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We study the properties of a spin-polarized Fermi gas in a harmonic trap, using the semiclassical ~Thomas-
Fermi! approximation. Universal forms for the spatial and momentum distributions are calculated, and the
results compared with the corresponding properties of a dilute Bose gas. @S1050-2947~97!05306-7#

PACS number~s!: 03.75.Fi, 05.30.Fk

I. INTRODUCTION

Trapped degenerate atomic gases provide exciting oppor-
tunities for the manipulation and quantitative study of quan-
tum statistical effects, such as the strikingly direct observa-
tion of Bose-Einstein condensation @1–3#. Although perhaps
not as dramatic as the phase transition associated with
bosons, the behavior of trapped Fermi gases also merits at-
tention, both as a degenerate quantum system in its own right
and as a possible precursor to a paired Fermi condensate at
lower temperatures @4#.
The ideal Fermi gas is an old and well-understood prob-

lem; there are many familiar systems where the noninteract-
ing Fermi gas is a good zeroth-order approximation. Unlike
electrons in atoms and metals, and nucleons in nuclei, how-
ever, the trapped atomic gases of Refs. @1–3# are dilute. The
effects of predominantly short-ranged atom-atom interac-
tions are therefore weak. For dilute, spin-polarized Fermi
gases, the s-wave scattering amplitude ~which would domi-
nate the behavior of a comparable gas of distinguishable par-
ticles! vanishes due to the antisymmetry of the many-
fermion wave function. The next leading order, p-wave
scattering is small at low energy, and can be neglected @5#.
At low temperatures, both the Bose @6# and Fermi @7#

gases are expanded relative to a classical gas at the same
temperature. For fermions, however, this effect is due to the
Pauli exclusion principle rather than atom-atom interactions.
While in the Bose case a phase transition separates the de-
generate and classical regimes, a trapped Fermi gas under-
goes a gradual crossover between the classical limit and the
compact Fermi sea.
Harmonic traps provide a particularly simple realization

of the confined Fermi system. In this paper we calculate the
chemical potential, specific heat, and spatial and momentum
distributions of a harmonically trapped, spin-polarized, ideal
Fermi gas. These properties are described by universal scal-
ing functions for any number of particles. We show that the
observation of the spatial distribution of the trapped cloud
would provide an explicit visualization of a real-space
‘‘Fermi sea.’’

II. DENSITY OF STATES

Consider N spin-polarized fermions of mass M moving in
an azimuthally symmetric harmonic potential, with a single-
particle Hamiltonian

H~r,p!5
1
2M @px

21py
21pz

2#1
Mvr

2

2 @x21y21l2z2# ,

~1!

where vr and vz5lvr are the trap frequencies in the radial
and axial directions, respectively. The single-particle levels
of Eq. ~1! are familiar:

enx ,ny ,nz5\vr@nx1ny1lnz# , ~2!

where nx , ny , and nz are non-negative integers, and the
zero-point energy has been suppressed. In recent experiments
with trapped atomic gases, thermal energies far exceed the
level spacing (kBT@\v). We may, therefore, replace this
discrete single-particle spectrum with a continuum whose
density of states is

g~e!5
e2

2l~\vr!
3 . ~3!

III. ENERGY AND LENGTH SCALES

The chemical potential m(T ,N) is given implicitly by

N5E g~e!de

eb~e2m!11 . ~4!

At zero temperature the Fermi-Dirac occupation factor is
unity for energies less than the Fermi energy
EF[m(T50,N), and zero otherwise. A straightforward in-
tegration of Eq. ~4! then gives @7#

EF5\vr@6lN#1/3, ~5!

which sets the characteristic energy of the atomic cloud.
The characteristic size of the trapped degenerate Fermi

gas RF is given by the excursion of a classical particle with
total energy EF in the trap potential @7#:

RF[@2EF /Mvr
2#1/25~48Nl!1/6sr , ~6!

where sr5(\/Mvr)1/2 is the radial width of the Gaussian
ground state of the trap. For large N , the width of the degen-
erate Fermi cloud is much greater than the quantum length
sr , and the Fermi energy is much greater than the level
spacing of the trap, due to the Pauli exclusion induced ‘‘re-
pulsion’’ between fermions.
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Similarly, we may define a characteristic wave number
KF , which is determined by the momentum of a free particle
of energy EF:

KF[@2MEF /\2#1/25~48Nl!1/6sr
21 , ~7!

5~48Nl/RF
3 !1/3. ~8!

From Eq. ~8! we see that KF is roughly the reciprocal of the
typical interparticle spacing in the gas.
As an example, consider spin-polarized 6Li. The radial

frequency of this fermionic isotope of lithium in the trap of
Ref. @1# would be vr 5 3800 sec21. The level spacing
\vr then corresponds to 30 nK, and the characteristic
ground-state length sr is 1.6 mm. The trap has an intrinsic
axial-radial ratio l5A8. For N5105 atoms, the radius RF is
25 mm; the typical interparticle spacing 1/KF is 100 nm. The
Fermi temperature for this gas would be 3.5 mK, a hundred
times greater than the level spacing. A back-of-the-envelope
calculation confirms that the shift in EF due to interactions
can be neglected @5#.

IV. CHEMICAL POTENTIAL AND SPECIFIC HEAT
VS TEMPERATURE

For general temperature, the chemical potential m must be
determined numerically using Eq. ~4!. We can find analytic
expressions, however, in the limits of high and low tempera-
ture. For low temperature (kBT!EF) the chemical potential
is given by the Sommerfeld expansion

m~T ,N !5EFF12
p2

3 S kBTEF
D 2G . ~9!

The third- and higher-order terms in the Sommerfeld series
vanish since the density of states is a quadratic function of
energy. At high temperatures ~i.e., in the classical limit
kBT@EF), we find

m~T ,N !52kBT lnF6S kBTEF
D 3G . ~10!

Numerical results for m(T)/EF are compared with these two
limiting forms in Fig. 1. Evidently the low-temperature ap-
proximation is quantitatively accurate below kBT/EF;0.55,
while the classical expression holds for higher temperatures.
In Eqs. ~9! and ~10!, the particle number N enters

m(T ,N) only through the Fermi energy EF . This result holds
generally for all temperatures, as can be seen by casting Eq.
~4! in dimensionless form by scaling E , m , and 1/b by EF .
~The same conclusion holds for any density of states of the
form g(e)5Aeb, for constant A , b .! Figure 1 is therefore a
universal curve for harmonically trapped Fermi gases con-
taining any number of particles.
The specific heat per particle of the trapped Fermi gas @8#

is defined as CN[1/N]E/]TuN , where E(T ,N) is total in-
ternal energy of the gas. As seen in Fig. 2, CN is a monotonic
function of temperature. For low temperatures the specific
heat per particle is p2kB(kBT/EF); as we approach the eq-
uipartition limit at high temperature CN53NkB .

V. SEMICLASSICAL „THOMAS-FERMI…
APPROXIMATION

Since the exact eigenstates of the harmonic potential are
well known, the properties of a harmonically trapped ideal
gas can, in principle, be found directly by summing over
these states. It is useful, however, to have approximate forms
for various observables that can be computed directly in the
large N limit, where the exact sums become unwieldy.
In the ‘‘semiclassical’’ or Thomas-Fermi approximation

@9#, the state of each atom is labeled by a position r and a
wave vector k, which can be viewed as the centers of a wave
packet state. The energy of the particle is simply the corre-
sponding value of the Hamiltonian; the density of states in
the six-dimensional phase space (r,k) is (2p)23, where
sums over states are replaced by integrals over phase space.
These semiclassical approximations are valid in the limit of
large N , as discussed in the Appendix.
In the semiclassical limit, the number density in phase

space is

w~r,k;T ,m!5
1

~2p!3
1

eb„H~r,\k!2m…11 . ~11!

FIG. 1. Chemical potential vs temperature. Both axes are scaled
by the Fermi energy, which results in a universal curve that applies
to all harmonically trapped Fermi gases.

FIG. 2. Heat capacity vs temperature. The heat capacity is
scaled by kBN and the temperature by EF . The classical result is
shown by the dotted line.
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The chemical potential is given implicitly by the requirement

N5E d3r d3k w~r,k;T ,m!. ~12!

It follows from the correspondence principle that the
Thomas-Fermi calculation of m(T ,N) using Eq. ~12! repro-
duces the exact result obtained from Eq. ~4!; this is easily
confirmed for the harmonic oscillator, since the two integrals
are related by a simple change of variables.
After computing m(T ,N), it is straightforward to calculate

the spatial and momentum distribution functions

n~r;T !5E d3k w~r,k;T ,m!, ~13!

ñ~k;T !5E d3r w~r,k;T ,m!. ~14!

VI. SPATIAL DISTRIBUTION AT ZERO TEMPERATURE

At zero temperature, we may define a ‘‘local’’ Fermi
wave number kF(r) by

\2kF~r!2

2M 1V~r!5EF , ~15!

where V(r) is the trap potential. The density n(r) is then
simply the volume of the local Fermi sea in k space, multi-
plied by the density of states (2p)23

n~r;T50 !5
kF~r!3

6p2 . ~16!

Note that n(r) vanishes for r.RF , where r is the effective
distance

r[@x21y21l2z2#1/2. ~17!

Combining Eqs. ~15! and ~16!, we obtain ~for r<RF)

n~r;T50 !5
Nl

RF
3
8

p2 F12
r2

RF
2 G 3/2, ~18!

which has been derived elsewhere @7,10# by direct summa-
tion of harmonic-oscillator eigenstates. The cloud encom-
passes an ellipsoid with diameter 2RF in the x-y plane, and
diameter 2RF /l along the z axis. This aspect ratio is the
same as that of a classical gas in the same potential, since the
Boltzmann distribution also depends only on r:
nclassical(r,T);exp@2Mv2r2/2kBT# .

VII. MOMENTUM DISTRIBUTION
AT ZERO TEMPERATURE

One way to characterize the state of a trapped gas is to
allow a rapid adiabatic expansion and then measure the ve-
locity distribution by time-of-flight spectroscopy @1#. For the
degenerate Bose gas, the observed anisotropy of this velocity
distribution is dramatic evidence for quantum statistical ef-
fects. The semiclassical momentum distribution for a degen-
erate Fermi gas at zero temperature is simply

ñ~k;T50 !5
1

~2p!3E d3r Q„kF~r!2uku…, ~19!

where Q„kF(r)2uku… is the unit step function. The integral
~19! is the real-space volume within which the local Fermi
wave vector exceeds uku

ñ~k;T50 !5
N
KF
3
8

p2 F12
uku2

KF
2 G 3/2, ~20!

where the maximum occupied wave number KF was defined
in Eq. ~7!. Note that kF(r50)5KF .
Despite the spatial anisotropy of the trap, the momentum

distribution of the degenerate Fermi gas is isotropic. This
isotropy is a general feature of trapped Fermi gases, indepen-
dent of the trap potential @11#, since from Eq. ~19! we see
that ñ(k) depends only on the magnitude of k.
The spatial and momentum distributions ~18! and ~20!

both have the same functional form, because H is a quadratic
function of both position and momentum. In this sense, the
distribution ~18! can be viewed as a Fermi sea in real space.
If the spring constants of the trap are unequal, then n(r) will
be anisotropic. The momentum distribution ñ(k), however,
is always isotropic due to the isotropy of mass. That is, px

2 ,
py
2 , and pz

2 enter the Hamiltonian with the same coefficient,
while x2, y2, and z2 need not.

VIII. NUMERICAL RESULTS

In the semiclassical approximation, the spatial and mo-
mentum distributions are easily determined numerically for
any temperature as described in Sec. V. As with the chemical
potential, an appropriate scaling of these two distributions
yields a universal form for all harmonically trapped Fermi
gases when plotted versus the scaled variables r/RF and
uku/KF , respectively.
Figure 3 shows the scaled density versus scaled distance

for kBT/EF of 0, 0.25, 0.5, 0.75, and 1. At low temperatures,
the density is close to its zero-temperature form ~bold curve!,
Eq. ~18!, with a thin evaporated ‘‘atmosphere’’ of thickness
;RF(kBT/EF) surrounding a degenerate liquid ‘‘core.’’
In the classical limit, the density approaches a Gaussian in

FIG. 3. Universal spatial and momentum density distributions
for kBT/EF50 ~bold!, 0.25, 0.5, 0.75, and 1.0. The classical result
for kBT/EF51 is shown as a dashed line.
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r ~dashed curve!, with a width given by the equipartition
theorem: ^r2&53RF

2 (kBT/EF). As shown in Fig. 3, this ac-
curately describes the density distribution for kBT/EF51.
The evolution of the density profile from its low-temperature
Fermi form ~18! to the classical limit can be tracked by cal-
culating the mean-square excursion ^r2&, which is shown in
Fig. 4 in the dimensionless form ^r2&/RF

2 vs kBT/EF . This is
again a universal curve for all harmonically trapped Fermi
gases.
At all temperatures, the spatial and momentum distribu-

tion have the same form, since momentum and position both
enter the single-particle Hamiltonian quadratically. This was
seen explicitly for zero temperature in Eqs. ~18! and ~20!.
The scaled momentum distribution KF

3 ñ(k)/N vs uku/KF is
therefore also given by Fig. 3. Similarly, Fig. 4 also illus-
trates the scaled mean-square momentum ^k2&/KF

2 vs
kBT/EF .

IX. PERTURBATIONS

What happens if the potential is not perfectly harmonic?
We may treat dV(r) as a perturbation. Here we focus our
attention on the T50 case. From Eq. ~15!, a change in trap
potential shifts the local Fermi wave number by

dkF~r!5
M

\kF~r! @dEF2dV~r!# , ~21!

where dEF is the change in Fermi energy. From Eq. ~16!, the
corresponding change in density is

dn~r!5
MkF~r!
2p2\

@dEF2dV~r!# , ~22!

where the Fermi energy is adjusted to make *d3rdn(r) van-
ish

dEF5
E d3r dV~r!kF~r!

E d3r kF~r!
. ~23!

X. COMPARISON WITH THE BOSE GAS

The interacting Bose gases of Refs. @1# and @2# are in the
Thomas-Fermi regime @12#. Since the gases remain dilute,
two-body scattering may be treated by a d-function pseudo-
potential of strength U54p\2a/M , where a is the s-wave
scattering length. When the dimensionless parameter
UN/(\vlsr

3) is large ~as is appropriate for the experiments
of Refs. @1# and @2#! the density profile of the interacting
Bose gas is @12#

nB~r!5
RB
2

2UF12
r2

RB
2 G , ~24!

with maximum radius

RB5S 15lUN4p D 1/5. ~25!

Note that the characteristic radius scales more slowly with
the particle number for the Fermi gas (N1/6) than for the
interacting Bose gas (N1/5); similarly, the Fermi energy
scales as N1/3 while the zero-temperature chemical potential
of the Bose gas varies more rapidly, as N2/5.
The axial-radial aspect ratio for both classical and degen-

erate trapped gases is l , since in all three cases ~classical,
Fermi, and Bose! the densities are functions of r only. The
velocity ~momentum! distributions, however, can be quite
different. For classical and Fermi gases the velocity distribu-
tion is isotropic; for a zero-temperature Bose gas, however,
ñ(k) is the square of the Fourier transform of the condensate
wave function AnB(r), which is anisotropic in an asymmet-
ric trap. Note that as N increases, both RF and RB increase,
but the widths of the respective momentum distributions go
in opposite directions: KF increases with N , while the typical
momentum of a particle in a trapped Bose condensate de-
creases with particle number, since KB;1/RB by the uncer-
tainty principle.
It is amusing to compare the interatomic repulsion in a

Bose gas with the effective repulsion experienced by fermi-
ons due to the Pauli exclusion principle @13#. Equating the
characteristic Fermi and Bose radii ~6! and ~25! we see that,
crudely speaking, the spatial distribution of a degenerate
Fermi gas is mimicked by that of a Bose gas interacting via
an effective ‘‘Pauli pseudopotential’’ Ueff;EF(RF

3 /N),
which is the characteristic energy multiplied by the volume
per particle. Equivalently, the effective scattering length
brought about by the Pauli principle is aeff;KF

21 , i.e., the
interparticle spacing. ~This is natural, since the interparticle
spacing is the only appropriate length in the ideal Fermi gas.!
The use of such an effective interaction is limited by the fact
that ~a! the momentum distributions of the Fermi and Bose
gases remain quite different and ~b! the gas is not dilute with
respect to the exclusion-induced ‘‘interactions’’ since
KFaeff is of order unity.
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APPENDIX: VALIDITY OF THE SEMICLASSICAL
APPROXIMATION

The semiclassical approximation can be safely applied to
an inhomogeneous Fermi gas of density n(r) if we can imag-
ine partitioning the system into cells of linear dimension l
such that the following two conditions are simultaneously
met.

~1! The number of particles in a cell is much greater than
unity, so that locally, the gas may be described by a Fermi
sea:

n~r !l 3@1. ~A1!

~2! The variation of the trap potential across the cell
(l πV) must be small compared with the local Fermi energy
\2kF(r)2/2M , so that within a cell the potential energy is
nearly constant. At low temperature, this condition becomes

l Mv2r!
\2

2M @6p2n~r !#2/3, ~A2!

where we have used Eq. ~16!.
Combining Eqs. ~A1! and ~A2!, we see that one can

choose a ~possibly r dependent! cell size l that simulta-
neously satisfies these two conditions if the number of par-
ticles in a quantum volume is sufficiently large:

n~r !s3@
r
s
, ~A3!

where s is as before the quantum length (\/Mv)1/2 and we
have omitted factors of order unity.
At low temperatures, the semiclassical density given by

Eq. ~18! scales as N/RF
3;N1/2/s3 near the origin, so the

Thomas-Fermi approximation is always self-consistent at the
center of the trap for large N . ~This can be confirmed at
r50 by direct summation of the squares of the simple
harmonic-oscillator eigenfunctions up to energy EF .) Near
the periphery of the cloud, however, the density becomes
small, and the approximation fails. It is easy to show that the
semiclassical treatment fails within a thin shell at the periph-
ery of the cloud, whose thickness dR; 1/KF; sN21/6 van-
ishes in the limit of large N . Within this shell only the ex-
ponential tails of a few single-particle states contribute to the
density; this is analogous to the corresponding region of the
Bose gas @14#.
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