
Chapter 3

Discrete one dimensional systems

Learning goals

• You know the concept of a Brillouin zone.
• You know what an evanescent wave is.
• You know the relation between the number of elements in a unit cell and the the number of
bands.
• You know the e↵ect of a local resonance for wave propagation.

3.1 Discrete systems

So far, we have been considering the wave equation

@2
xu =

⇢

E
@2
t u (3.1)

in a homogeneous and isotropic medium. As a first step towards understanding (periodically)
structured metamaterials we study discrete systems. To prepare ourselves for this step, we first
look at the translation “operator” T�x that we encountered in the last section. So far, our
system was “living” on the real axis

u(x, t) with x 2 R. (3.2)

We found that an eigenmode labelled by the wave-number k has the property that

u(x, t) = eik�i!t ) u(x + �x, t) = eik�xu(x, t). (3.3)

Let us now consider the discrete system depicted in Fig. 3.1. Each local discrete element is

m1 m2 m3 m4 m5

f1,2 f2,3 f3,4 f4,5

u1(t) u2(t) u3(t) u4(t) u5(t)
a

Figure 3.1: A discrete one dimensional chain.
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considered rigid, having a mass mi and it is connected to its neighbors via springs with spring
constants fn,n+1 and fn,n�1. Each element, or mass, can be displaced by un(t). But now, the
displacement field un(t) is actually living on the set of integer numbers n 2 Z and not R as we
have only a discrete number of displacements, one for each element located at xn = na, where
a is the lattice constant. (Of course, u, itself can still take values in R, or C, respectively).
This has immediate consequences for the possible wave-numbers that can appear. Assume again
that plane waves are good solutions:

un(t) = eikan�i!t. (3.4)

Therefore, we again have that the solution at n and at n + 1 di↵er by

eika. (3.5)

But now, kna = 2⇡ is really the same as kna = 0. Actually, all k = k + 2⇡m with m 2 Z are
equivalent. Hence, we can confine the possible values of the wave-number to

k 2
h
�⇡

a
,
⇡

a

i
, (3.6)

which is known as the first Brillouin zone. Equivalently, k > 2⇡
a would correspond to a wave with

wavelength � < 2⇡
k = a. But as we have a mass only every a, there is nothing to be described

with a wavelength smaller than the lattice spacing a.

3.2 The monoatomic chain

Let us now solve the problem sketched in Fig. 3.1. In a first step, we assume all masses to be
the same mi = m and all springs to be identical with fi,j = f . The equations of motion are
then given by

mün(t) = f {[un�1(t) � un(t)] � [un(t) � un+1(t)]} (3.7)

When assuming solutions of the form

un(t) = eikna�i!t (3.8)

we find that the equation of motion reduces to

�m!2einak�i!t = feinak�i!t
h
eika � 1 � 1 + eika

i
(3.9)

= �4f sin2

✓
ka

2

◆
einak�i!t. (3.10)

With this we find the dispersion relation shown in Fig. 3.2

!(k) =

r
4f

m

����sin
✓

ka

2

◆���� . (3.11)

Again plane waves are good solutions! However, our dispersion relation changed. A few impor-
tant observations

1. The dispersion !(k) is periodic in k with period 2⇡/a.

2. Around k = 0, the waves seem to still linear disperse with

c = a

r
f

m
. (3.12)

Where the spring constant f [N/m] replaced the Young’s modulus E [N/m2] and the mass
m [kg] the mass density ⇢ [kg/m]. The fact that around k = 0 we recover the result
for a continuous system is easily explained. At wavelengths much larger than the lattice
spacing, the waves don’t feel the granularity of the individual masses.
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Figure 3.2: Dispersion relation of a mono-atomic chain.

3. Owing to the non-linearity of !(k), group and phase velocity are not identical anymore.

There is another interesting property: The spectrum !(k) of possible traveling waves is now
bounded form above. That means, for frequencies

! > !edge = !(⇡/a) =

r
4f

m
, (3.13)

there are no propagating solutions.

3.2.1 Evanescent waves

The fact that there are no propagating solutions does not mean that the mono-atomic chain is
totally inert if we try to excite it with frequencies ! > !edge. Let us assume solutions

u⇠
n(t) = e

i
⇣
⇡+i 1⇠

⌘
na�!t

. (3.14)

Inserted into (3.7), we find

�m!2u⇠
n(t) = fu⇠

n(t)ei!t

e
i
⇣
⇡+i 1⇠

⌘

+ e
�i

⇣
⇡+i 1⇠

⌘

� 2

�
(3.15)

�m!2 = f
h
�e�

1
⇠ � e�

1
⇠ � 2

i
= �f


2 cosh

✓
1

⇠

◆
+ 2

�
. (3.16)

And therefore

!(⇠) =

r
4f

m

vuutcosh
⇣
1
⇠

⌘
+ 1

2| {z }
�1

. (3.17)

This is a solution only for ! > !edge. We found that in this case, vibrations penetrate into the
mono-atomic chain with a decay length ⇠ given by

⇠ =
1r

arccosh
⇣
m!2

2f � 1
⌘ . (3.18)

We can summarize these findings in Fig. 3.3

16



Frequency !

p
4f/m

⇡/a

�⇡/a

Wave number k

Inverse localization length 1/⇠

Figure 3.3: Summary of the mono-atomic chain: Up to a frequency ! =
q

4f
m waves propagate

with a real wavenumber k. Above this cut-o↵ frequency, evanescent waves with a decay length
⇠ can survive at the endpoints of the chain.

3.2.2 The diatomic chain

We are now in the position to embark on the first interesting example. Let us consider a system
similar to the one above, but with alternating masses:

m1 m2 m1 m2 m1

f f f f

a

What of the analysis of the last section can we carry over to this problem? Remember that we
knew uk

n(t) if we had uk
m(t) just by multiplying

uk
n(t) = eik(m�n)auk

m(t). (3.19)

This simple phase relation was due to the fact that our problem was symmetric under a shift
by one lattice site. Now, that m1 6= m2, we have no reason to assume that a simple relation
as in (3.19) should hold. However, every second mass is identical! Therefore, let us assume the
following structure for the eigenmodes

uk
n(t) = eikna�i!t ⇥

(
ak n = 2s, s 2 Z,

bk n = 2s + 1, s 2 Z.
(3.20)

In other words, we assume that from even to even and from odd to odd site we again have a
simple phase factor

eik2a, (3.21)

but that the structure within one unit cell is given by the relation between ak and bk. Note,
that by virtue of this ansatz we have that

e2ika = e2i(k+r⇡)a with r 2 Z. (3.22)
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By doubling (a ! 2a) our unit cell size, we halved the sized of the first Brillouin zone.1

The equations of motion read

m1ü2n = f(u2n+1 + u2n�1 � 2u2n), (3.23)

m2ü2n = f(u2n + u2n+2 � 2u2n+1). (3.24)

Inserting ansatz (3.20) into the above equation we find

�m1!
2ak = f(bk + e2iakbk � 2ak), (3.25)

�m2!
2bk = f(ak + e2iakak � 2bk). (3.26)

We deal with a problem of the form

� !2

✓
m1

m2

◆✓
ak
bk

◆
=

✓
2f �f

�
1 + e�2iak

�
�
1 + e2iak

�
2f

◆✓
ak
bk

◆
(3.27)

This is a generalized eigenvalue problem of the type ↵Bx = Ax with B positive definite and
both A = A† and B = B†. We could do

↵x = B�1Ax, (3.28)

but we would not deal with a hermitian problem anymore. Let us write B = LL† with

L =

✓p
m1 p

m2

◆
. (3.29)

With this we obtain

↵LL†x = A(L†)�1L†x (3.30)

↵ L†x|{z}
y

= L�1A(L†)�1

| {z }
Ã

L†x|{z}
y

. (3.31)

Therefore we deal with a regular eigenvalue problem

↵y = Ãy, (3.32)

with the property
Ã† = [(L†)�1]†A†(L�1)† = L�1A(L†)�1 = Ã, (3.33)

i.e., a hermitian eigenvalue problem. For us this means

Ã =

 
1p
m1

1p
m2

!✓
2f �f

�
1 + e�2iak

�
�
1 + e2iak

�
2f

◆ 
1p
m1

1p
m2

!
= (3.34)

=

 
2f
m1

� fp
m1m2

�
1 + e�2iak

�

� fp
m1m2

�
1 + e2iak

� 2f
m2

!
(3.35)

= f

✓
1

m1
+

1

m2

◆
1� f

m
(1 + cos('k))

| {z }
d1(k)

�1 � f

m
sin('k)

| {z }
d2(k)

�2 + f

✓
1

m1
+

1

m2

◆

| {z }
d3(k)

�3 (3.36)

= f

✓
1

m1
+

1

m2

◆
1+

3X

i=1

di(k)�i. (3.37)

1You could argue that now there is a life below the wavelength � = 2a as there is “something” at a distance a
rather than 2a. But this degree of freedom is taken care of by the relation between ak and bk!
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We introduced m =
p

m1m2 and 'k = 2ak. We can now capitalize on our knowledge of 2x2
matrices written with Pauli matrices to immediately read o↵ the eigenvalues

↵± = f

✓
1

m1
+

1

m2

◆
± f

m

s✓
m

m1
� m

m2

◆2

+ (1 + cos('k))2 + sin('k)2 (3.38)

=
f

m

✓r
m2

m1
+

r
m1

m2

◆
± f

m

s✓r
m2

m1
�
r

m1

m2

◆2

+ 2 + 2 cos(2ka). (3.39)

With this, we arrive at the dispersion

!±(k) =

r
f

m

vuut
✓

r +
1

r

◆
±

s✓
r � 1

r

◆2

+ 4 cos2(ka), (3.40)

with m =
p

m1m2 and r =
p

m2/m1. Let us inspect how this dispersion behaves for various
values of the reduced mass m and ratio r. We see that we opened a band gap for k = ⇡

2a with

magnitude
q

4f
m

q
r � 1

r , which goes to zero for r = 1. In fact, for r = 1, we chose a unit cell

which is too large, or equivalently, a too small Brillouin zone. We see that in the Fig. 3.4. that
this leads to a “folding” of the spectrum.
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Figure 3.4: Dispersion of a diatomic chain.

We have now seen that by structuring our chain at the scale 2a, we opened a band gap at
k = ⇡/2a., and the frequency was hence dictated by !k=⇡/a of the undisturbed (mono-atomic)
chain. We would like to see, if another design-principle exists that can beat this limit.

3.2.3 Locally resonant structures

We want to study the system shown in Fig. 3.5. The block system of masses m and spring
constants f alone defines a regular mono-atomic chain with no band gap. We want to understand
the e↵ect of a added local resonators:

müi = f(ui�1 + ui+1 � 2ui) + F (ui � wi), (3.41)

Mẅi = �F (wi � ui). (3.42)

As usual, we assume plane waves and write the above equation in matrix form

�
✓

m
M

◆
!2

✓
uk

wk

◆
=

✓
�(2f + F ) + 2f cos(ka) F

F �F

◆✓
uk

vk

◆
, (3.43)
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Figure 3.5: Resonantor-in-resonator setup.

where we assumed

un = uke
ikna�i!t, (3.44)

wn = wke
ikna�i!t. (3.45)

We again transform A ! Ã wiht LL† = B to obtain

Ã = L�1A(L†)�1 =

 
(2f+F )�2f cos(ka)

m � 1p
mM

F

� 1p
mM

F F
M

!
= !2

0

✓
1
2(1 � cos(k)) + �2!̃2

L ��!̃2
L

��!̃2
L !̃2

L

◆
,

where we introduced

!̃L =
1

2

s
m

f

F

M
: local resonance frequency in units of !0, (3.46)

� =

r
M

m
: “coupling strength”, (3.47)

!0 =

r
4f

m
: overall frequency scale. (3.48)

With these abbreviations we can write

1

!2
0

Ã =
1

2

⇢
1

2
[1 � cos(ka)] + !̃2

L(�2 + 1)

�
1+

3X

i=1

di(k)�i, (3.49)

with
d(k) =

�
��2!̃2

0, 0,
�
1
2 [1 � cos(ka)] + !̃2

L(�2 � 1)
 �

. (3.50)

And again, we just read o↵ the dispersion relation

!±(k) = !0

vuuut1

2

8
<

:
1

2
[1 � cos(ka)] + !̃2

L(1 + �2) ±

s

4(�!̃2
L)2 +


1

2
[1 � cos(ka)] + !̃2

L(�2 � 1)

�2
9
=

;

The dispersion is displayed in Fig. 3.6. We see that for the case of a local resonance a band
gap is opening not at a specific k but at a specific !̃L. Moreover, the stronger the resonance is
coupled, the bigger the band gap.
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Figure 3.6: Dispersion for a chain made of local resonators.
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