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Quantum sensors capitalize on advanced control sequences for maximizing sensitivity and precision.
However, protocols are not usually optimized for temporal resolution. Here, we establish the limits for
time-resolved sensing of dynamical signals using qubit probes. We show that the best possible time
resolution is closely related to the quantum speed limit (QSL), which describes the minimum time needed
to transform between basis states. We further show that a composite control sequence consisting of two
phase-shifted pulses reaches the QSL. Practical implementation is discussed based on the example of the
spin-1 qutrit of a nitrogen-vacancy center in diamond.
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The energy-time uncertainty principle introduced by
Heisenberg is a fundamental concept of quantum mechan-
ics. While formulated loosely in Heisenberg’s initial work,
Robertson [1] and Bohr [2] put it on firm ground
by formalizing the relationship between uncertainty and
noncommutativity of observables. Twenty years later,
Mandelstam and Tamm [3] showed that the energy-time
uncertainty is not an uncertainty relation due to non-
commutativity, but rather a statement about intrinsic time-
scales of quantum systems [4]. This insight led to the
derivation of a quantum speed limit (QSL). To do so,
Mandelstam and Tamm used the von Neumann equation
with the projection operator to develop an expression for
the overlap between the initial state jψð0Þi and the time-
evolved state jψðtÞi, yielding

hψð0ÞjψðtÞi ≥ cos

�hΔHit
ℏ

�
; ð1Þ

in the domain 0 ≤ t ≤ tðMTÞ
QSL where hΔHi2 ¼ hH2i − hHi2

is the variance of the Hamiltonian. The minimum
time needed to obtain a fully orthogonal state, i.e.,
hψð0ÞjψðtÞi ¼ 0, is then given by

t ≥ tðMTÞ
QSL ¼ π

2

ℏ
hΔHi : ð2Þ

Later, Margolus and Levitin [5] proposed an alternative
route to deriving a QSL based on the integrability of the
Schrödinger equation to obtain a maximum evolution
speed, resulting in

t ≥ tðMLÞ
QSL ¼ π

2

ℏ
hHi : ð3Þ

In contrast to the Mandelstam-Tamm definition, Eq. (3)
bounds the time on the mean energy hHi defined relative to
the energy of the ground state. For a two-level system, the
two QSLs coincide while for systems open to a continuum
of states or for systems consisting of more than two states,
such as qutrits [6], the unified bound is tight [7,8].
Since the initial formulations of the QSL, theoretical

work has focused on more complex situations such as open
quantum systems [9] and systems with quantum entangle-
ment [10], as well as applications in quantum information
processing [11]. Here, the QSL sets the maximum speed
at which computations can be performed and therefore
permits deriving an upper bound of the computational
limits of the universe [12,13]. Further, the QSL has been
studied in the field of quantum optimal control [14],
quantum thermodynamics [15], and metrology with respect
to quantum clocks [16]. Obviously, the finite time of qubit
operations will also limit the time resolution achievable
in quantum sensing tasks [17]. The time limitation is of
practical importance because of the many existing and
envisioned applications of quantum sensors.
In this work, we investigate the relation between the QSL

and the time resolution achievable in quantum sensing
experiments. We show that a composite pulse sequence
consisting of two phase-shifted control rotations, equiv-
alent to a Ramsey sequence with zero time delay, reaches
the QSL. Opposite to a Ramsey interferometry measure-
ment, however, phase accumulation occurs during control
rotations rather than a free evolution interval. We derive
quantitative expressions for the quantum phase pickup as a
function of control rotation angle and velocity. We use
these expressions to define the time resolution and band-
width of the sensing sequence. We also show that time
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resolution can be extended beyond the QSL by trading for
a reduced signal-to-noise ratio. As an example, we
simulate the expected response for a nitrogen-vacancy
(NV) center in diamond that is exposed to rapidly varying
magnetic signal.
The canonical quantum sensing scheme of Ramsey

interferometry is shown in Fig. 1(a) [17,18]. In its most
basic form, the scheme uses two state transformations
to initiate and halt the coherent evolution of a probe
qubit subject to an external signal. The first transforma-
tion rotates the qubit from a known initial basis state

jψð0Þi ¼ j0i into a coherent superposition state
ð1= ffiffiffi

2
p Þðj0i þ j1iÞ, which then evolves for a given time

τ into state ð1= ffiffiffi
2

p Þðj0i þ e−iϕðτÞj1iÞ, thereby acquiring a
quantum phase

ϕ ¼
Z

τ

0

½ω0 þ δωðt0Þ�dt0: ð4Þ

Here, ℏω0 is the static energy gap between the qubit’s
energy levels, and ℏδωðtÞ accounts for a small, time-
dependent modulation due to the presence of the signal.
After coherent evolution, a second state transformation
rotates the qubit back to the original basis, followed
by projective state readout [19]. By this, the canonical
quantum sensing experiment measures the expectation
value of the projector onto the initial state j0i. The state
transformations can be described by two control rota-
tions, R̂ and R̂0, respectively. These are analogous to the
start and stop triggers in a classical test and measurement
task [Fig. 1(b)]. There, the time elapsed between start and
stop events determines the time resolution.
Ideally, the control rotations R̂ and R̂0 are infinitely fast

[Fig. 1(c)]. However, owing to the QSL, R̂ and R̂0 must
have a finite duration tR or, equivalently, a finite angular
velocity (Rabi frequency Ω). In experiments, the maximum
Ω may be limited by many factors, including finite
available driving power, competition between ω0 and Ω,
excitation of further lying energy levels, or a combination
of those. The finite speed of control rotations fundamen-
tally limits the time resolution of the sensing sequence.
For finite tR, qubit evolution under the signal Hamiltonian

already occurs during the control rotations. The qubit-
acquired phase then becomes the sum of the phase pickup
during the free evolution interval and the phase pickup
during control rotations [Fig. 1(d)]. In the most extreme case,
the free evolution time is zero, and phase pickup occurs
entirely during control rotations [Fig. 1(e)]. In this situation,
the time resolution of the sequence reaches that of the QSL
defined by Eqs. (2) and (3). (Note that for a qubit system, the
two definitions are equivalent.)
We next derive quantitative relationships between the

phase pickup ϕeff , the velocityΩ, and the angle α of control
rotations. For our derivation, we focus on a bipartite control
sequence consisting of two consecutive qubit rotations
R̂ ¼ R̂α

Y and R̂0 ¼ R̂α
�X of equal duration tR [Fig. 1(e)].

Here, X and Y are orthogonal axes, as shown in Fig. 1(f).
This sequence represents the basic Ramsey scheme with
zero time delay. The sequence duration is τ ¼ 2tR ¼ α=Ω,
where Ω is the maximum allowed rotation velocity. In the
Supplemental Material [20], we show that an equal time
share (tR ¼ tR0) between the two parts of the bipartite pulse
sequence yields optimum sensitivity [as defined by Eq. (8)
below]. This is also true when varying the angle between
rotation axes.

FIG. 1. Concept of time-resolved sensing at the QSL.
(a) Canonical control sequence for signal estimation via quantum
phase accumulation. R̂ and R̂0 are control rotations, and R̂ϕ is the
qubit rotation due to interaction with the signal. (b) Stopwatch
analogy of (a). (c) Pulse-timing diagram of the control sequence
for infinitely fast control rotations. Phase accumulation occurs
entirely during the free evolution time τ. π=2 are rotation angles
and x, −y are axes of rotation. (d) Pulse-timing diagram for finite
duration tR > 0 of control rotations. (e) Pulse-timing diagram at
the QSL, when the interpulse delay becomes zero and τ ¼ 2tR.
Phase accumulation now occurs entirely during control rotations.
α is the rotation angle. (f) Bloch sphere trajectories for sequence
(e) with α ¼ 90°. Dots are the projection on the z axis.
Trajectories are shown for ϕ ¼ 0° (light blue), 10°, 20°, and
30° (dark blue). (g) Bloch sphere trajectories for α ¼ 63°. Further
trajectories are shown in [20].
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Our sensor output is the overlap between the initial qubit
state jψð0Þi ¼ j0i and the final qubit state jψðτÞi, given by
the transition probability [10,17]

p ¼ 1 − jh0jψðτÞij2 ð5aÞ

¼ 1 − jh0jR̂R̂0j0ij2 ð5bÞ

¼ 1 − jh0jR̂α
�XR̂

α
Y j0ij2: ð5cÞ

In the limit of strong control fields (Ω ≫ δωðtÞ), within
linear response (ϕ ≪ π=2), and assuming that δωðtÞ ≈ δω
is stationary during τ, the transition probability of this
sequence is [20]

p ¼ 1

4
ð1 − cos 2αÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

p0

þ 1

2

sin αðcos α − 1Þ
α

ϕ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δp

: ð6Þ

Here, p0 is the bias point of the measurement, and δp is
the change in probability due to the presence of the signal
δω [17]. Equation (6) defines an effective phase

δp ¼ 1

2
ϕeff ¼

1

2

sin αðcos α − 1Þ
α

ϕ ≔
1

2
ϵϕ ð7Þ

that corresponds to the ideal Ramsey phase ϕ ¼ δωτ
[Eq. (4)] reduced by the scaling factor ϵ < 1. Using
Eq. (7), we can define the sensitivity η of the sequence by

η ≔ d½δp�=d½δω�; ð8Þ
taken in the limit δω → 0.
For the canonical case of qubit rotations between

orthogonal axes on the Bloch sphere (α ¼ 90°), the
transition probability is

p ¼ 1

2
þ ϕ

π
; ð9Þ

corresponding to p0¼0.5 and ϵ¼2=π≈0.637. Figures 1(f)
and 1(g) show Bloch-sphere trajectories for α ¼ 90° and
α < 90°, and Fig. 2 plots ϕeff as a function of τ.
Having established the phase pick-up of the bipartite

control sequence, we proceed to the problem of sampling a
time-dependent signal. As a generic example, we consider
the detection of a transient magnetic field B⃗ðtÞ using a spin-
1=2 system as the qubit probe, where δωðtÞ ¼ γBðtÞ. Here,
γ is the transduction factor (given by the gyromagnetic
ratio), and BðtÞ is the vector component of B⃗ðtÞ parallel to
the quantization axis of the spin qubit. The influence of off-
axis components of B⃗ðtÞ is discussed in [20].
To record a time transient, we sample BðtÞ point by point

by incrementing the delay time t of the control sequence
with respect to a common start trigger at t ¼ 0 [Fig. 3(a)].
For signals that vary only slowly with time, BðtÞ is almost

stationary during control pulses, and the sensor output
δpðtÞ ¼ ϵτγBðtÞ is directly proportional to the signal field.
On the other hand, for more rapidly changing signals, the
acquired quantum phase becomes a more complex function
of signal and control fields. In a general case, we express
the transition probability δp by the convolution

δpðtÞ ¼
Z

∞

t0¼−∞
kðt0 − tÞγBðt0Þdt0; ð10Þ

where kðtÞ is the kernel of the control sequence and t0 the
time delay between signal and control fields [Fig. 3(a)].
Specifically, for the bipartite sequence of Fig. 1(e), the
sensing kernel is

kðtÞ ¼
�
sin½Ωðτ=2 − jtjÞ� jtj < τ=2

0 jtj > τ=2
: ð11Þ

In the frequency domain, the kernel is given by the transfer
function KðωÞ ¼ jFT½kðtÞ�j,

KðwÞ ¼
ffiffi
2
π

q
Ωj cos ðΩτ=2Þ − cos ðωτ=2Þj

jΩ2 − ω2j ; ð12Þ

where FT is the Fourier transform. KðωÞ for other sensing
sequences, such as those using amplitude-shaped pulses,
can be computed numerically using spin dynamics simu-
lations [20]. Amplitude shaping will, however, always
worsen time resolution, because qubit rotations are below
the maximum possible Ω.
Figures 3(b) and 3(c) plot kernel profiles kðtÞ and

corresponding transfer functions KðωÞ for several rotation
angles α ¼ Ωτ between 0° and 90°. Clearly, a smaller α
leads to narrower kernels and, thus, an improved time

FIG. 2. Phase pickup ϕeff=ϕ as a function of τ for control
rotations with finite velocity. For durations shorter than the QSL
(τ < 2tR, solid curve), ϕeff is determined by the sequence of
Fig. 1(e). For durations longer than the QSL (τ > 2tR, dashed
curve) ϕeff is determined by the sequence of Fig. 1(d). The upper
bound (ϕeff ¼ ϕ, dotted line) is for the hypothetical case of
infinitely fast control rotations, corresponding to the sequence in
Fig. 1(c).
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resolution. Defining the time resolution tmin by the full
width at half maximum of kðtÞ, we find for the bipartite
control pulse that

tmin ≔ τ

�
1 −

arcsin sin α
2

α

�
ð13Þ

(See [20] for other possible definitions of tmin). Specifically,
tmin ¼ 2

3
τ ¼ ð2π=3ΩÞ for α ¼ 90°, and tmin ≈ 1

2
τ ¼ ðα=2ΩÞ

in the limit α → 0. Further, we can define a frequency
bandwidth by the first root of the transfer function KðωÞ,
given by

ΩBW ≔ Ω
�
2π

α
− 1

�
; ð14Þ

where ΩBW ¼ 3Ω for α ¼ 90° [Fig. 3(c) and [20] ].
For a given angular velocity Ω, shorter rotation angles

α < 90° therefore provide a means to further improve
the time resolution. The improvement is approximately
tmin ∝ α, and, correspondingly, for the bandwidth,
ΩBW ∝ α−1. The improved time resolution, however,
comes at the expense of a drastically lowered sensitivity,
since η ∝ α2 for small α [Eqs. (7) and (8)]. The sensitivity is
further illustrated in Fig. 3(d), which plots η as a function of
τ for arbitrary signal frequencies ω. An initial experimental
demonstration of our technique is discussed in Ref. [21].
The apparent improvement of the time resolution beyond

the QSL for short α [Eq. (13)] is in accordance with the
interpretation of the uncertainty principle as defined by
Eq. (1): the QSL reflects the minimum time required for
transferring a quantum state to a fully orthogonal state. By
reducing the orthogonality, thus not fully transferring the
state, the time requirement shrinks therefore permitting a
higher time resolution.
As a practical example, we consider the S ¼ 1 spin

system of a single nitrogen-vacancy center in diamond [22].
The NV center is a prototypical qubit sensor with a growing
range of applications in materials science, physics, chem-
istry, and biology [23–28], including the study of dynami-
cal excitations in these systems [29–31]. The NV center
exhibits three spin energy levels mS ¼ 0 and mS ¼ �1 and
two allowed spin transitions with frequencies ω and ω0, as
depicted in Fig. 4(a). To form an effective two-level system,
the ω (or ω0) transition can be isolated by applying an axial
bias field B0 along the NV symmetry axis [Fig. 4(b)].
For driving fields Ω smaller than the frequency difference
jω0 − ωj between the mS ¼ �1 levels [Fig. 4(c)], the
excitation is selective and the other (ω0 or ω) transition
can be neglected.
Figure 4(d) shows the expected output probability p for a

NV spin qubit as a function of Ω. The output probability is
calculated using a laboratory-frame simulation of the spin
dynamics, taking the full S ¼ 1 nature of the NV center and
the effect of counterrotating terms in the excitation pulses

FIG. 3. Qubit output and sensing kernel. (a) Timing diagram.
To sample the signal transient BðtÞ, the control sequence (second
line) is stepped along t in increments of Δt. The output signal,
given by state probability pðtÞ, is the convolution between BðtÞ
and the kernel kðtÞ of the control sequence. Gray blocks represent
initialization and readout of the qubit state, and white blocks
represent the control rotations. (b) Kernel kðtÞ for control rotation
angles α ¼ 22.5° (light blue), 45°, 67°, and 90° (dark blue).
Kernels are computed using a lab-frame simulation of the spin
evolution [20]. The time resolution tmin is defined by the full
width at half maximum. (c) Normalized Bode plots KðωÞ for the
kernels shown in (b). The bandwidth ΩBW is defined by the first
root of KðωÞ. (d) Sensitivity η ∝ KðωÞ as a function of signal
frequency ω and pulse duration τ at fixed Rabi frequency Ω. For
dynamical signals ω > 0, an optimum pulse duration exists
where sensitivity is maximized (white curve).
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into account [20]. Two simulations are presented where the
spin is either initialized and read out in the mS ¼ 0 state or
in the mS ¼ −1 state, respectively.
First, we consider themS ¼ 0 case. For moderate driving

fields Ω that are safely smaller than any of the transition
frequencies (ω, ω0, jω0 − ωj), the output probability p is
nearly independent of Ω and follows the theory of Eq. (7).
On the other hand, for larger Ω, the output probability is
modified due to strong driving effects—namely, Bloch-
Siegert shifts and breakdown of the rotating-wave approxi-
mation [32–34]—and by spurious excitation of the ω0
transition. Both effects are not accounted for by the basic
theory of Eq. (7). Further, because the ω and ω0 transitions
lead to opposite signs in the phase ϕeff , the signal is
completely canceled for very large Ω ≫ jω0 − ωj [blue
trace in Fig. 4(d)].
By contrast, when preparing and reading out the

mS ¼ −1 spin state [green trace in Fig. 4(d)], the cancel-
lation remains incomplete at any bias field. This provides a
remedy to the mS ¼ 0 case. The incomplete cancellation is
due to selection rules for qubit rotations: transitions are
allowed between mS ¼ 0 and mS ¼ �1, but forbidden

between mS ¼ −1 and mS ¼ þ1 states. Preparation and
readout of mS ¼ �1 are realized experimentally by slow,
selective π rotations.
In summary, our work establishes limits to the temporal

resolution reachable by a quantum sensor. We develop our
discussion in the framework of the QSL, which is applied to
the canonical sensing principle of Ramsey interferometry.
We derive expressions for the coherent phase pickup during
a generic sequence consisting of two phase-shifted control
pulses and analyze the response regarding time resolution,
frequency bandwidth, and sensitivity. We numerically
simulate the expected phase response for the single spin
of an NV center in diamond, taking the full S ¼ 1 nature of
the spin system and nonlinear driving effects into account.
Beyond fundamental aspects in quantum metrology, our
work has practical relevance for real-world applications of
quantum sensors, such as the mapping of fast magnetiza-
tion reversals in spintronic devices. These dynamics typ-
ically occur on timescales of a few nanoseconds [35].
For NV centers, tmin ∼ 1 ns is reached, for example, using
Ω=2π ¼ 100 MHz and α ¼ 60° [Eq. (13)]. Such Rabi
frequencies Ω are available using on-chip microwave
delivery [33].
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