Topic: Superconducticity, BCS, superfluidity

1. Superfluidite

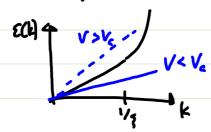
We recall the London criterion for superfluidity. We assume a quasiparticle spectrum

$$H = \sum_{k} \varepsilon(k) a_{k}^{t} a_{k}$$
.

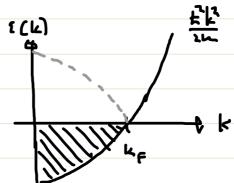
Trying to more the liquid part an obstacle with velocity it we calculate the energy in the co-moving frame

Here, we assumed that we excited a q.p. with momentum k. This only hoppens if $E(k) + k \hat{x} < 0$

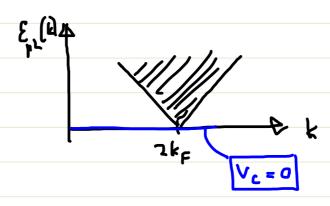
How did it look for a BEC?



How doer the excitation spectrum look like for fermions in a fermi see?



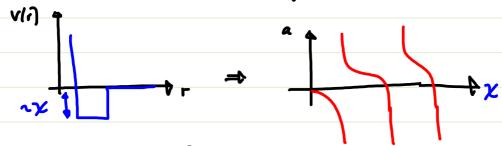
=> for a porticle-hade pair:



Can firmieur poir "into borons" to become superfluid?

Mort probably we need attractive interactions for this to happen.

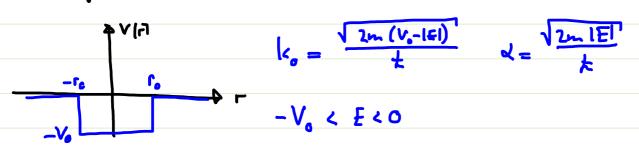
Recoll that are can have scattering resonances:



However, this is only volid up to some cutoff energy scale A. Let we see what we can get from (1).

2. Pairing

Let us recall the solution of two interacting particles. We can always reduce the two-particle problem to a single-particle (relative coordinate) in potential.



$$\frac{14:}{\varphi_{+}(r) = \begin{cases} a_{+}\cos(k_{0}r) & \varphi_{-}(r) = \begin{cases} a_{-}\sin(k_{0}r) & \varphi_{-}(r) = \\ b_{+}e^{-\kappa|r|} & \varphi_{-}(r) = \begin{cases} a_{-}\sin(k_{0}r) & \varphi_{-}(r) = \\ b_{-}\sin(k_{0}r) & \varphi_{-}(r) = \end{cases}$$

$$21 : H = -\frac{4^{3}}{2m} \left[\partial_{r}^{3} + \frac{1}{r} \partial_{r} + \frac{1}{r^{2}} \partial_{\rho}^{3} \right] + V(r)$$

$$\Rightarrow \psi(r, y) = e^{i\theta} u_{k}(r) \Rightarrow u_{k}(r) = \begin{cases} a J_{k}(k_{0}r) & r < r_{0} \\ b K_{k}(k_{0}r) & r > r_{0} \end{cases}$$

= match
$$u_n$$
 and u_n' at r_0 = $\frac{1}{3!}e^{-\frac{1}{3!}}$

- there is always on exponentially wealthy bound stake.

$$\left[-\frac{5m}{4\pi}\left(\frac{3L_3}{3J}+\frac{L}{J}\frac{3L}{3}\right)+\frac{5mL_3}{4\pi}f(6+1)\right]f(L)=Ef(L)$$

$$\ell=0 \Rightarrow R(r) = \frac{u(r)}{r}$$
 with $u(0) = 0 \Rightarrow$

$$-\frac{k^{L}}{Lm}u^{ll}+V(r)u=Eu$$

→ formally equivalent to ld with
$$u(r) = -u(-r)$$
 → critical Vo needed.

2.1 The cooper problem

Let us examine the two particle problem on top of a Fermi-surface.

$$\left[-\frac{m}{\xi}\frac{\partial x}{\partial y} + \Lambda(x)\right] \Lambda(y) = \left(E + \frac{m}{\xi k^{\frac{m}{2}}}\right) \Lambda(y)$$

$$\Rightarrow q(\vec{k}) = \int d\vec{r} \, e^{-\vec{k} \cdot \vec{r}} \psi(\vec{r}) \quad ; \quad V(\vec{k}) = \int d\vec{r} \, V(\vec{r}) \, e^{-\vec{k} \cdot \vec{r}}$$

We ostain

$$\frac{E'E'}{m}q(E) + \int \frac{dk'}{(2\pi)^2} V(\vec{k}-\vec{k}') q(E') = \left(E + \frac{\vec{k}k_F^2}{m}\right) q(E)$$

Let
$$\omega$$
 now assume: $V(k-k') = \left\{-V_0 \quad \text{for } \mathcal{E}_{p} \left(\frac{k^2 k^2}{2m}, \frac{k^2 k^2}{2m} < \mathcal{E}_{p} + \Lambda\right)\right\}$

$$\Rightarrow \left(-\frac{\xi^{3}k^{3}}{m}+E+\frac{\xi^{3}k^{2}}{m}\right)q(k)=-V_{0}\int_{\xi_{F}}^{\xi_{F}}\int_{\xi_{F}}^{\xi_{F}}\langle\xi_{F}+\zeta\rangle_{m}$$

→ divide by and integrate oner
$$\int d\vec{k}/(2\pi)^2$$

$$1 = V \int (dk^2) \frac{1}{\frac{\xi k^2}{2} - \xi - 2\xi_E}$$

We now set
$$\begin{cases} = \frac{1}{2m} - \mathcal{E}_{f} ; \text{ we } N(\xi) = \frac{4\pi k^{2}}{(1\pi)^{2}} \frac{dk}{d\xi} \implies 0 \end{cases}$$

$$l = V \int_{0}^{\infty} d\{N(\xi) \frac{1}{2\xi - E} \approx VN(0) \int_{0}^{\infty} d\{\frac{1}{2\xi - E} \approx \frac{VN(0)}{2} \log(-\frac{2\Lambda}{E})\}$$

$$\Rightarrow E = -2\Lambda e^{-\frac{1}{V_0N(0)}}$$

- Bound state for arbitrarily weak Vo

 * Binding energy exponentially small

 * Looks like 2d

 La Fermi-surface affect!

 * Assumed FS -> bound state... -> what about the next

 "layer"?

 * if k' +0 N(x) ~ x' => 3d => need minimal Vo
- => we need more many-body-like theory
- 3. Bordeen-Cooper-Schriefer theory

We sow that we need a many-body wove-function. We wont to use a vorietional wove-function. There are several (equivalent) ways to go about this issue.

1.) Inspired by year e- 1/2 to coherent stole of 1/3cc < (= 3(k) ck4(k) 10> =

 $\Rightarrow \langle \psi_{BCC} | \mathcal{H} | \psi_{BCS} \rangle = \mathcal{E}(u,v) \Rightarrow \text{Minimize } u,r.k. \left\{ u_k, v_k \right\}$ with $u_k^2 + v_k^2 = 1$

2.) Inspired by FS. Qual: find the best Slater determinant that minimizes the q.s. - energy. How do we generale a Slater determinant? = Via a quadratic Hamiltonian!

=> type) is g.s. of Hm=, a scalor-determinant.

Nou we minimize: Feynman Hellman

generally $\frac{\partial}{\partial \mu}\langle \cdot \rangle \neq 0 \Rightarrow$ we need to nullify the prefactor

$$\Delta = \frac{\sqrt{\sum \langle c_{ik}^{\dagger} c_{ij}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{ik}^{\dagger} c_{ij}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}}{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} c_{k1}^{\dagger} \rangle}} = \frac{\sqrt{\sum \langle c_{k1}^{\dagger} c_{k1}$$

This leads as to the BCS - self-consistency equations:

$$\Delta = \int \frac{dk^3}{(2\pi)^3} \langle C_{k1}^{\dagger} C_{k1} \rangle_{HF} = \int \frac{dk^3}{(2\pi)^3} \langle C_{k1}^{\dagger} C_{k1} \rangle_{HF}$$

We assumed $\mu \neq \mu$; $\Delta \neq \Delta$; $\mu = \mu_{\tau}$ i.e., on some pointing with no broken spin- or fromtation symmetry.

Let us solve these equations.

H_{MF} =
$$\sum_{k} \vec{\gamma}_{k}^{+} \left[\left\{_{k} \hat{\sigma}_{k}^{2} + P_{k} \Delta \hat{\sigma}_{k}^{2} + I_{m} \Delta \hat{\sigma}_{k}^{2} \right\} \vec{\gamma}_{k}^{+} ; \vec{\gamma}_{k} = \begin{pmatrix} c_{k} e_{k} \\ c_{k}^{+} e_{k} \end{pmatrix} \right]$$

$$= \sum_{k} \vec{\gamma}_{k}^{+} U^{+} \left[\left\{_{k} \hat{\sigma}_{k}^{2} + \Delta \hat{\sigma}_{k}^{2} \right\} U \vec{\gamma}_{k} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} + \left\{_{k}^{+} e_{k}^{+} \right\} \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} \right] \vec{\gamma}_{k}^{-} + \left[\left\{_{k}^{+} e_{k}^{+} \right\} U \vec{\gamma}_{k}^{-} + \left\{_{k}^{+} e_{k}^{+} \right\} \vec{\gamma}_{k}^{-} + \left\{_{k}^{$$

$$\Rightarrow \langle c_k^{\dagger} c_{-k}^{\dagger} \rangle = \dots = \Rightarrow$$

$$\Delta = -V \int d\xi N(\xi) \frac{\Delta}{2E_k} \int_{\partial L} \left(\frac{E_k}{2k_kT} \right)$$

→ .t T=0:

$$1 = -VN(0) \int_{0}^{A} \sqrt{\frac{2A}{k^{2}+a^{2}}} -VN(0) \left[eq \left(\frac{2A}{a} \right) \right]$$

$$\Delta = 2A e^{-\frac{1}{N(0)}V}$$

What did we ochiere?

* Self-couristent solution

★ △(T=0)

* 70

And:

