
Chapter 1

Bragg scattering vs. local resonances

Learning goals

• You can formulate the principle of Bragg scattering.
• You can relate the dimension of a phononic crystal to the frequency of a potential band gap.
• You know the e↵ect of the coupling of two near-identical oscillators.

1.1 Bragg scattering vs. local resonances

We start our lecture on mechanical metamaterials with the discussion of metamaterials with a
target functionality at finite frequencies. In other words, we want to understand how we can
control or manipulate the flow of mechanical energy in the form of vibrations, or equivalently
waves.
To understand how vibrations propagate through materials we will have to introduce the wave
equation and familiarize ourselves with its properties. However, before we do so, we introduce
two generic building blocks that are used to achieve the goal of manipulating wave propagation
in solids: Bragg scattering and the use of locally resonant structures. Once we know how these
two principles work, we will understand most modern metamaterial designs.

1.1.1 Bragg scattering

For now, all we need to know about waves is that they can be described by a traveling modulation
of some property f(x, t) such as

f(x, t) = cos(!t � kx + '), (1.1)

where ! = 2⇡/T is the angular frequency related to the period T , k = 2⇡/� is the wave number
related to the wave-length �, and ' is a phase.
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Figure 1.1: Traveling waves.
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One of the most important aspects of waves is their ability to interfere. In particular:

) destructive interference for �' = ⇡.

) constructive interference for �' = 0.

Let us now consider a wave incident on a scatterer:

)

)

1.) Wave is incident on scatterer 2.) Scatterer is excited

3.) Scatterer radiates waves

The “time lag”, i.e., the phase di↵erence �', between the incident and the radiated wave is
given by the details of the interaction between the wave and the scatterer and the properties of
the excitation of the scatterer. In other words, we have nothing too generic to say about this
event. However, consider the e↵ect of two identical scatterers at a distance �x:

�x

cos(kx � !t)

cos(kx � !t + �'0)

cos(kx � !t + �'0 + k�x)

We see that for

k�x = ⇡ : the scattered waves interfere destructively.

) �x =
�

2
: leads to a strong destructive e↵ect on the propagation of waves.

This phenomena is called “Bragg scattering” if we deal with periodic arrays of scatterers. Bragg
scattering is at the heart of phononic crystals. It is not hard to imagine that periodic arrays
with a typical length-scale �L can have dramatic e↵ects on the wave propagation at frequencies
where the Bragg condition

�L =
�

2
(1.2)

is fulfilled, see Fig. 1.2.
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Figure 1.2: Band gap of a phononic crystal.

If I want to change the propagation of waves at a frequency ⌫ = !/2⇡, I have to design
structures with dimension �L ⇡ c/⌫.

In particular, at the frequencies where the Bragg condition is met, a window opens where no
waves can propagate. We call this a band gap.
Question: I live in California and want to protect my house from earthquakes with a phononic
crystal. How big is it going to be?

1.1.2 Local resonances

We have seen that periodic structures can have an influence on the propagation of waves. Here,
we want to present a building block to achieve a similar e↵ect, however, without the limit
imposed by the size of the structure. In order to understand the concept of local resonances, we
need to understand the coupling of two oscillators.
Let as assume the following system illustrated in Fig. 1.3:
The oscillators x(t) and y(t) are described by

ẍ(t) = �!2
0x(t) + �2y(t), (1.3)

ÿ(t) = �!2
0y(t) + �2x(t), (1.4)

where we want to assume that � ⌧ !0. For � = 0 we know that

x(t) = x0e
i!0t and y(t) = y0e

i!0t, (1.5)

solve the equations (1.3) and (1.4). If the two oscillators are coupled (� 6= 0), we have to find
combined solutions

✓
x(t)
y(t)

◆
=

✓
x0

y0

◆
ei!t ) (1.6)

�!2
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x0

y0

◆
=

✓
�!2
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�2 �!2
0

◆✓
x0

y0

◆
. (1.7)

In other words, we are dealing with a eigenvalue problem for !. We have two routes to solve
this problem.
Route 1: We solve the characteristic equation:

det

✓
� � !2

0 �2

�2 � � !2
0

◆
= (� � !2

0)
2 � �4 = 0 (1.8)

) �± = !2
0 ± �2 ) !± =

q
!2
0 ± �2. (1.9)
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Figure 1.3: Two coupled oscillators.

Route 2: Basically the same, but once and for all:

✓
�!2

0 �2

�2 �!2
0

◆
= �!2

01+ �2

✓
0 1
1 0

◆
(1.10)

= �!2
01+

3X

i=1

di�i with (1.11)

d = (�2, 0, 0) and �1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, �3 =

✓
1 0
0 �1

◆
. (1.12)

From this we immediately read

�± = �!2
0 ± |d| = �!2

0 ± �2. (1.13)

We can now easily generalize that to two coupled oscillators that have di↵erent frequencies:

✓
�!2

x �2

�2 �!2
y

◆
= �

!2
x + !2

y

2
1+ �2�1 �

!2
x � !2

y

2
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�2, 0, �

!2
x � !2

y

2

!
. (1.14)

And the new eigenfrequencies are

!± =

vuut
✓

!2
x + !2

y

2

◆2

±
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!2
x � !2

y

2

◆2

+ �2

#2
. (1.15)

As illustrated in Fig. 1.4a, the e↵ect of a coupling between two oscillators is strongest if they
are degenerate, i.e., have the same frequency. Moreover, the main e↵ect of � is to split the
frequency of the two-oscillator system. In Fig. 1.4b & c we see what e↵ect we can expect for a
local resonance onto the dispersion of waves: The coupling will split the degenerate system of
the wave and the local oscillator. This e↵ect is strongest where the two frequencies cross. Again,
like in the Bragg scattering e↵ect, a frequency window is opening where no waves propagate.
However, this time the frequency is not dictated by the spacing of the periodic array but by the
frequency of the local oscillator!

We can modify the propagation of wave in the vicinity of a frequency ⌫ by coupling the wave
to a local resonance with frequency ⌫0 ⇡ ⌫.

Question: Why is the argument that we freed ourselves from length-scale constraints potentially
a lie?
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Figure 1.4: a) E↵ect of the coupling � on the eigenfrequency of two oscillators. b) Wave
dispersion (black) and the location of a local resonance (blue). c) Couling the local resonance
to the wave leads to the opening of a band gap at the frequency !0 of the local resonance.
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