
Chapter 7

Long-range order

Learning goals

• What is long-range order?
• What is the order parameter of the BEC phase transition?
• How is the reduced one-particle density matrix changing when the system undergoes a phase
transition to a Bose-Einstein condensate?
• What is the di↵erence between the coherence and the correlation length?
• What is the critical region?

We will apply the formalism of second quantization to describe the spatial coherence of an atomic
cloud, captured in the reduced single-particle density matrix. In the case of a BEC, the system
will show o↵-diagonal long-range order, where remote parts of the same sample show correlated
behavior. The existence of o↵-diagonal long-range order can hence be used as a condition for
BEC. The chapter ends with a general discussion of second order phase transitions.
We follow here Pitaevskii/Stringari: BEC, and Pethick/Smith: BEC in dilute gases.

7.1 Reduced one-body density-matrix

The many-body correlations in a system can be very complicated. However, for the estimation
of most experimentally relevant properties, knowledge of the reduced one-body density matrix
⇢(r, r0) is already su�cient. It can be expressed with the particle creation and annihilation
operators  ̂†(r) and  ̂(r) as

⇢(r, r0) = h ̂†(r) ̂(r0)i . (7.1)

For a pure state, the average h·i is the quantum mechanical expectation,
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Here we integrated over all except of one degree of freedom of the N -body wave function and
significantly reduced the complexity of the problem. For a system in a statistical mixture, the
average is an ensemble average taking into account the probability to occupy a certain state.
The reduced one-particle density matrix expresses the probability amplitude to annihilate a
particle at location r0 and to create one at location r. For r = r0, this describes the local density
of the system,

n(r) = ⇢(r, r) = h ̂†(r) ̂(r)i . (7.3)

From this we see that the one-body density matrix is normalized, such that the total number of
particles is

R
dr⇢(r, r) = N . The density matrix also describes the momentum distribution of
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the system

n(p) = h ̂†(p) ̂(p)i , (7.4)

with the Fourier transform  ̂(p) = (2⇡~)�3/2
R
dre�ipr/~ ̂(r). We now consider a homogeneous

Figure 7.1: One-particle density matrix. A particle with initial momentum p is incident on
a slab of atomic medium with thickness L. The transmitted wavefunction will acquire a phase
shift due to the e↵ective index of refraction.

gas1 with N particles contained in a volume V and take the thermodynamic limit N,V ! 1
with n = N

V = const. Under this assumption the system will be translation invariant and the
reduced one-body density matrix will only depend on the modulus s of the separation of the
two points in space considered, ⇢(r, r0) = ⇢(|r � r0|) = ⇢(s). Bose-Einstein condensation is a
phenomenon taking place in momentum space, so it is useful to express the reduced one-body
density matrix with help of the momentum distribution:

⇢(s) =
1

V

Z
dpe�ips/~n(p) . (7.5)

A system with T > Tc will have a smooth momentum distribution, and the di↵erent contributions
to ⇢(s) will average out for large s, such that lim

s!1
⇢(s) = 0. The one-body density matrix will

decay to zero over a distance given by the thermal de Broglie length �
th

. The momentum
distribution for a BEC however is very di↵erent since it exhibits a singular behavior at p = 0,

n(p) = N
0

�(p) + ñ(p) . (7.6)

The corresponding reduced one-body density matrix will thus show a finite value also for very
large separations s,

lim
s!1

⇢(s) = n
0

=
N

0

V
. (7.7)

The one-body density matrix for the case of a BEC is decaying over a distance typically given
by the thermal de Broglie length to a finite value which is set by the condensate fraction of the
gas. The system is then said to show o↵-diagonal long-range order (ODRLO), i.e. finite values
in ⇢(r, r0) for r 6= r0. This is directly related to the macroscopic occupation of a single-particle
state. The criterion for BEC of a macroscopic occupation given by Penrose and Onsager is thus
equivalent to the existence of ODLRO.

1however, this concept holds equally for trapped systems, as described in detail in M. Naraschewski and R.
Glauber, Spatial coherence and density correlations of trapped Bose gases. Physical Review A, 59(6), 4595 (1999)
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A non-interacting Bose gas at T = 0 in which all N particles occupy the single particle wave
function |�i can be described by the many-body wave function  (r) =

p
Nhr|�i, and will have

a constant one-body density matrix for all separations s. If interactions are present, even at
T = 0 not all particles will be in the ground state but the system will show quantum depletion,
and the one-body density matrix decays to the constant value n

0

.

First order correlation function. The reduced one-body density matrix is closely related
to the concept of correlation functions. It is indeed given by the first order correlation function
G(1)(r, r0),

G(1)(r, r0) = ⇢(r, r0) . (7.8)

The first order correlation function is often used in its normalized form g(1)(r, r0),

g(1)(r, r0) =
G(1)(r, r0)p

G(1)(r, r)
p

G(1)(r0, r0)
, (7.9)

such that perfect correlations correspond g(1)(r, r0) = 1.

Coherence length vs. correlation length. It is important to distinguish between the
correlation length and the coherence length. The coherence length is referring to the length
scale in the gas over which the system shows a certain degree of coherence. For a thermal gas,
this length scale is given by the thermal de Broglie wavelength �

th

. It diverges to the system size
at the phase transition to BEC, where global coherence throughout the system is built up. In
contrast, the correlation length describes the length scale in the system over which fluctuations
are correlated. In a thermal gas, this length scale is identical to the coherence length and given
by �

th

. Again, this length scale is diverging towards the critical point of the phase transition.
However, once the phase transition has taken place and coherence is built up in the system, the
correlation length will decay again.

7.2 Order parameter and wave function of the condensate

Applying the definition of the field operator  ̂(r) to the situation of a BEC, where the state
�
0

(r) is macroscopically populated, one can write

 ̂(r) =
X
i

�i(r)âi = �
0

(r)â
0

+
X
i 6=0

�i(r)âi . (7.10)

We here separated the contribution of the BEC (first term) from the non-condensed part (second
term). At this point, we make use the Bogoliubov approximation, which we introduced formally

previously. It boils down to replacing the operators â
0

and â†
0

by the value
p
N

0

. This ignores
the non-commutativity of these operators, but the introduced errors are on the order of 1/N

0

and thus small. With help of this step, we can write

 ̂(r) =  (r) + � ̂(r) , (7.11)

where we defined  (r) =
p
N

0

�
0

(r) and � ̂(r) =
P

i 6=0

�i(r)âi. For a pure BEC, this corresponds

to  ̂(r) =  (r), such that the field operator is described by a wave function and thus can be
regarded as classical object. This wave function  (r) is generally a complex function which can
be written as

 (r) = | (r)|ei'(r) . (7.12)

43



The modulus of  (r) is describing the density (diagonal density) of the gas, while the phase is
characterizing the coherence (o↵-diagonal density) of the gas.
The function  

0

(r) is the order parameter of the normal-to-superfluid phase transition. It is
zero in the normal phase (T > Tc), and takes a finite value for the condensed phase (T < Tc). It
is defined only up to an arbitrary, fixed phase constant, as the wavefunction can be multiplied
with a factor ei↵ without changing a physical property of the system. An explicit choice for the
phase will break the given continuous symmetry, which is a feature of this second order phase
transition.

7.3 Phase transitions and critical behavior

7.3.1 Order Parameter

A system undergoing a continuous phase transition from the high-temperature side to the low-
temperature side will reduce its symmetry. For example, a ferromagnet below its critical temper-
ature shows spontaneous magnetization into a certain direction, thereby destroying rotational
invariance. Because of this reduction in symmetry, an extra parameter is needed for the descrip-
tion of the thermodynamics below Tc, and one introduces the order parameter �. The order
parameter is a certain thermodynamic quantity of a system; its thermal average vanishes on one
side of the phase transition, and has a non-zero value on the other side. It is a quantity which
can fluctuate both in space and in time, so we can write �(r, t).
In the above example of the ferromagnet one chooses the magnetization vector M as an order
parameter, whereas for a Bose-Einstein condensate the wave function  (r) is the order parame-
ter. The choice of the order parameter is not at all obvious, but has to be made afresh for every
new system. The n-dimensional order parameter can be a scalar (like the density for the liquid
gas transition), a vector as in the above examples or a tensor. The higher the dimensionality of
the order parameter is, the more complex the phase diagram will be.

7.3.2 Critical Exponents

Although no latent heat is involved in second order phase transitions, this does not mean that the
heat capacity is a smooth function of temperature. In fact it shows in many cases a divergence
according to ⇠ |T�T

c

T
c

|�↵, where ↵ is a so-called critical exponent. This kind of non-analytic
dependence is a crucial property of continuous phase transitions. It is not limited to the behavior
of the specific heat, but there are many other quantities which show a singular behavior around
the critical temperature, like the susceptibility, the compressibility, the equation of states, the
order parameter itself or the correlation length. Each of these properties shows a divergence at
the critical temperature of the form

⇠
����T � Tc

Tc

�����c

. (7.13)

The critical exponents c are typically labeled by Greek letters (↵ for heat capacity, � for order
parameter, � for compressibility, � for equation of states ...). For a convenient description of
these phenomena we introduce the reduced temperature

t =
T � Tc

Tc
=

T

Tc
� 1 . (7.14)

The above definition (Equation 7.13) refers only to the singular part of the interesting quantity,
which is symbolized with “⇠”. It can happen, that a critical exponent is zero, so there is no
singularity. For example, ↵ = 0 tells us that there is no singularity in the heat capacity, which
nevertheless can have a finite discontinuity at t = 0.
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The first order correlation function behaves for large r in the proximity of the critical temperature
like

g(1)(r) ! e�r/⇠

rp
. (7.15)

Here we introduced the correlation length ⇠, which is the typical length scale over which the
fluctuations of the order parameter are correlated. The exponent p = d�2+⌘ in the denominator
depends on the dimensionality d of the system and on the critical exponent ⌘. The correlation
length ⇠ diverges, when T approaches Tc according to

⇠ ⇠ |t|�⌫ , (7.16)

where ⌫ is the critical exponent for the correlation length. Combining (7.15) and (7.16) it
becomes clear that right at the critical temperature ⇠ ! 1 and the nominator in (7.15) becomes
unity. The first order correlation function g(1)(r) will thus show for large r a power-law decay
at T = Tc,

g(1)(r) ! 1

rp
. (7.17)

It is worth noting why critical exponents have proven to be very helpful in the description of
phase transitions. It would of course be preferable to obtain a complete functional form for the
behavior of a quantity as the specific heat or the correlation length, instead of only a number
describing the singular part. However, near the critical point, the singular part is the dominating
one.
Another, more important, reason for focusing on critical exponents is that they are universal,
which means that they are not only valid for a specific system, but for a whole set of physical
systems that can be grouped in universality classes. In addition, the critical exponents are
not independent from each other, but there exists a number of scaling relations between them,
arising from statistical and thermodynamical considerations.

7.3.3 Landau and Landau-Ginzburg theory

Landau Theory

Landau theory can be understood as a unification of earlier mean-field theories such as the van
der Waals theory or Weiss’ molecular field theory. It is a phenomenological approach, avoiding
the underlying microscopic structure and dealing only with macroscopic quantities. Landau
theory is meant to describe a system in proximity of the critical point only, where the order
parameter � is small.
This theory is based on the assumption that the free energy F of the system can be expanded
in powers of the order parameter �. We can write the Landau expansion of the free energy for
a system at temperature T and in an external field h (which is always zero for a Bose-Einstein
condensate) as

F(T,�, h) = F
0

� h�+
1

2
a(T )�2 +

1

4
b(T )�4 + ... (7.18)

Except of the term with the external field h, the expansion includes only even powers of �, which
corresponds to the case of a second order phase transition. To find an equilibrium situation, the
free energy has to show a minimum with respect to �:

@F(T,�)

@�
= 0 ,

@2F(T,�)

@�2

> 0 . (7.19)
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n d ↵ � � � ⌫ ⌘

Ising 2D 1 2 0 1/8 7/4 15 1 1/4

Ising 3D 1 3 0.110(1) 0.3265(3) 1.2372(5) 4.789(2) 0.6301(4) 0.0364(5)

-0.025 1.27 0.65 0.026

XY 2 3 · · · · · · · · · · · ·
+0.05 1.371 0.700 0.07

0.3535 1.270 4.68 0.642 0.030

Heisenberg 3 3 · · · · · · · · · · · · · · ·

0.388 1.465 4.85 0.747 0.06

Landau - 4 0 1/2 1 3 1/2 0

Table 7.1: Theoretical values for the critical exponents.

If a(T ), b(T ) > 0 and h = 0, the only minimum is �
0

= 0, corresponding to a situation where
the system is in the non-ordered phase. The situation changes for the case where a(T ) < 0 and
b(T ) > 0, where we find the non-trivial solution

�2

0

= �a(T )/b(T ) . (7.20)

In Landau theory the expansion coe�cients a(T ), b(T ) are in turn themselves expanded in the
reduced temperature t (7.14), where to lowest order a(T ) = ↵

0

t and b is considered constant in
the vicinity of Tc. Now the solution (7.20) can be written as

�
0

= ±
✓
�↵

0

t

b

◆
1/2

, for t < 0 . (7.21)

With the last equation the critical exponent for the order parameter has been found: � = 1/2.
From similar arguments all critical exponents can be determined. They are listed in the lowest
row in Table 7.1. The other values in this table are results from more refined theories like
renormalization group theory.
Equation (7.21) gives two solutions for the minima of the free energy of the system. In the
absence of an external field h, it is not clear in which minimum the system will evolve. The
situation is illustrated for the case of a one-dimensional (n = 1) (Figure 7.2 a) and of a two-
dimensional (n = 2) (Figure 7.2 b) order parameter in Figure 7.2. For n = 1 the system
has two equivalent free energy minima and is thus twofold degenerate, whereas for n > 1 the
system shows a continuous degeneracy. A system undergoing a phase transition will be driven
by fluctuations into one of the minima—the symmetry is spontaneously broken. Comparing the
behavior of the order parameter to that of the free energy around the critical temperature, it
becomes clear why second order phase transitions are very sensitive to fluctuations: Around
the critical temperature, the minimum of the free energy changes only weakly with T , while
the order parameter � changes rapidly, and thus fluctuations which involve a large change in �
require only a small change of free energy.
Landau theory is a mean-field theory, assuming a uniform order parameter and neglecting the
fluctuations of the order parameter around its average value. Even though Landau theory
provides a good understanding of phase transitions and symmetry breaking, this must lead to
quantitatively wrong predictions. The influence of the fluctuations on the behavior at a phase
transition was found to depend on dimensionality. Fluctuation have a decreasing e↵ect with
increasing dimensionality of both the system, d, and the order parameter, n. In fact, one can
define a lower critical dimension d� and an upper critical dimension d+. For dimensions d � d+,
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Figure 7.2: Free energy as function of order parameter.Dependence of the free energy
F on the value of the order parameter �. (a) shows the situation for a one-dimensional (n =
1) order parameter for three di↵erent temperatures. Above Tc, the free energy has only one
minimum, which becomes very broad for T = Tc. For temperatures below Tc there is a two-fold
degeneracy and the system is driven by fluctuations into one realization. (b) shows the situation
T < Tc for a two-dimensional (n = 2) order parameter, where the degeneracy is continuous.

the fluctuations can be neglected, and the behavior is correctly predicted by Landau theory. In
contrast, for d  d� the fluctuations are so strong that they completely destroy the ordered
phase, thereby inhibiting the phase transition. If the dimensionality of the system is between
the critical dimensions, d� < d < d+, a phase transition will occur, but the behavior is di↵erent
from Landau theory. The values for the critical dimensions depend on the universality class.
For the XY-universality class (n = 2), to which Bose-Einstein condensation belongs, the lower
critical dimension is d� = 2, whereas the upper critical dimension is d+ = 4.

Landau-Ginzburg Theory

Landau theory does not take any fluctuations into account. The influence of fluctuations is
included by Landau-Ginzburg theory which is an extension of Landau theory. Landau-Ginzburg
theory contains a fluctuating field in form of a spatially varying order parameter �(r). The
theory bases on the Landau-Ginzburg free energy functional F

LG

which is a generalization of
the Landau free energy (7.18). Due to the spatial dependence of �(r), also derivatives of the
order parameter have to be included in the expansion. For an isotropic system, there is no term
linear in r�(r), because it would depend on the direction of the change in �(r). Thus the
simplest possible term is quadratic in r�(r) and the Landau-Ginzburg free energy functional
is given by

F
LG

(�(r)) =

Z
F
0

� h�(r) +
1

2
↵
0

t�(r)2 +
1

4
b(T )�(r)4 + c (r�(r))2 dr . (7.22)

The Landau-Ginzburg free energy functional is often also called �4-model. Although this model
describes a phase transition in principle very well, it turns out that calculations are highly com-
plicated because higher orders have to be included in the functional (7.22) when T approaches
Tc. Knowing that Landau-Ginzburg theory is correct for systems with dimensions higher than
the upper critical dimension d+, one introduces a continuous dimensionality d and tries to ex-
pand the energy functional for dimensions smaller, but close to the critical dimension. This
approach is called ✏-expansion, where ✏ = d+ � d is the deviation from the upper critical di-
mension. This method can surprisingly be extended to lower dimensions, even if ✏ then is not a
small parameter any more. Similar to the ✏-expansion one can apply a 1/n-expansion according
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to the dimensionality of the order parameter n. Landau theory is correct for n = 1, that is
why an expansion in 1/n was shown to be successful. The ✏- and the 1/n-expansion are used to
reliably calculate critical exponents for the physically interesting dimensions.

Critical Region

To estimate the importance of fluctuations it is useful to compare the magnitude of the fluc-
tuations with the mean value of the order parameter. Landau theory is correct as long as the
fluctuations in the system are much smaller than the mean value of the order parameter. The
amplitude of the fluctuations increases when the temperature approaches the transition tem-
perature. One can define a temperature region around the critical temperature, the so-called
critical region, in which the fluctuations dominate and thus Landau theory breaks down. The
size of this region is determined by the Ginzburg criterion

b2T 2

c

↵4�d
0

cd
⌧ |t| ⌧ 1 , (7.23)

where ↵
0

, b and c are the expansion coe�cients from (7.22) and d is the dimensionality. This
means that Landau theory is only applicable in a temperature range which is su�ciently close
to Tc, but not so close that fluctuations are dominating. On the other hand, this criterion also
determines how close to Tc the temperature has to be in order to experimentally observe the
e↵ects of fluctuations and thus beyond mean-field behavior.
The actual calculation of the critical region is not trivial, because it depends on the microscopic
details of the system. The size of the critical region is thus not universal. For a conventional
superconductor it can be small (10�14), whereas for a high-Tc superconductor the critical region
is 10�2. For the case of Bose-Einstein condensation in dilute gases, the critical region has been
estimated in terms of the correlation length to be

⇠ �
�2

dBp
128⇡2a

(7.24)

with the scattering length a, which yields for typical experimental parameters ⇠ � 0.36 µm.
From this one can find via ⇠ ⇠ |t|�⌫ the temperature range of the critical region to be on the
order of 10�2.

7.3.4 The Correlation Function near the Phase Transition

In the following we want to concentrate on the correlation function g(1)(r, r0) of a system in
proximity of a phase transition. As introduced in Section 7.3.2, the correlation function in the
critical region has the asymptotic form

g(1)(r) �!
r>�dB

e�r/⇠

rd�2+⌘
�!
T=T

c

1

rd�2+⌘
, (7.25)

which means that it changes its shape from a mainly exponential decay to a pure power law
decay when approaching the critical temperature. The correlation length ⇠ is a measure for the
size of the regions in which the fluctuations of the order parameter are correlated. The order
parameter fluctuates in domains of all sizes up to ⇠. When T ! Tc, the correlation length grows
without limits and thus the order parameter has correlated fluctuations on all length scales.
This behavior is nicely illustrated by snapshots of the Ising model taken at di↵erent temperatures
as shown in Figure 7.3. Black pixels correspond to spin down, white to spin up. For high
temperatures there are many small black and white regions, generating a pepper-and-salt e↵ect,
and there is no preferred direction of the spins, i.e. there is no net magnetization. When the
temperature is lowered towards Tc, the typical size of the monochrome regions steadily increases,
until the critical temperature is reached. At this point fluctuations from infinitesimally small
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Figure 7.3: 2D Ising across critical point. Snapshots of the two-dimensional Ising model
at di↵erent temperatures. Black pixels correspond to spin down, white to spin up. At high
temperatures (top left) there is no net magnetization, and the fluctuating regions are very
small. Going to the right in the upper row the temperature is decreased, until around Tc (top
right), the fluctuating regions are correlated over the whole system, but there is still no net
magnetization. In the lower row the temperature is below Tc and the system has chosen to be
by the majority spin down. Going to the right in the lower row, for even lower temperatures
the size of the fluctuating regions decreases.

to infinitesimally large appear and the system can be seen as self-similar. Also at the critical
temperature, no net magnetization is visible, but the correlated regions extend over the whole
lattice. Below Tc the system spontaneously chooses a preferred spin direction, in this case spin
down, corresponding to a majority of black pixels. The size of the white regions, corresponding
to the fluctuations on top of the net magnetization, decreases with decreasing temperature.
The correlation length ⇠ corresponds in this example to the typical size of the white regions. It
diverges at Tc and falls o↵ again when the temperature moves away from the critical temperature.
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