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Problem 1. Time evolution of the transverse field Ising chain

The goal of the exercise is to perform time evolution using on-the-fly matrix-vector multiplica-
tion.

The transverse field Ising chain with open boundary conditions is defined by the following
Hamiltonian

Ĥ = Ĥ Ising + Ĥ transv = J

N−1∑
i=1

σ̂ zi σ̂
z
i+1 − hx

N∑
i=1

σ̂ xi .

As the dimension of the Hilbert space grows exponentially in the number of sites on the chain
we will only be able to tackle small problems. To ensure optimal memory usage represent the
wave function in a real space basis, using integers as basis states, e.g.

| ↑↓↓↓↑↓↑↑〉 = bit(10001011) = 139.

As a first step we split the time evolution operator into 2 non-commuting factors, the diagonal
part given by HIsing and the nondiagonal part given by Htransv. The error involved in doing this
can be kept small by choosing a small time step τ (see section 4.3.1 and 4.3.2):

Û = exp(−iτ Ĥ ) ≈ exp(−iτ
2
Ĥ Ising) exp(−iτ Ĥ transv) exp(−iτ

2
Ĥ Ising) +O(τ3)

The diagonal part exp(−i τ2 Ĥ Ising) multiplies each basis state with a phase factor. The nondi-
agonal part can be further simplified into a product of single site operators

exp(−iτ Ĥ transv) =

N∏
i=1

exp(iτhx σ̂ xi ).

1. Work out the time evolution operator exp(iτhx σ̂ xi ) on a single site.

2. Implement the code that performs time evolution of the transverse field Ising chain with
open boundary conditions.

3. Use your code to calculate the time evolution of a single basis state. Plot the magnetisation
per site as a function of time. Start with an all-down configuration using only a transverse
field hx. You should see oscillations. Can you relate the period of the oscillations to the
magnitude of hx?

4. Now set the Ising coupling J = 1 and use a transverse field of hx = 0.4. The starting
configuration is again all-down except of a single spin flipped in the middle. What do you
observe? How does the behaviour change with hx.
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Problem 2. H–Kr scattering

In this exercise, we consider the scattering of hydrogen atoms on (much heavier) krypton atoms.
The most relevant quantity for scattering experiments is the differential cross section, dσ

dΩ(Ω),
which describes scattering intensities as a function of the angle Ω. In this exercise we will
however restrict ourselves to calculating the total cross section σtot =

∮
dΩ dω

dΩ .

To this end, we have to solve the Schrödinger equation in three dimensions,[
− ~2

2m
∆ + V (r)

]
Ψ(~r) = EΨ(~r),

where V (r) is a spherically symmetric potential. From basic quantum mechanics, we know that
in this case all eigenfunctions are also eigenfunctions of the angular momentum operators. In
particular, they can be decomposed into a linear combination of spherical harmonics of the form

Ψ(~r) =

∞∑
l=0

l∑
m=−l

Alm
ul(r)

r
Y m
l (θ, φ).

By separation of variables, this reduces the problem to the radial Schrödinger equation[
− ~2

2m

d2

dr2
+

(
V (r) +

~2l(l + 1)

2mr2
− E

)]
ul(r) = 0. (1)

We have thus reduced the three-dimensional problem to a one-dimensional problem, to which
we can apply the techniques learned in the last two exercises.

The central quantity for quantum scattering is the phase shift δl. It can be computed from the
asymptotic behaviour of the numerically integrated wave function at two points r1, r2 ≈ rmax

by using the formula

tan δl =
Kjl(kr1)− jl(kr2)

Knl(kr1)− nl(kr2)
,

where k =
√

2mE/~2, K = r1u2/r2u1 and u1,2 = ul(r1,2), and where jl and nl are the spherical
Bessel functions which you can find implemented in libraries. Then, the total scattering cross
section is given by

σtot =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl

The potential that we will use to describe the H–Kr interaction is the Lennard–Jones potential,

VLJ(r) = ε

[(σ
r

)12
− 2

(σ
r

)6
]
,

with ε = 5.9 meV and σ = 3.57 Å.

1. Reproduce the example shown in Fig. 1.

2. Observe how the scattering cross section changes with the cutoff lmax. How do you interpret
this change, and can you deduce a physical motivation for the truncation?
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Figure 1: Total scattering cross section σtot for rmin = 0.5σ, rmax = 5σ, lmax = 10.

Practical Considerations

• Be careful to work in correct units. It is useful to work in units of σ for all length scales.
With that choice, 2m

~2 = 6.12 meV−1σ−2.

• Since the potential diverges for r → 0, we need to be careful with the choice of initial
values. Since the 1/r12 term dominates for small r, we can drop the other term and arrive
at an asymptotic solution,

u(r) = exp(−Cr−5) (2)

with C =
√

6.12ε/25 (in units of σ). Start your Numerov integration from some rmin ∼
0.5σ and use (2) to set up the boundary conditions.

• A reasonable upper bound for the integration is rmax = 5σ.

• In (1), l ranges from 0 to ∞. Of course we cannot perform this summation to infinity.
Instead, truncate at some lmax.

• You can use these values to check whether you’re using the correct Bessel functions:

j5(1.5) = 6.69620596 · 10−4

n5(1.5) = −94.2361101
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