solutions

R(ω) =
(

4ω2
0

3β

[(
ω2

ω2
0

− 1

)
±
(

λ2

4
− �2ω2

ω4
0

)1/2
])1/2

,

(A2)

when the radicands of both square roots are positive. Thus,
the parametric amplitude response allows us (amongst other
things) to extract the Duffing nonlinearity.

The outline of the Arnold tongue corresponds to the limit
R → 0 in Eq. (A2), leading to

(
ω2 − ω2

0

)2 − λ2ω4
0

4
+ �2ω2 = 0 . (A3)

Solving for the parametric drive yields

λ = 2

√
�2ω2

ω4
0

+
(

1 − ω2

ω2
0

)2

, (A4)

where we kept the (physical) positive solution.
To extract our device parameters, we start by fitting

Eq. (A4) to the outline of the Arnold tongue, see red dashed
line in Fig. 5(c). For the fit, we replace λ = Up/C, where C
is a constant converting the unitless parametric drive strength
λ to the applied parametric voltage Up. Doing so, we obtain
the resonance frequency ω0/2π = 1.1198294(3) MHz and
the energy decay rate �/2π = 112(2) Hz of our resonator, as
well as the conversion constant C = 9.88(5) × 103 V.

In a second step, we use the measured parametric response
in Fig. 5(a) and fit it to Eq. (A2) in order to extract the Duffing
nonlinearity β = −9.894(4) × 1016 (V s)−2, while fixing ω0,
�, and C to the previously fitted values.

2. Resonant sweep

We now extract the factor A, converting from an input
voltage Ũr = Ur cos(ωrt ) to an applied force F (in units Vs−2),
from the resonant response of our resonator.

To calibrate this, we consider the EOM for our resonator
under near-resonant (but small, i.e., neglecting the Duffing
term) drive [cf. Eq. (1)],

ẍ(t ) + ω2
0x(t ) + �ẋ(t ) = AŨr (t ), (A5)

where we replaced the forcing term by F = AŨr. Taking the
Fourier transform of Eq. (A5) yields

x(ω) = AŨr (ω)
[
ω2

0 − ω2 − iω�
]−1

, (A6)

which provides a direct link between the voltage Ũr applied to
our device and the voltage Uout ≡ x we read out.

We can thus extract A by sweeping the frequency ωr of a
driving tone across the mechanical resonance of our resonator
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FIG. 6. Linear resonant response. An input voltage Ũr =
Ur cos(ωrt ) with Ur = 10 mV is swept across the resonance fre-
quency and the amplitude response R = √

u2 + v2 at frequency ωr

is measured (dots). The data is fitted (line) according to Eq. (A6)
with fixed �/2π = 112 Hz, while ω0 is left as a free parameter to ac-
count for small frequency drifts. We extract a value A = 16.22(1) ×
106 s−2.

and measuring its response. In Fig. 6, we fit the measured
response with Eq. (A6) and obtain A = 16.22(1) × 106 s−2.

3. Ringdown measurement

Here, we verify that our resonator experiences linear
damping by taking a ringdown measurement. Solving the
equation of motion of our resonator [Eq. (1)] with no drive
(λ = F = 0), we obtain the amplitude R as a function of
time t ,

R(t ) = A0e−�t/2, (A7)

with � the linear damping coefficient and A0 ≡ R(0) the initial
amplitude. Note that the presence of a Duffing nonlinearity
does not affect this amplitude decay [23,63].

We experimentally perform a ringdown measurement by
displacing the oscillator to an initial amplitude A0 with a near-
resonant force, and then turning off this force. As shown in
Fig. 7, the oscillator decays according to Eq. (A7). Nonlinear
damping would appear as deviations from the exponential de-
cay [23,54,63]. This justifies our assumption of purely linear
damping for the reconstructions.

APPENDIX B: LINEARIZED MODEL

In this Appendix, we describe the method we use to obtain
the EOMs for the rotating frame coordinates u and v, and the
link between the symplectic norm and the ringdown trajecto-
ries. We first obtain the steady state solutions under parametric
drive, then we linearize the EOMs in their vicinity. We solve
the linearized EOMs to get analytical expressions for the res-
onators rotation frequency and direction around the attractors.
The latter reveals a direct link between the ringdown rotation

FIG. 7. Ringdown measurement. We drive our resonator with
a near-resonant force to amplitude A0 and then turn off the force,
allowing us to measure our resonator’s amplitude R decay as a
function of time t (dark blue dots). We fit the linear damping model
in Eq. (A7) to the data, yielding �/2π ≈ 110 Hz and starting am-
plitude A0 ≈ 0.40 mV. There are no deviations at large amplitudes,
indicating that our oscillator’s loss is dominated by linear damping.

and the symplectic norm of the corresponding final steady
state. Finally, we show how to extract the symplectic norm
from a ringdown measurement using the spectral response
function.

1. Averaging method

As described in the main text, starting from Eq. (1), we
move to a rotating frame with out-of-phase quadratures u(t )
and v(t ), defined via x(t ) = u(t ) cos(ωrt ) − v(t ) sin(ωrt ). As-
suming that u(t ) and v(t ) vary slowly in time compared to
the mechanical oscillations with frequency ωr, we average the
EOMs over the time 2π/ωr to obtain approximated EOMs for
u(t ) and v(t ) [51],

u̇ = −�

2
u − δv − 3β

8ωr
(u2v + v3) − λω2

0

4ωr
v ,

v̇ = −�

2
v + δu + 3β

8ωr
(u3 + uv2) − λω2

0

4ωr
u , (B1)

where we introduce the detuning δ ≡ (ω2
0 − ω2

r )/2ωr. For
simplicity, we also set ψ = 0 when moving from Eq. (1) to
Eq. (B1). This phase ψ rotates the energy landscape in phase
space around the origin with an angle of ψ/2, so the solutions
for u or v calculated for ψ = 0 in this section can be rotated
by an angle of ψ/2 to match the experimental results.

2. Linearization of the EOMs

To predict the motion of the resonator near an attractor, we
linearize the slow-flow equations [Eq. (B1)] near the attrac-
tors [51,64]. To do so, we first determine the coordinates of
the attractors (i.e., the stationary states of the system) in the
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rotating frame by setting u̇ = v̇ = 0 in Eq. (B1). Solving the resulting coupled polynomial equations leads to five possible
solutions [65,66]:

(uf , vf )1 = (0, 0) ,

(uf , vf )2,3 =
(

±u+,±u+
(
3βλω2

0u2
+ − 2λ2ω4

0 + 4�2ω2
r + 4λω4

0 − 4λω2
0ω

2
r

)
2�ωr

(
2ω2

r − 2ω2
0 + λω2

0

)
)

,

(uf , vf )4,5 =
(

±u−,±u−
(
3βλω2

0u2
− − 2λ2ω4

0 + 4�2ω2
r + 4λω4

0 − 4λω2
0ω

2
r

)
2�ωr

(
2ω2

r − 2ω2
0 + λω2

0

)
)

, (B2)

where

u± =

⎡
⎢⎣βλω2

0

(
2λω2

0ω
2
r + λ2ω4

0 − 2λω4
0 − 4�2ω2

r

)±
√

β2λ2ω4
0

(
2ω2

r − 2ω2
0 + λω2

0

)2(
λ2ω4

0 − 4�2ω2
r

)
3β2λ2ω4

0

⎤
⎥⎦

1/2

. (B3)

For any given set of parameters, a maximum of three of these
solutions are stable, i.e., they act as attractors, cf. Fig. 3. To see
if a solution is stable, we now introduce the displaced quadra-
tures (ũ, ṽ)k ≡ (u − uf , v − vf )k , relative to a given solution
position (uf , vf )k , and linearize Eq. (B1) around one attractor
by neglecting higher-order terms in ũ and ṽ. This procedure
yields (

˙̃u
˙̃v

)
=
(

∂ u̇
∂u

∂ u̇
∂v

∂ v̇
∂u

∂ v̇
∂v

)∣∣∣∣∣
(u,v)=(uf ,vf )k︸ ︷︷ ︸

Jf

(
ũ
ṽ

)
. (B4)

Here, Jf is the Jacobian of the slow-flow equations evaluated
around the solution position (uf , vf )k , which takes the form

Jf =
⎛
⎝ −�

2 − 3βuf vf

4ωf
−δ − 3β(u2

f +3v2
f )

8ωr
− λω2

0
4ωr

δ + 3β(3u2
f +v2

f )
8ωr

− λω2
0

4ωr
−�

2 + 3βuf vf

4ωr

⎞
⎠.

(B5)

The Jacobian Jf describes the linearized forces acting in the
rotating frame near a given solution. Solving the linear first-
order differential equation given by Eq. (B4) leads to(

ũ
ṽ

)
= ζw+eμ+t + ζ ∗w−eμ−t . (B6)

Here,

ζ = 1

2
(vi − vf ) − i

(
3βufvf

8ωrωlin
(vi − vf )

+
(
9βu2

f + 3βv2
f + 4ω2

0 − 4ω2
r − 2λω2

0

)
16ωrωlin

(ui − uf )

)
(B7)

is a constant which depends on the initial position (ui, vi ) of
the resonator in the rotating frame. Furthermore, we use in
Eq. (B6) the Jacobian’s eigenvectors

w± =
( −6βuf vf ±8iωrωlin

9βu2
f +3βv2

f +4ω2
0−4ω2

r −2λω2
0

1

)
, (B8)

and corresponding eigenvalues

μ± = −�/2 ± iωlin, (B9)

with the complex frequency

ωlin = 1

8ωr

[
27β2u4

f + 6βu2
f

(
9βv2

f + 8ω2
0 − 8ω2

r + 2λω2
0

)
+ (3βv2

f + 4ω2
0 − 4ω2

r − 2λω2
0

)
× (9βv2

f + 4ω2
0 − 4ω2

r + 2λω2
0

)]1/2
. (B10)

If the real part of one eigenvalue in Eq. (B9) is positive,
Eq. (B6) diverges for t → ∞ and (uf , vf )k is an unstable state.
If both real parts are negative, (ũ, ṽ) converge to (0, 0) and
(uf , vf )k is an attractor [51,64]. The theory results depicted
in Figs. 2(b), 2(c)(i), and 2(c)(ii) are directly calculated using
Eq. (B6).

The theory prediction for the frequency of the rotation
around an attractor in Fig. 2(c)(iii) is analytically calculated
using

1

2π

dφ̃

dt
= ∂

∂t
arctan

(
ṽ

ũ

)

= 1

2π

ũ(d ṽ/dt ) − ṽ(dũ/dt )

ũ2 + ṽ2

= −|ζ |2ωlin

π

ds2

ũ2 + ṽ2
e−�t , (B11)

with the symplectic norm defined as

ds2 ≡ i(w+,1w−,2 − w−,1w+,2) , (B12)

and where w±,l is the lth entry of w±. The sign of ds2 there-
fore decides the rotational sense of the ringdown. Note that
Eq. (B11) only needs ũ and ṽ to be of the form described in
Eq. (B6). The explicit form of ωlin or ζ is not relevant. The
connection between ringdown chirality and symplectic norm
therefore holds for more general systems than the studied
parametric oscillator.

We now show that this quantity is identical to the sym-
plectic norm derived for quantum driven-dissipative systems,
which allows to classify stable states in driven-dissipative
systems [29,30,67].
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3. Symplectic norm

To see that the symplectic norm [cf. Eq. (B12)] is the same
as the one defined in quantum driven-dissipative systems, we
transform our definition of the symplectic norm to the form
commonly used in quantum optics [29,30,67]. First, we ex-
press the rotating frame coordinates ũ(t ) and ṽ(t ) in terms of
the complex coordinate α(t ) and its complex conjugate α∗(t )
via the transformation matrix S:

(
ũ
ṽ

)
=
√

h̄

2mω0

(
1 1
i −i

)
︸ ︷︷ ︸

≡S−1

(
α

α∗

)
. (B13)

This basis change can be interpreted as moving to the mean-
field limit of bosonic creation and annihilation operators of a
quantum harmonic oscillator representing the quadratures ũ(t )
and ṽ(t ) (i.e., α = 〈a〉 with a bosonic annihilation operator a
and expectation value 〈...〉).

Note that the
√

h̄/2mω0 prefactor is the same for both
quadratures due to our definition of ũ and ṽ sharing the same
units. This prefactor leads to

S−1 = h̄

mω0
S†, (B14)

implying that S is not unitary and therefore not a norm-
preserving transformation. This will later be accounted for by
scaling the vectors in the new basis, and has no consequences
for the sign of the symplectic norm, which is the relevant
quantity for us.

We use the transformation introduced in Eqs. (B4)
and (B13) to find the equations of motion for α and α∗:

i S
(

˙̃u
˙̃v

)
= i SJf

(
ũ
ṽ

)
⇒ i

(
α̇

α̇∗

)
= iSJf S−1︸ ︷︷ ︸

≡D

(
α

α∗

)
. (B15)

We multiplied both sides of Eq. (B13) with a complex factor
i in order to bring Eq. (B15) into a form where the so-called
dynamic matrix D [68] of the system can be directly read out.
This is crucial as the symplectic norm defined in Ref. [30] is
formulated in terms of the eigenvectors of the dynamic matrix.

The eigenvectors v± of the dynamic matrix D can be cal-
culated using the eigenvectors w± of the Jacobian Jf :

Jfw± = μ±w±

⇒ i SJf S−1Sw± = i μ±Sw±
⇒ i DSw± = i μ±Sw±

⇒ D

(√
mω0

h̄
v±

)
= iμ±

(√
mω0

h̄
v±

)
. (B16)

In the last line, we used the definition of D from Eq. (B15)
and introduced an additional factor of

√
mω0/h̄ to ensure that

|w±| = |v±|, accounting for the fact that S is not a unitary
transformation, cf. Eq. (B14).

Since w+ = w∗
−, this implies that v+ = v∗

−, and we have
w†

+ = wT
−, as well as v†

+ = vT
− (with T denoting transpose),

allowing us to rewrite the classical symplectic norm defined

FIG. 8. Hamiltonian reconstruction before adjusting the offset
Ck of each attractor. After using Eq. (5) to recover the relative
Hamiltonian landscape along each ringdown trajectory and setting
the end point of each ringdown to Ck = 0, we obtain a discontinuous
Hamiltonian. The clear discontinuity happens at the separatrix of the
system since the offset between the different attractors Ck − Ck+1 has
yet to be found.

in Eq. (B12) as

ds2 = (w−,1,w−,2)

(
0 −i
i 0

)(
w+,1

w+,2

)

= (w−,1,w−,2)S†
(
S†
)−1
(

0 −i
i 0

)
S−1S

(
w+,1

w+,2

)

= (Sw+)†(S†)−1
(

0 −i
i 0

)
S−1Sw+

= v†
+I−v+ , (B17)

with I− = diag(1,−1), and where we used v+ = Sw+. Since
the symplectic norm is real valued, one could also calculate it
using v−, yielding the same result:

ds2 = (ds2)† = (v†
+I−v+)† = v†

−I−v− . (B18)

Equations (B17) and (B18) show that the (classical) sym-
plectic norm defined in Eq. (B12) coincides exactly with
the symplectic norm introduced in Ref. [30]. As the sign of
Eq. (B11) is determined by ds2, the rotational sense of a ring-
down is directly linked with the sign of the symplectic norm
of the attractor. Since the sign of the symplectic norm of an
attractor is positive (negative) for a minimum (maximum) of
the underlying energy landscape [29,30], the rotational sense
of the ringdown can be used to differ between maxima and
minima in the rotating frame energy.

4. Spectral response

Having established a link between the rotational sense
of ringdowns and the symplectic norm, we derive the spec-
tral response of fluctuations around an attractor. This spectral
response also allows us to extract the symplectic norm from
ringdown measurements.
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FIG. 9. Reconstructed Hamiltonians and residuals with added noise. (a) Multiple ringdowns in phase space for the mixed parametric
phase, with (i) no added noise (i.e., same as measured in Fig. 3), and added Gaussian noise in post processing at each measured points with
standard deviation (ii) σV ≈ 2 × 10−3 mV and (iii) σV ≈ 1 × 10−2 mV. (b) The corresponding reconstructed Hamiltonian Hrot . (c) The residual
Hrot − Hfit

rot , with the corresponding fitted Hamiltonian Hfit
rot of each reconstruction. For a better estimate of our reconstruction performance,

we use the overall offset, Duffing nonlinearity β, natural frequency ω0, parametric driving strength λ, and parametric drive angle ψ as fit
parameters.

In analogy to driven-dissipative quantum systems [29,30],
we first introduce the correlator function

Gc(t ′ − t ) = �(t ′ − t )〈ṽ(t )ũ(t ′) − ũ(t )ṽ(t ′)〉t

= �(t ′ − t )
2ds2|ζ |2

�
e− �

2 (t ′−t ) sin(ωlin(t ′ − t )),

(B19)

where �(t − t ′) is the Heavyside step-function. The function
Gc correlates the displaced quadratures ũ(t ) and ṽ(t ′) at dif-
ferent times to capture the rotational sense of a ringdown near
an attractor. This correlator is reminiscent of Eq. (B12), and is
analogous to a retarded Green’s function in driven-dissipative
quantum systems, correlating at different times the creation
and annihilation of bosons on top of a stable solution. Note
that the second equality in Eq. (B19) holds in the limit of
the linearization procedure presented earlier. The sign of the
symplectic norm can now be read out directly by inspecting
the peaks and dips of the spectral function [29,30,34]. This
spectral response is related to the imaginary part of the Fourier

transform of the Green’s function Gc(ω) via

A(ω) = −2Im[Gc(ω)]. (B20)

Explicitly computing Eq. (B20) using Eq. (B19) yields the
spectral response of our system:

A(ω) = |ζ |2ds2

2

[
1

(ω − ωlin )2 + �2

4

− 1

(ω + ωlin )2 + �2

4

]
.

(B21)

A peak (dip) of A at positive frequencies therefore corre-
sponds to a positive (negative) symplectic norm and hence to a
minimum (maximum) of the rotating frame energy landscape
Hrot at (uf , vf ).

APPENDIX C: DETAILS OF THE HAMILTONIAN
RECONSTRUCTION

In this section, we provide further details on the Hamil-
tonian reconstruction process. We start the reconstruction by
using a single ringdown measurement with the quadratures
u j (t j ) and v j (t j ) measured at discrete times t j . Assuming
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that our device is linearly damped, and using the extracted
damping �, we calculate the change in the Hamiltonian

Hrot (u j, v j ) at each coordinates along the ringdown path by
numerically integrating Eq. (5).

We then find the attractor k, e.g., k = 1, 2, 3 for the case
of three attractors, in which the resonator rings down into
by looking at the final value (uf , vf )k . We fix the Hamilto-
nian Hrot (uf , vf ) = Ck at the final coordinate (uf , vf )k to an
arbitrary value Ck . To do so, we add a constant offset to the
Hamiltonian change 
Hrot calculated for the ringdown. This
will ensure that the Hamiltonian is singled-valued at each at-
tractor, i.e., Hrot (uf , vf ) is the same for each ringdown ending
up in the same attractor. At this stage, we simply set Ck = 0.

As a second step, we repeat the integration procedure for
all ringdown measurements and check if the final value of
each ringdown (uf , vf )k is the same as the first ringdown, or if
it ends up at another attractor. If it is another attractor, we label
the new attractor as k + 1, and add an arbitrary value Ck+1 to
the trace, which we will later adjust. We repeat this procedure
for all measured ringdowns, allowing to find the Hamiltonian
change for all the ringdown paths, as shown in Fig. 8 for an
example with three attractors.

We generally find discontinuities in the Hamiltonian recon-
struction at the separatrices between different attractors, see
Fig. 8. Such discontinuities are unphysical and stem from our
choice to set all offsets to Ck = 0. As a last step of the recon-
struction, we thus need to find the relative height Ck − Ck+1

between the attractors such that the discontinuities disappear.
In practice, we fix one of the constants (e.g., C1 = 0), and
vary the constant offsets Ck of the other attractors (C2 and
C3 in Fig. 8) until the Hamiltonian is smooth (i.e., such that
the second differentials of Hrot with respect to u and v are
minimized). We furthermore set the minimum of Hrot = 0,
yielding Fig. 3(a)(iii). For our demonstration examples, this
optimization was done manually.

APPENDIX D: RECONSTRUCTION ERROR

In this section, we discuss different possible sources of
noise, e.g. frequency noise, thermomechanical noise, and de-
tection noise, and how they can corrupt our Hamiltonian
reconstruction protocol. In particular, we quantify the effect
of measurement noise.

First, frequency drifts occur when the resonance frequency
of a system is not stable over time, owing to e.g. temperature
changes. Such drifts lead to a change in the actual Hamiltonian
of the resonator. For this reason, any Hamiltonian reconstruc-
tion can only be meaningful when frequency drift is small
enough to be ignored over the full measurement time scale.
Our mechanical resonator experiences small frequency drifts
(typically <1 Hz � �/2π ) over the duration (∼1 h) of a
reconstruction measurement, and should only have a small
impact on our results.

A second important noise source is the thermomechan-
ical force noise. In our device, the standard deviation of
the measured voltage due to thermomechanical force noise
is too small to be measured relative to the detection noise.
Large force noise would lead to changes in the amplitude
and phase of the oscillation over timescales of the ringdown
time τ = 2�−1. This timescale τ is also the typical time for

FIG. 10. Percentage residuals. Percentage residuals (Hrot −
H theo

rot )/H theo
rot of the reconstructed Hamiltonian landscape when driven

far detuned and above threshold, with no added noise. The theoret-
ical reconstructed landscape is obtained using ψ , ω0, β and C as
fit parameters, showing a few percents of deviation away from the
minima. The scale of the color bar is limited to ±5% for visibility.

a ringdown trajectory. Thermomechanical force noise would
therefore only have a minor impact on the positions of con-
secutive points along a ringdown, and its main role will be to
change the initial condition of the trajectory. As long as the
initial conditions are measured correctly, such changes would
not affect the reconstruction significantly. In systems with
dominant thermomechanical noise, probabilistic methods are
more suitable than our ringdown procedure [6–13].

FIG. 11. Reconstruction error. The root-mean-square error
[Eq. (D1)] of the reconstructed Hamiltonian as a function of the
standard deviation of the added noise. The larger blue and yellow
dots indicate the added noise for the reconstruction in Figs. 9(ii)
and 9(iii), respectively. For reference, the standard deviation of
our measurement is σV ≈ 9 × 10−5 mV, indicating that an order of
magnitude of noise can be added without significantly affecting the
reconstructed error.
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FIG. 12. Residuals Hrot − H theo
rot of the Hamiltonian reconstructions presented in the main text. (a) Residuals for the undriven oscillator

at positive detuning for the reconstruction Hrot shown in Fig. 1(d). (b) Residual for the undriven oscillator at negative detuning for the
reconstruction of Fig. 1(e). (c) Residuals for the the parametric oscillator driven below threshold, corresponding to Fig. 3(i). (d) Residuals
for the parametric oscillator driven above threshold, corresponding to Fig. 3(ii). (e) Residuals for the parametric oscillator driven above
threshold and far detuned, corresponding to Fig. 3(iii). (f) Residuals (Hrot − H theo

rot )/H theo
rot for the same measurement as (e) but now expressed

as percentage. The scale of the color bar is limited to ±10% for visibility.

A third important source of noise is detection noise, which
is typically approximately white over the spectral range of
interest. White noise affects each data point of a trajectory in a
random and uncorrelated manner and can seriously affect the
reconstruction. To assess the impact of white readout noise,
we add Gaussian-distributed white noise with a given standard
deviation σV to our measured data in post processing. The best
estimated Hamiltonian Hfit

rot is obtained by fitting the theoreti-
cal model [Eq. (4)] to the reconstructed Hamiltonian. We use
an overall offset, Duffing non-linearity β, natural frequency
ω0, parametric driving strength λ, and parametric drive angle
ψ as fit parameters.

The fidelity of our reconstruction is quantified via the stan-
dard deviation of the reconstructed Hamiltonian Hrot relative
to the fitted Hamiltonian Hfit

rot over the full measured phase-
space (u j, v j ):

σHrot =
√∑N

j=1

[
Hrot (u j, v j ) − Hfit

rot (u j, v j )
]2

N
, (D1)

with N ≈ 106 the number of sampled points.
In Fig. 9(a)(i), we show a set of ringdown trajectories

with an intrinsic measurement noise standard deviation of
roughly σ int

V ≈ 9 × 10−5 mV. We add white noise with stan-
dard deviation σV to this data set in post processing, and
show the results for σV ≈ 2 × 10−3 mV in Fig. 9(a)(ii), and
for σV ≈ 1 × 10−2 mV in Fig. 9(a)(iii). The corresponding
reconstructed Hamiltonians Hrot are shown in Fig. 9(b). The
reconstruction still looks qualitatively good in (ii), regard-
less of the fact that we have one order of magnitude higher
noise than in (i). In (iii), the higher noise clearly affects the

reconstruction. However, the qualitative features, such as
number and position of stable solutions, are still reconstructed
correctly.

We compare the residuals Hrot − Hfit
rot of the fit in Fig. 9(c),

showing little systematic structure in the residuals even at
σV ≈ 2 × 10−3 mV. The larger deviations near the edge on the
reconstructions are due to the lower density of measurement
points in these areas. The percentage residuals of Fig. 9(i) are
presented in Fig. 10, showing only a few percents of devia-
tion in the reconstructed Hamiltonian away from the minima
(where the energy is close to zero, leading to large percentage
errors).

The reconstructed Hamiltonian can also be used to ex-
tract the system parameters. When no noise is added and
the theoretical Hamiltonian is fitted to the reconstructed
Hamiltonian, cf. Fig. 9(i), we obtain a natural frequency
ω0/2π = 1.11983354(2) MHz, a Duffing nonlinearity β =
−9.8788(2) × 1016 (V · s)−2, and a parametric drive conver-
sion factor C = 10.6248(2) × 103 V. The errors quoted on
these parameters are the statistical errors from the fit, which
underestimate the total error. They do not take into account
parameters drifting during the measurement, or the error on
the damping � which is assumed during the reconstruction.
This could explain why the fitted parameters are several stan-
dard deviations away from the independent calibration of
Appendix A.

The reconstruction can be further quantified using the root-
mean-square (RMS) error, given by Eq. (D1). We calculate
this quantity in Fig. 11 for varying added noise. Importantly,
there is no significant increase in the RMS error for an order
of magnitude greater noise than we observe in our experiment.
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In summary, the qualitative reconstruction of the Hamiltonian
is very robust against measurement noise.

APPENDIX E: HAMILTONIAN RECONSTRUCTION
RESIDUALS

Here, we present the residuals of the energy landscapes Hrot

reconstructed in the main text.
First, in Figs. 12(a) and 12(b), we show the residuals Hrot −

H theo
rot corresponding to the Hamiltonian reconstructions of

Figs. 1(d) and 1(e), respectively. The theoretical prediction
H theo

rot is given by Eq. (4), using parameters obtained from in-
dependent calibration measurements—see Appendix A. Note
that there are structures in the residuals, which can be at-
tributed to drifts (e.g., in the natural frequency ω0) over
the course of the measurements, or small errors in the cal-
ibrated parameters. Larger residuals appear further away
from the stationary state (uf = 0, vf = 0), which is expected

since the Hamiltonian is referenced to this point, so the er-
ror accumulates for data points away from this stationary
state.

The residuals corresponding to the reconstructed Hamil-
tonians of Figs. 3(i), 3(ii), and 3(iii) are shown in
Figs. 12(c), 12(d) and 12(e), respectively. We stress that the
theoretical predictions use only the parametric drive phase ψ

as a fit parameter, while the other parameters are obtained
from independent calibrations. We also show in Fig. 12(f) the
same residuals as Fig. 12(e), but now in terms of percentage.
Using precalibrated parameters, the deviations are smaller
than ∼10% away from the minima. Note that this error is
reduced to a few percent if the parameters are fitted instead,
as shown in Appendix D, cf. Fig. 10.

Importantly, our method provides good qualitative agree-
ment with the predicted Hamiltonian landscapes of various
cases, allowing us to discern all the general features (e.g.,
minima and maxima) of the energy landscape.
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