
Chapter 6

The continuum limit

Learning goals

• You know how to define effective parameters for a discrete system.
• You know how to find the effective mass for a simple setup.
• You know how to determine the effective spring constant.

In the chapters 3 and 4 we have seen how we can shape the propagation of waves by using
periodic structures or by employing local resonances. In the last chapter, on the other hand,
we have seen how one can obtain interesting phenomena within the simple framework of a
wave-equation, albeit with “unnatural” parameters E < 0 and ρ < 0.
How to map a structured metamaterial to a simple wave equation with effective parameters is
a highly non-trivial task. We can group approaches to do so into two classes. First, if we deal
with a continuous medium to which we add resonances of periodic array of scatterers one can
do the following

• Solve how a circular object with E, ρ, ν scatters a wave.

• Solve the problem of inclusions in a circular metamaterial and calcu-
late how it scatters an incoming wave.

• By comparing the two results, fix the effective E, ρ, ν of this circular
material.

This program is called homogenization. Here, we want to follow a different path. We would
like to know how to map a discrete model with an interesting band structure to an effective
“continuum” theory. In this case we introduce “natural” coordinates ξn and think of the blue
bodies in Fig. 6.1 as rigid, despite the fact that they might have an interesting inner life. The
effective mass meff and the effective spring constant are then defined via

meff =
Fn

∂2t ξn
and fnm

eff =
Fnm

ξn − ξm
, (6.1)

where Fn are the (external) forces on block n and Fnm the forces between n and m.

Figure 6.1: Effective coordinates of a more complicated body.
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Figure 6.2: Mass in mass system.

6.1 Mass in mass

We start by revisiting the mass-in-mass system, cf. Fig. 6.2. Imagine that we would not see the
interior mass M . So we should find an effective description for the “outer” mass only. Let us
write

Mv̈ = F (ξ − v). (6.2)

We assume harmonic motion

v = v0e
iωt, (6.3)

ξ = ξ0e
iωt. (6.4)

Inserted into (6.2) we get
− ω2Mv0 = F (ξ0 − v0) (6.5)

and therefore

v0 =
F ξ0

F − ω2M
. (6.6)

By writing ωM =
√

F/M , we get

v0 =
ω2
M

ω2
M − ω2

ξ0. (6.7)

Let us now introduce the effective mass. We know that

dP

dt
= ∂t(m∂tξ +M∂tv) = Fext. (6.8)

As we do not “know” about the mass M we would write

meff∂
2
t ξ = Fext. (6.9)

As Eq. (6.7) is independent of time, we have

∂tv =
ω2
M

ω2
M − ω2

∂tξ. (6.10)

Using this in Eq. (6.8), we find

∂t

(
m∂tξ +M

ω2
M

ω2
M − ω2

∂tξ

)
= Fext (6.11)

∂t

[
m

(
1 +

M

m

ω2
M

ω2
M − ω2

)
∂tξ

]
= Fext (6.12)

meff∂
2
t ξ = Fext. (6.13)
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Figure 6.3: Effective mass.

In the last line we defined

meff = m

(
1 +

M

m

ω2
M

ω2
M − ω2

)
. (6.14)

We observe:

• for meff < 0: You push the mass and it moves in your direction.

• meff is strongly frequency dependent!

• ω → 0: meff = m+M .

Let us now use this effective mass description to solve the chain of such local resonators

meff(ω)ξ̈n = −f(2ξn − ξn+1 − ξn−1). (6.15)

As usual we assume ξn = exp ikna to obtain

meff(ω)ω
2 = 2f [1− cos(ka)] = 4f sin2(ka/2). (6.16)

When we solve for k we find

k =
2

a
arcsin

[
1

2

√
meff(ω)

f
ω

]
. (6.17)

From this expression we see that k becomes imaginary if

1. meff < 0 ⇐ Band gap

2. 1
2

√
meff/f ω > 1 ⇐ above band edge

6.2 Effective spring

We have seen that a “hidden” mass can give rise to an effective negative mass. What about
negative springs? Let us consider the system shown in Fig. 6.4. The equations of motion are

mÿ = F2, (6.18)

F2 = 2(F1 − 2κ2x̄) tan(α), (6.19)

F1 = κ1(x− x̄). (6.20)
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Figure 6.4: Effective sping.

From the last line we infer that x̄ = x − F1/κ1. Inserted into the middle line we get F2 =
2[F1 − 2κ2(x − F1/κ1)] tan(α). Moreover, we can use that x̄ = tan(α)y which yields y =
(x− F1/κ1)/ tan(α). Using all of this in the first line we find

−mω2

(
1− F1

κ1

)
= 2

[
F1 − 2κ2

(
x− F1

κ1

)]
tan2(α) (6.21)

⇒ x = F1
mω2 − 2(κ1 + 2κ2) tan2(α)

κ1[mω2 − 4κ2 tan2(α)]
. (6.22)

We can now define

x =
F1

2κeff

(6.23)

and write

κeff =
1

2

[(
ω2 − 4κ2

m tan2(α)κ1
)

ω2 − ω2
0

]
, (6.24)

with ω2
0 = 2(κ1+2κ2)

m tan2(α). We check for the sanity of this results by taking

lim
ω→0

1

κeff

=
1

κ2
+

2

κ1
, (6.25)

which is what we should obtain! Analogous to the effective mass, the effective spring constant
can be negative, cf. Fig. 6.5.
Again, we can bunch such elements together to find the equations of motion for a chain made
from effective springs

mξ̈n = −κeff(2ξn − ξn−1 − ξn+1) (6.26)

1/( 1
2

+ 2
1

)

Figure 6.5: Effective spring constant.
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Not so surprisingly the wave number

k =
2

a
arcsin

(√
m

κeff(ω)
ω

)
(6.27)

is again complex in the region where κeff is negative and above the upper band edge.

6.3 Double negativity

We now combine the two ingredients, an effective mass and an effective spring as shown in Fig. .
We immediately find

meffω
2 = 4κeff sin

2(ka/2). (6.28)

Task: Write meff and κeff in a way that transparently captures the negative sections. Then
solve the above equations for ω and plot the solutions as a function of k and vary the tuning
parameters. Convince yourself that indeed for meffκeff < 0 you and up in a band gap and for
meff < 0 and κeff < 0 you have indeed ∂kω(k) < 0.
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