Problem 1. Monte Carlo simulation of the quantum 1D Ising model

Consider the 1D quantum Ising model in a transverse field:

$$
\begin{equation*}
H=-J \sum_{i=1}^{L} \sigma_{i}^{z} \sigma_{i+1}^{z}-\Gamma \sum_{i=1}^{L} \sigma_{i}^{x} \tag{1}
\end{equation*}
$$

Generalize your simulation of cluster update Monte Carlo from Exercise 6 to an anisotropic square lattice with $L \times M$ spins and coupling constants J_{x}, J_{τ} between horizontal and vertical neighbours, respectively. Complete the mapping to the quantum system by identifying

$$
\begin{equation*}
\beta_{\mathrm{cl}} J_{x}=\Delta_{\tau} J, \quad \beta_{\mathrm{cl}} J_{\tau}=-\frac{1}{2} \log \Delta_{\tau} \Gamma \tag{2}
\end{equation*}
$$

where β_{cl} is the inverse temperature of the classical system and $\Delta_{\tau}=\beta / M$ the imaginary time discretization of the quantum system. Note that in order to get meaningful results, you have to take $\Delta_{\tau} \ll 1$ and hence the quantum mechanical model with $|J / \Gamma| \approx 1$ corresponds to an extremely anisotropic classical Ising model. Run your code for different ratios of the coupling constants, plot the results vs. J / Γ and try to locate the quantum phase transition in the model. You can improve your estimate by simulating larger and larger systems. A true phase transition can only happen in the thermodynamic limit $L, M \rightarrow \infty$, i.e. for the infinite chain at zero temperature.

Problem 2. Hartree-Fock approximation for the attractive Hubbard model

Consider a two dimensional negative-U Hubbard model on a square lattice:

$$
\begin{equation*}
H=-t \sum_{i j \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+\text { h.c. }-\mu \sum_{i \sigma} c_{i \sigma}^{\dagger} c_{i \sigma}-|U| \sum_{i} n_{i \uparrow} n_{i \downarrow} \tag{3}
\end{equation*}
$$

To study this problem, we consider a Bogoliubov-de Gennes mean field Hamiltonian:

$$
\begin{equation*}
H_{\mathrm{BdG}}=-t \sum_{i j \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+\text { h.c. }-\sum_{i \sigma} \mu_{i} c_{i \sigma}^{\dagger} c_{i \sigma}-\sum_{i} \Delta_{i} c_{i \uparrow}^{\dagger} c_{i \downarrow}^{\dagger}+\text { h.c. } \tag{4}
\end{equation*}
$$

where μ_{i} describes charge ordering and Δ_{i} is the superconducting pairing term (we have neglected any form of spin ordering). Hamiltonian (4) can be conveniently diagonalized after a particlehole transformation:

$$
\begin{align*}
& c_{i \uparrow}=d_{1 i} \tag{5}\\
& c_{i \downarrow}=d_{2 i}^{\dagger}
\end{align*}
$$

The Hamiltonian reads:

$$
\begin{align*}
H_{\mathrm{BdG}}= & -t \sum_{i j}\left(d_{1 i}^{\dagger} d_{1 j}-d_{2 i}^{\dagger} d_{2 j}+\text { h.c }\right)-\sum_{i} \mu_{i}\left(d_{1 i}^{\dagger} d_{1 i}-d_{2 i}^{\dagger} d_{2 i}\right) \tag{6}\\
& -\sum_{i} \Delta_{i} d_{2 i}^{\dagger} d_{1 i}+\text { h.c. }
\end{align*}
$$

which can be directly diagonalized.
The non-linear self consistent mean field equations are:

$$
\begin{align*}
\Delta_{i} & =|U|\left\langle c_{i \uparrow} c_{i \downarrow}\right\rangle_{\mathrm{MF}} \tag{7}\\
\mu_{i} & =\mu+|U| \sum_{\sigma}\left\langle c_{i \sigma}^{\dagger} c_{i \sigma}\right\rangle_{\mathrm{MF}} .
\end{align*}
$$

Solve these equations in an iterative scheme:

- Make an initial guess for μ_{i} and Δ_{i}.
- Construct the Hamiltonian (6).
- Find the eigenvalues and eigenvectors of the Hamiltonian (6) .
- Compute $\left\langle c_{i \uparrow} c_{i \downarrow}\right\rangle_{\mathrm{MF}}=\left\langle d_{2 i}^{\dagger} d_{1 i}\right\rangle$ and $\left\langle c_{i \uparrow}^{\dagger} c_{i \uparrow}\right\rangle_{\mathrm{MF}}=\left\langle d_{1 i}^{\dagger} d_{1 i}\right\rangle$ and $\left\langle c_{i \downarrow}^{\dagger} c_{i \downarrow}\right\rangle_{\mathrm{MF}}=1-$ $\left\langle d_{2 i}^{\dagger} d_{2 i}\right\rangle$.
- Recompute the fields μ_{i} and Δ_{i} according to Eq. (7).
- Iterate until convergence.

1. Consider a square lattice $N=20 \times 20$ and $t=1$. For different values of $|U|$ and $\mu=2 t$, study the evolution of the superconducting gap function $\sum_{i} \Delta_{i} / N$. Repeat the same analysis fixing $|U|=3 t$ and varying μ.
2. Consider $|U|=3 t$ and add spatial disorder to $\mu: \mu_{i}=\mu+v_{i}$, where v_{i} is drawn from uniform distribution over the interval $[-V, V]$, with $V=0.5$ and $\mu=0$. Study the spatial distribution of $\Delta_{i}, n_{i}=n_{i \uparrow}+n_{i \downarrow}$.
