
Chapter 5

Effective negative parameters

Learning goals

• You can explain why we map our designs to an elastic theory with effective parameters.
• You know what strain and stress are and how they are related.
• You know the Helmholtz decomposition.
• You know that doubly negative materials require some thought related to power flow.
• You know Snell’s law in doubly negative materials.

So far, we have seen several discrete models of metamaterials to control wave-propagation. In
order to better understand what one can achieve with metamaterials, we should connect what
we have done so far with the standard literature. For this, however, we need a bit of elasticity
theory.

5.1 Elasticity in one hour

5.1.1 The strain tensor

First, we introduce the strain tensor. Imagine a piece of material that we deform:

r0
r0 = r+ u

u

r

For elastic properties, it is important to know if we deform the material. In other words, a
constant u does not lead to any deformations but only translates the whole object. Hence, the
quantity of interest is the linear strain tensor

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (5.1)

31



which captures relative length changes which deform the material.1 We note that ϵij has dimen-
sionless entries. Now we need to connect the strain tensor ϵij to forces in the material that try
to restore the original shape.

5.1.2 The stress tensor

Forces acting on a body are most easily captured by a traction vector t. Let us make a imaginary
cut through our material:

t(r)

)

With this we might free forces on the cut that were balanced by the other half. We write for
the force F acting on a surface element dS

F = tdS. (5.2)

Therefore, the traction t has units of N/m2 or pressure. The issue with the traction is that it
depends on the cut we take. Think of a piece of liquid. If we cut in the xy-plane, pressure will
exert on that plane a force in z-direction. Had we cut along the xz-plane, would the pressure
give rise to a force in y-direction, and so on. This means, we need again a tensor to capture the
relevant physics. The stress tensor τij encodes the traction in the three principle axis

τ =

⎛

⎝
τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

⎞

⎠ , (5.3)

where tx = (τxx, τyx, τzx) stands for the traction for a cut normal to x, etc. From this follows
immediately that the traction for an arbitrary cut normal to n̂ is given by

tn̂ = τ · n̂. (5.4)

5.1.3 Hooke’s law

We now need a relation between relative deformations and the stress tensor

τij = cijklϵlm. (5.5)

Here, we defined the 4th-order tensor cijkl. While this looks scary, for our discussion we assume
a homogeneous and isotropic medium, where

τij = λδijϵll + 2µϵij . (5.6)

1Why do we symmetrize? Imagine two close-by points with distance dr. After deformation dr′ = dr+ u. Let
us see how the distance changes (using the Einstein summation convention)

dr′2 − dr2 = dx′
idx

′
i − dxidxi = (dxi + dui)(dxi + dui)− dxidxi =

(
dxi +

∂ui

∂xj
dxj

)(
dxi +

∂ui

∂xl
dxl

)
− dxidxi

= 2ϵijdxidxi +O

[(
∂ui

∂xj

)2
]
.

In other words, only the symmetric combination in ϵij leads to length-changes. It can be shown that the anti-
symmetric counter-part corresponds to rigid rotations.
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The coefficient λ is called Lamé coefficient and µ is the shear modulus. Note that we made use
of the Einstein summation convention where repeated indices are summed over

ϵll =
∑

l

ϵll = ϵxx + ϵyy + ϵzz. (5.7)

We often use other names, such as

E =
τxx
ϵxx

: Youngs modulus. (5.8)

ν = − ϵyy
ϵxx

: Poisson ratio. (5.9)

with the relations

ν =
λ

2(λ+ µ)
, (5.10)

λ =
νE

(1 + ν)(1− 2ν)
, (5.11)

µ =
E

2(1 + ν)
. (5.12)

5.1.4 The Poynting vector

dS

Figure 5.1: Surface
element.

Before we move on, it is useful to introduce the power flux in an elastic
medium. We know that a force F acting on a particle with velocity v
delivers a power F ·v (it has units of Nm

s ). Consider the surface element
dS. The force acting on it is given by t · dS = τ · n̂dS = τdS. Therefore,
the power delivered to the cut is given by

P = vτdS. (5.13)

Note that dS points out of the volume. To get the power delivered to a volume, we need to
invert the sign and we write for the power flux J(r)

J(r) = −τ · u̇. (5.14)

This is nothing but the elastic counter-part to the Poynting vector c
4πE∧B in electromagnetism.

5.2 The elastic wave equation

The Newton’s equations of motion are given by

ρüm =
∂τmk

∂xk
. (5.15)

Using

τmk = λδmk
∂uj
∂xj

+ µ

(
∂um
∂xk

+
∂uk
∂xm

)
(5.16)

we find that
ρü = (λ+ 2µ)∇(∇ · u) + µ∇∧ (∇∧ u). (5.17)

We see that things are slightly more complicated than what we did so far. Waves in solids have
a complicated vectorial structure (paralleling the tensor nature of stress and strain). But by
introducing the longitudinal and transverse potential (the Helmholtz decomposition)2

u = ∇ϕ+∇∧ψ. (5.18)

2If we write ϕ = Aeik·x and ψ = Aeik·x, we see that u = kA and u = k ∧A, respectively. Hence the name
longitudinal and transverse potential.
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Using this, we arrive at [making use of ∇2u = ∇(∇ · u)−∇ ∧ (∇∧ u)]

ρϕ̈ = (λ+ 2µ)∇2ϕ, (5.19)

ρψ̈ = µ∇2ψ. (5.20)

By writing λ + 2µ = E ν−1
(ν+1)(2ν−1) = E∗

L and µ = E∗
S we recover the same expressions for the

wave equations as we had before.

5.3 Negative E or ρ

Imagine that for some reason either ρ pr E acquire negative values. While this is impossible
for ω → 0 (masses are intrinsically zero and E < 0 would lead to a mechanical collapse), such
effective material parameters might arise from metamaterial engineering. This is indeed what we
are after here: We try to describe an emergent behavior arising from a (discrete) metamaterial
model by reducing it to a simple effective elasticity problem, albeit with material parameters
E, ν, ρ, etc. that can take values otherwise unattainable.
This approach has the benefit of enabling a simple description in terms of standard elasticity
theory, while we can incorporate complicated material designs.
Let us check what happens if either E or ρ take negative values. The wave equation (for
longitudinal waves)

sρ|ρ|ϕ̈ = sE |E|∇2ϕ. (5.21)

Here, sρ = ±1 and sE = ±1 encode the sign of ρ and E, respectively. Assuming

ϕ = Aeik·x−iωt (5.22)

we find
− sρ|ρ|ω2 = −sE |E|(k2x + ky2 + k2z). (5.23)

Solving for k =
√

k2x + ky2 + k2z we obtain

k =

√
sρ
sE

×

√
|ρ|
|E|ω. (5.24)

We observe that for sρ/sE = −1, i.e., if only one of the two parameters is negative, we have
a k ∈ C. In other words we deal with evanescent weaves! We also see, that in the case
sρ = sE = −1 wave propagation seem to be unaffected by the negativity of E and ρ. We will
see, however, that this is not the case if we deal with interfaces between different materials.

5.4 Doubly negative metamaterials

We have seen that for doubly negative materials waves can propagate. Here, we study the effect
of double negativity on two examples.

5.4.1 Longitudinal waves in thin rods

We solve for solutions of the form u = ∇ϕ, i.e., longitudinal waves, in a thin rod shown in
Fig. 5.2.

ϕ(z) =

{
ϕin
1 e

ik1z−iωtϕout
1 e−ik1z−iωt z < 0,

ϕout
2 eik2z−iωt z > 0.

(5.25)

This corresponds to an incoming wave ϕin
1 , a reflected wave ϕout

1 and a transmitted wave ϕout
2 .

At the boundary at z = 0 we need

u1(z = 0) = u2(z = 0), (5.26)

τ1(z = 0) · z = τ2(z = 0) · z. (5.27)
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z = 0

Figure 5.2: A thin rod with a boundary between a regular and a doubly negative metamaterial.

For each segment we have

k2i
Ei

ρi
= ω2 ⇒ ki = ±

√
ρi
Ei
ω, (5.28)

where we have to decide on the sign of ki. Let us first match the boundary conditions

uz1(z = 0) = ik1ϕ
in
1 e

−iωt − ik1ϕ
out
1 e−iωt, (5.29)

uz2(z = 0) = ik2ϕ
out
2 e−iωt. (5.30)

For the stress tensors, we need

∂uz1
∂z

∣∣∣∣
z=0

= −k21ϕ
in
1 e

−iωt − k21ϕ
out
1 e−iωt, (5.31)

∂uz2
∂z

∣∣∣∣
z=0

= −k22ϕ
out
2 e−iωt. (5.32)

From this, we obtain

k1(ϕ
in
1 − ϕout

1 ) = k2ϕ
out
2 , (5.33)

E1k
2
1(ϕ

in
1 + ϕout

1 ) = E2k
2
2ϕ

out
2 . (5.34)

We set ϕin
1 = 1 and solve for ϕout

1/2:

ϕout
1 = −E1k1 − E2k2

E1k1 + E2k2
, ϕout

2 =
2E1k21

k2(E1k1 + E2k2)
. (5.35)

Now is a good moment to take care of the signs. We want ϕin
1 to be an incoming wave. Let us

calculate the Poynting vector for this wave

Jin,1 = −τ · u̇ = E1ωk
3
1(ϕ

in
1 )

2ẑ. (5.36)

⇒ for k1 = +
√
ρ1/E1 we have indeed an incoming wave described by ϕin

1 . Going through the
same calculation for ϕout

2 we find

Jout,2 = E2ωk
3
2(ϕ

out
2 )2ẑ. (5.37)

For this to be an out-going wave we need

k2 = −
√
ρ2
E2

= sign(E2)

√
ρ2
E2

. (5.38)
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Let us introduce a few helpful quantities. First the elastic impedance

zα =
√
ραEα, (5.39)

and the elastic index of refraction

nα = sign(Eα)

√
ρα
Eα

. (5.40)

Using these definitions we can summarize this solution by writing

k1
k2

=
n1

n2
, (5.41)

ϕout
1 =

z2 − z1
z1 + z2

= −
1− z2

z1

1 + z2
z1

, (5.42)

ϕout
2 =

n1

n2

2

1 + z2
z1

. (5.43)

What do we learn from this exercise?

• If we match impedances, i.e., z1 = z2, there is no reflected wave.

• For E < 0 ⇒ n < 0 and the sign of k is inverted to have a causal energy flow.

5.4.2 The Veselago lens

We finish this chapter with an application of a doubly negative material in two dimensions.
Imagine the following situation depicted in Fig. 5.3.

Figure 5.3: Boundary between two materials for a Veselago lens.

We consider shear waves of the form

u = ∇∧ψ with ψ =

⎛

⎝
Ax

0
Az

⎞

⎠ ei(kx,0,kz)·x−iωt, (5.44)

which means

u = (Axikz +Azikx)e
i(kx,0,kz)·x−iωt

⎛

⎝
0
1
0

⎞

⎠ , (5.45)

or in other words shear waves traveling in (kx, 0, kz) direction with a deformation in the ŷ-
direction. Again, the wave equation dictates

ρiψ̈ = µi∇2ψ or ρiω
2 = µi(k

2
x + k2y + k2z). (5.46)
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Let us again assume an incoming wave form the left and a transmitted and reflected wave

ψ(x, z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(x, z) =

⎛

⎜⎝
Ain

x

0

Ain
z

⎞

⎟⎠ eik
1
zz+ik1xx−iωt +

⎛

⎜⎝
Aout

x

0

Aout
z

⎞

⎟⎠ e−ik1zz+ik1xx−iωt z < 0,

ψ2(x, z) =

⎛

⎜⎝
Bout

x

0

Bout
z

⎞

⎟⎠ eik
2
zz+ik2xx−iωt z > 0.

(5.47)

The boundary conditions are given by

u1(z = 0) = u2(z = 0), (5.48)

τ1(z = 0) · ẑ = τ2(z = 0) · ẑ. (5.49)

For the first equation we have to assure that

(Ain
x ik

1
z −Ain

z ik
1
x)e

ik1xx + (−Aout
x ik1z −Aout

z ikx)e
ik1xx !

= (Bout
x ik2z −Bout

z ik2x)e
ik2xx. (5.50)

If this shall hold for all x we need
k1x = k2x. (5.51)

This was to be expected as we do not break translational symmetry in x-direction. Moreover, we
certainly need that all waves have the same frequency ω. That means that the above equation
together with

ρiω
2 = µi[(k

i
x)

2 + (kiz)
2] (5.52)

Figure 5.4: Snell’s law.

fixes |kz|2. To determine the sign of kz we go through
the Poynting argument again. It is easy to see that a
negative µ2 < 0 again reverses the sign of the power
flux with respect to µ1 > 0. We therefore again have to
take sign(k2z) = −1. From these considerations we can
determine Snell’s law

sin(ϑ) =
k1x√

(k1x)
2 + (k1z)

2
(5.53)

sin(ϑ′) = − k2x√
(k2x)

2 + (k2z)
2

(5.54)

Hence, we have

sin(ϑ)

sin(ϑ′)
=

sign(µ2)
√
ρ2/µ2

sign(µ1)
√
ρ1/µ1

=
n2

n1
. (5.55)

For the full scattering solution we need to solve the compatibility conditions above. However,
here we are not interested in the amount of power transferred, but only in the direction of in and
out-going waves. Veselago realized that [1] (in the context of electromagnetic waves) the above
Snell’s law for doubly negative materials leads to a perfect flat lens. He considered a situation
shown in Fig. 5.5. We see that this sandwich gives rise to a perfect lens.
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Figure 5.5: A Veselago lens.

5.4.3 Superlensing

Pendry realized in 2000 that a slab of a doubly negative material not only acts as a planar lens
but can also enhance features that are normally suppressed due to the diffraction limit.
The diffraction limit arises from the following consideration. We know that

ω2/c2 = k2x + k2y + k2z . (5.56)

Let us assume that we have an object we want to image in the xy-plane at z = 0 of the form
f(x, y) = Θ(|x|− a/2). The Fourier transform of this object is given by

f̂(kx, ky) =

ˆ
dx eikxxΘ(|x|− a/2)

ˆ
dy eikyy = (5.57)

= ⟨ 1

ikx
eikxx

∣∣∣∣
a/2

x=−a/2

⟩2πδ(ky) (5.58)

= 4π
sin(kxa/2)

kx
δ(ky). (5.59)

We see that to reproduce f(x, y) we need kx to be arbitrarily large. However, we can write for

kz(kx, ky,ω) = ±
√

(ω/c)2 − k2x − k2y. (5.60)

We immediately see that for k2x + k2y > (ω/c)2, kz will become purely imaginary and features
small than c/ω will not propagate!
For the example above, we get the acoustic image at a distance d by calculating

fd(x, y) =
1

(2π)2

ˆ
dkxdkyf̂(kx, ky)e

ikz(kx,ky ,ω)de−i(kxx+kyy). (5.61)

We see that Fourier components with a large wave number are damped way faster, as these
components turn into evanescent waves at the frequency we probe the system.
We investigate how this changes if we add again a slab of a doubly negative material. For
simplicity we look at the evanescent waves, where k2x > ρ

µω
2. Moreover, we constrain ourselves

to the situation where we have
We first concentrate on the left boundary and write for the potential

ψ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(x, z) =

⎛

⎜⎝
1

0

0

⎞

⎟⎠ eikzz+ikxx−iωt +

⎛

⎜⎝
r

0

0

⎞

⎟⎠ e−ikzz+ikxx−ωt z < 0,

ψ2(x, z) =

⎛

⎜⎝
t

0

0

⎞

⎟⎠ eik
′
zz+ikxx−ωt z > 0.

(5.62)
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Clearly the wave vectors have to fulfill

kz = +i
√

k2x − ω2, (5.63)

k′z = +i
√

k2x − ω2/|µ|. (5.64)

How did we choose those signs? As we are dealing with evanescent waves, Jz = 0 and no power-
flux argument can be invoked. However, we consider a decaying field from the left and therefore
the field on the right z > 0 should also decay in the positive z-direction to preserve causality.
We can now match the boundary conditions

u1(z = 0) = u2(z = 0), (5.65)

τ1(z = 0) · ẑ = τ2(z = 0) · ẑ. (5.66)

The first line is easy
kz − rkz = tk′z. (5.67)

For the second we need to calculate τ from u. We only need the three components ταz for
α = x, y, z as we match τ · ẑ. Moreover, we only have uy which depends on x and z. Therefore
ϵll = ϵxx + ϵyy + ϵzz = 0. This leaves us with

ταz = λδαzϵll︸ ︷︷ ︸
=0

+2µϵαz = 2µ
1

2

(
∂uα
∂z

+
∂uz
∂xα︸︷︷︸
=0

)
= µ

∂uy
∂z

=

{
−k2z(1 + r)eikzz+ikxx−iωt z < 0,

−k′2z te
ik′zz+ikxx−iωt z > 0.

And with this we need
k2z(1 + r) = µk′2z t. (5.68)

Solving for t and r we find

t = 2
k2z
k′z

1

kz + µk′z
; r =

µk′z − kz
kz + µk′z

. (5.69)

Note that for µ → −1 we have k′z → kz and both r and t diverge! In particular t2 + r2 diverges
as well. This is only possible because we deal with evanescent waves that carry no power-flux!
If we now try to move towards the description of a finite slab with thickness d, we also need the
same expressions for the right boundary

k′z(1− r) = tkz, (5.70)

µk′2z (1 + r) = tk2z . (5.71)

From which we obtain

t′ = 2
k′2z
kz

µ

kz + µk′z
; r′ =

kz − µk′z
kz + µk′z

. (5.72)

Naively, one could expect the transmission function to be

Tnaive(d) = teik
′
zdt′, (5.73)

where the first t is the left boundary, the exponential describes the transmission inside the slab
and t′ encodes the effects of the second boundary. However, the reflected wave inside the slab
hits the left boundary again, etc. So the full transmission is given by

T (d) = tt′eik
′
zd + tt′r′2e3ik

′
zd + tt′r′4e5ik

′
zd + tt′r′6e7ik

′
zd + . . . (5.74)

= tt′eik
′
zd
[
1 + r′2e2ik

′
zd + r′4e4ik

′
zd + . . .

]
=

tt′eik
′
zd

1− r′2e2ik′zd
. (5.75)
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Let us analyze this expression. k′z = i
√
k2x − ω2/|µ| with k2x > ω2/|µ|⇒ both exponential factors

are much smaller than one for large enough d. If r′2 and tt′ would be well behaved, we could
neglect r′2 exp[−2ik′zd] with respect to 1 and we would obtain the naive result. However, for
µ → −1, we need to be more careful

lim
µ→−1

T (d) = lim
µ→−1

4kzk
′
z

µ2

(kz + µk′z)
2

eik
′
zd

1−
(
kz−µk′z
kz+µk′z

)2
e−2ik′zd

(5.76)

= lim
µ→−1

4kzk
′
ze

ik′zd
1

(kz + µk′z)
2 − (kz − µk′z)

2e−2ik′zd
(5.77)

= 4k2ze
ikzd 1

(kz − k′z)
2 − (kz + k′z)

2e−2ik′zd

kz→k′z= e−ikzd. (5.78)

We found an astonishing result: Evanescent waves are exponentially enhanced while passing
through the doubly negative material! This famous results by Pendry [2] established the concept
of a superlens built from metamaterials.
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