
Chapter 3

The integer quantum Hall e↵ect II

Learning goals

• We know the pumping argument of Laughlin and the concept of spectral flow.
• We know that there is always a delocalized state in each LL.
• We know that �xy is given by the Chern number.
• We understand why the Chern number is an integer.

• K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

3.1 Laughlin’s argument for the quantization of �xy

In the following we try to understand the pumping argument presented by R. Laughlin [1].

3.1.1 Spectral flow

The idea of spectral flow is central to the pumping argument of Laughlin. We try to understand
this idea on the example of a particle on a ring threaded by a flux �
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After the insertion of a full flux quantum �0, the Hamiltonian returns to itself. However, if
we follow each state adiabatically, we see that the first excited and the ground state exchanged
their positions. This situation is called spectral flow: While the spectrum has to be the same
for � = 0 and � = �0, the adiabatic evolution does not need to return the ground state to
itself! This is illustrated in Fig. 3.1. While the example of a particle on a ring is particularly
simple, the same situation can occur for a general setup where after the insertion of a flux �0
the original ground state is adiabatically transferred to an excited state. Let us now see how
this spectral flow e↵ect applies to the quantum Hall problem.

3.1.2 The ribbon geometry

Laughlin proposed that if �xy is quantized, it should not depend on the details of the geometry.
One is therefore allow to smoothly deform a rectangular sample in the following way: where
in the last step we replaced the applied voltage V ! @t� with the electromotive force of a
time-dependent flux through the opening of the “Corbino” disk.

Let us see what happens when we inset this flux. We make use of the eigenfunctions in
the radial gauge1  ⇠ zm exp(�z⇤z/4), where z = (x + iy)/l which we can also write as

1See exercise 9.2.
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Figure 3.1: Spectral flow.

Figure 3.2: Change of geometry for Laughlin’s pumping argument.

eim�rm exp(�r2/4l2). Again, we see that these are Gaussians in one of the coordinate, how-
ever, shifted in radial direction depending on m. By calculating @r = 0 we find that they are
localized around rm =

p
2ml. Therefore the flux enclosed by the m’th wave function is given by

⇡r2mB = 2⇡m
~
eB

B = m�0. (3.2)

We now add slowly another flux �0 into the opening of the Corbino disk. Slowly means on a
time-scale t0 � 1!c, such that we do not excited any particles into the next LL. From the above
considerations we conclude that

rm(�) ! rm(�+ �0) = rm+1(�). (3.3)

In other words, by inserting a flux quantum we transferred one state from the inner edge of the
disk to the outer perimeter. To reach equilibrium, the system will let the charge relax again and
we obtain

V�̂ = �@�
@t

=
h

et0
; Ir̂ =

e

t0
) �xy =

Ir̂
V�̂

= �e2

h
. (3.4)

This closes the argument of R. Laughlin [1]: The insertion of one flux quantum transfers a
quantized charge across the ribbon and hence leads to the quantized Hall conductance measured
in the experiment. At this point it is in place to review the assumptions that went into this
argument
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a b c

Figure 3.3: (a) Chemical potential below the center of the LL: All states are localized in the
form of orbits around lakes. (b) At the percolation threshold there is one shoreline connecting
the two sides of the sample. (c) Above the middle of the LL all but the two edge states are
localized around islands.

1. ~/t0 ⌧ ~!c, i.e., we adiabatically inserted the flux. This is well justified as �xy describes
linear response.

2. Spectral flow lead us to an excited state, i.e., the system was sensitive to the flux insertion!

How does this compare to the fact that we argued in the last chapter that in two dimensions all
eigenstates are localized? After all a localized state in the vicinity of the outer edge should not
feel anything of the flux inserted in the middle!

3.2 The percolation transition

In the last lecture we have seen that for spinless fermions and for a time-reversal invariant
system all states are localized in two spatial dimensions. How can we reconcile this with the
above argument for the quantization of �xy. The answer is, that for the case of a magnetic field,
where time reversal symmetry is broken, the gang-of-four argument does not hold.

There is, however, a relatively simple picture in terms of percolating clusters. We know that
eigenstates in a disordered LL level are given by orbits along equipotential lines.2 The question
is, if there is always an orbit in each LL that connects the two edges of our Corbino disk. If this
is the case, this state mediates the sensitivity to the flux insertion and Laughlin’s argument goes
through also in the disordered case. Luckily the answer to this question is an a�rmative yes!

In Fig. 3.3 energy landscape for a disordered LLL with a confinig potential is shown. Eigen-
states are given by equipotential orbits. At low chemical potential µ as shown here, all orbits
are “lakes” and hence all states are localized.

When filling in more water (raising µ) we switch at some point from “lakes” to “island”.
Right at the point where this happens, the shoreline has to connect through the whole sample.
This is the sought after extended state in the middle of the sample. Above the center of the LL
we are left with “islands” where all states in the bulk are localized. However, we get one edge
state on either side of the sample as discussed for the case of no disorder.

We can now summarize our discussion of disorder e↵ects: (i) We found the extended state in
the LL needed for Laughlin’s pumping argument to hold. (ii) The disorder allows the chemical

2See exercise number one.
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potential to smoothly change also between the LL’s. Therefore, there is an extensive window
where the chemical potential lies in the range of the (mobility) gap and hence we find

�xy = �e2

h
⌫ ⌫ 2 Z. (3.5)

3.3 The TKNN integer

We have now seen that the Hall conductivity has to be quantized in two independent ways.
Once, we saw that the edge states of the QHE are chiral one dimensional channels which carry a
conductivity of e2/h. On the other hand, we saw that the pumping argument requires �xy to be
quantized. In both cases the e↵ect was not only stable to disorder but actually required a certain
amount of dirt the lift the huge degeneracy of the LL’s which made the chemical potential to
cling to the bulk states. The obvious question is now if there is a deeper, “topological” reason
that links these two arguments given above. The answer was given in another seminal paper by
Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) in 1982 [2].

3.3.1 Landau levels on the torus

The original paper [2] considered electrons in a periodic potential. Here we want to follow a
di↵erent route inspired by Avron and Seiler [3] (See also lecture notes by A. Kitaev).
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Figure 3.4: Real space
torus.

We consider the problem of a magnetic field on a torus. We
use the gauge field

Ax =
�x

Lx
, Ay =

�y

Ly
+Bx, (3.6)

where we added fluxes �x/y through the openings of the torus. The
boundary conditions on the torus in the presence of a magnetic
field are somewhat non-trivial. Let us define them with respect
to the magnetic translation operators which are defined via the
canonical momentum operator (i~r� eA)

TA
u = e

i

~u·p = e
i

~u·(i~r�eA) = e
ie

~ u
y

BxTA=0
u . (3.7)

Note that these operators depend on the choice of gauge. To derive the boundary conditions,
we now consider u1 = (Lx, 0) and u2 = (0, Ly).

TA
u1
 (x, y) =  (x+ Lx, y)

!
=  (x, y), (3.8)

TA
u2
 (x, y) = e

ie

~ BxL
y (x, y + Ly)

!
=  (x, y). (3.9)

These two conditions are only compatible if

TA
u1
TA
u2

= TA
u2
TA
u1
. (3.10)

This is only the case for
eB

~ LxLy =
LxLy

l2
= 2⇡n (3.11)

with n 2 Z. In other words, an integer number flux quanta has to pierce the surface of the
torus (we can only put quantized magntic monopoles inside the torus). One can also see that
the boundary conditions contain a “gluing phase”

 (0, y) =  (Lx, y), (3.12)

 (x, 0) = e�
ie

~ BxL
y (x, Ly). (3.13)
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In order to appreciate the role of (�x,�y) we calculate the Wilson loops

Wx(y) =

I
dxÃx(x, y) = BLxy + �x, (3.14)

Wy(x) =

I
dyÃy(x, y) = BLyx+ �y, (3.15)

where we absorbed the gluing phase in the vector potential Ã. W = (Wx(y),Wy(x)) is a gauge
invariant vector and shows that on a torus a magnetic field breaks all translational symmetries.
Moreover, we see, that we can view (�x,�y) as a shift in (x, y). Equipped with these details
about the problem of a magnetic field on a torus we now want to embark on the calculation of
the Hall conductivity.

3.3.2 Kubo formula

For a microscopic calculation of the conductivity we need a bit of linear response theory. We
are interested in the (linear) response of a system to a (small) applied perturbation. In our case
the response of interest is the current density j(r) = e

2m

P
i[pi�(r � ri) + �(r � ri)pi)]. The

perturbation is given by an applied electric field E = �@tA. The perturbing Hamiltonian can
therefore be written as

H 0 = �
Z

dr j(r) ·A(r), (3.16)

We are interested in the expectation value of the current density operator

j̄(r, t) = h |U †(t)j(r, t)U(t)| i with U(t) = Tte
� i

~
R
t

�1 dt0H0(t0), (3.17)

and

j(r, t) = e
i

~
R
t

�1 dt0 H0(t0)j(r)e�
i

~
R
t

�1 dt0 H0(t0) and H 0(t) = e
i

~
R
t

�1 dt0 H0(t0)H 0e�
i

~
R
t

�1 dt0 H0(t0)

(3.18)
Here, Tt is the time-ordering operator and | i is the unperturbed ground state of the original
HamiltonianH0. As usual for perturbation theory, we switched to the interaction representation.

We assume the vector potential in H 0 to be given by A = (�x/Lx,�y/Ly)et/⌧ , which cor-
responds to slowly turning on the fluxes through the opening of the torus. Moreover, we only
drive with a spatially constant field. Note, that A0 = Bxŷ is not included in H 0 as this is not
considered to be small but part of the unperturbed Hamiltonian H0. In linear response we can
expand the exponent in U(t) to obtain

j̄↵(r, t) =
i

~
X

�

Z t

�1
dt0A�(t

0)h[j↵(r, t),
Z

dr0j�(r0, t0)]i (3.19)

=
i

~
X

�

Z t

�1
dt0A�(t

0)h[j↵(r, t), J�(t0)]i. (3.20)

We write J�(t0) for the q = 0 Fourier-component of the current as it represent the total current.
Moreover, as we only drive with q = 0, we only get response at this wave vector. To make this
clearer we take the Fourier transform on both side with respect to r

J̄↵(t) =
i

~
X

�

Z t

1
dt0

��

L�
e

t

0
⌧

| {z }
=⌧E0

�

et
0
/⌧

h[J↵(t), J�(t0)]i. (3.21)
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We can now relate the current density3 to the final driving field E0
y to obtain an expression for

the Hall conductance

�xy(t) =
i⌧

~v

Z t

�1
dt0 e

t

0
⌧ h[J↵(t), J�(t0)]i (3.22)

The result (3.22) is known as the Kubo formula. Let us review this result again: The first current
operator arises as we measure a current. The second one because the perturbing Hamiltonian
H 0 is also proportional to the current. The commutator originates from the perturbation theory
where U(t) is once acting from the left and once from the right. The multiplication by ⌧
accounts for the time derivative linking the electric field E and the vector potential A. Finally,
in our derivation we made the explicit assumption that we turn on the fluxes �↵ adiabatically.
Certainly the Kubo formula is more general and can be derived for an arbitrary time and space
dependence of the perturbation.

To make progress we manipulate (3.22) further

�xy = �xy(t = 0) =
i⌧

~v

Z 0

�1
dt0 ⌧et

0/⌧ h[J↵(0), J�(t0)]i (3.23)

=
i

~v

Z 1

0
dt1

Z 0

�1
dt2h[Jx(t1), Jy(t2)]ie�

t1�t2
⌧ (3.24)

=
i

~h[Q
+
x , Q

�
y ]i, (3.25)

where the operators Q±
↵ are defined as

Q+
↵ =

1

L↵

Z 1

0
dt e�t/⌧J↵(t), and Q�

↵ =
1

L↵

Z 0

�1
dt et/⌧J↵(t). (3.26)

To evaluate the above formula for �xy we apply the adiabatic approximation: We try to exchange
the current operators in (3.22) with something that explicitly only depends on the ground state
wave-function | ti at a given time during the turn-on process. At this point it is convenient to
introduce the (dimensionless) phases

'↵ = �↵/�0 =
e

~�↵. (3.27)

Inserted into (3.16) we have

H 0 = �
Z

dr j(r) ·A(r) = �
X

↵

J↵
�↵

L↵
et/⌧ = �

X

↵

J↵
~
e

'↵

L↵
et/⌧ . (3.28)

Let us write the ground state wave function at t = 0 by evolving the t = �1 wave function
assuming '↵ to be small

| 0i = T̂te
� i

~
R 0
1 dt0 H0(t0)| �1i ⇡ | �1i �

X

↵

i

e
'↵Q

�
↵ | �1i. (3.29)

We now make use of the adiabatic approximation: We assume that we do not induce any
transitions to states above a postulated energy gap. Moreover, the state at t = �1 does not
depend on '↵. When taking the derivative @/@'↵ on both sides of Eq. (3.29) we obtain

Q�
↵ | 0i = ie

����
@ 0

@'↵

�
. (3.30)

3Note that by taking the Fourier-transform

J̄(q) =

Z
dreiq·rj̄(r)

we switched from current density to the total current. However, �
xy

relates the driving field E to the current
density in J̄

x

/v = J̄
x

/L
x

L
y

. We account for that by dividing by the volume v = L
x

L
y

.
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We achieved our goal to replace the unwanted current operators! For clarity and to make
connection to more mathematical literature [4] we introduce the Berry connection

A↵ = ih 0|@↵ 0i, or A = ih 0|r 0i (3.31)

and the corresponding Berry curvature

F↵� = @↵A� � @�A↵ or F = r^A. (3.32)

We can now write for �xy

�xy =
e2

~ Fxy, (3.33)

Let us take the step from the adiabatic turning-on of the field to a dc-field. In that case the
field A grows linearly in time, or in other words, the phase 'x winds as a function of time. We
therefore average the above result over

R
d'x/2⇡. To make matters more symmetric, we also

average over 'y. This leads us to the formula

�xy =
e2

~

Z
d'xd'y

(2⇡)2
Fxy =

e2

h

Z
d'xd'y

2⇡
Fxy =

e2

h

C
2⇡

, (3.34)

where we identified the Chern number C [4]. In order to get a better understanding of Eq. (3.34)
we related it to the Berry phase of a spin-1/2 in a magnetic field before we motivate it to be
quantized to an integer number times the quantum of conductance e2/h.

3.4 The Berry phase

We would like to establish the link between the well known Berry phase [5] and the expression
for the Hall conductance derived above. Let us assume that we have a Hamiltonian H[R(t)]
that depends on time dependent parameters R(t). These parameters are supposed to evolve
slowly

~@Ri(t)

@t
⌧ �, (3.35)

where � is the minimal gap between the instantaneous ground state and the first excited state at
any given time t. If we start at t = 0 in the ground state, we will always stay in the instantaneous
ground state. However, along the way we will pick up a phase

ei'(t)| 0(R)i : i~@tei'(t)| 0(R)i = H[R(t)]ei'(t)| 0(R)i. (3.36)

Multiplying this expression from the left with h 0(R)|e�i'(t) we obtain

@t'(t) = ih 0(R)|rR| 0(R)i · @R
@t

� 1

~E0(R). (3.37)

Integrating this equation leads to

'(t)� '(0) =

Z R(t)

R(0)
h 0(R)|irR| 0(R)i · dR

| {z }
geometrical phase

� 1

~

Z t

0
dt0E0(t

0)
| {z }

dynamical phase

. (3.38)

If we now consider a path along a closed contour �, the dynamical phase drops out and we find

'� =

I

�
dl ih 0|rR 0i =

I

�
dlA =

Z

�
dSF , (3.39)
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where � is the area enclosed by the contour �. With this we see, that �xy is given by the Berry
phase4 of the ground state when we move the system once around the torus [0, 2⇡]⇥ [0, 2⇡]. Let
us gain a deeper understanding of the Berry phase by recalling the example of a spin-1/2 in a
magnetic field.

3.4.1 Spin-1/2 in a magnetic field

The Hamiltonian of a spin-1/2 in a magnetic field is given by

H = �h · � = �
X

↵=x,y,z

h↵�↵. (3.40)

If we write the magnetic field in spherical coordinates

hx = h sin(#) cos('), (3.41)

hy = h sin(#) sin('), (3.42)

hz = h cos(#), (3.43)

the ground state can be written as

|⇠1i =
✓

cos(#/2)
ei' sin(#/2)

◆
or |⇠2i =

✓
e�i' cos(#/2)

sin(#/2)

◆
. (3.44)

Both states |⇠1i and |⇠2i describe the ground state. However, |⇠1i is singular at # = ⇡ (or at the
south-pole), while |⇠2i is singular at the north-pole. In other words, we had to introduce two
patches on the sphere to obtain a smooth parameterization of the instantaneous eigenstates, see
Fig. 3.5. However, we can glue these two patches together via a gluing phase

|⇠1i = ei⇣(')|⇠2i with ⇣(') = ' (3.45)

along the equator. Let us calculate the Berry connection for the two states. Recall that in
spherical coordinates the di↵erential operators take the forms

rf =
@

@r
f r̂+

1

r

@

@#
f #̂+

1

r sin(#)

@

@'
f '̂, (3.46)

and

r^A =
1

r sin(#)

⇢
@

@#
[A' sin(#)]� @A#

@'

�
r̂+

1

r

⇢
1

sin(#)

@Ar

@'
� @

@r
(rA')

�
#̂

+
1

r

⇢
@

@r
(rA#)� @Ar

@#

�
'̂. (3.47)

With this we immediately find

A =
1

2r
'̂ ·

(
� tan(#/2) |⇠1i
cot(#/2) |⇠2i

and F = � ↵

2r2
r̂. (3.48)

Here, we introduced ↵ = 1 for later purposes. A few remarks are in order: (i) The “B”-field
F'# corresponds to a monopole field of a monopole of strength �↵ at the origin. This can be
seen by integrating F'# over the whole sphere S2

Z

S2

d⌦F = �↵. (3.49)

4Why to we call this a phase? Note that

0 = @
⌘

1 = @
⌘

h | i = h@
⌘

 | i+ h |@
⌘

 i = h@
⌘

 | i+ h@
⌘

 | i⇤ = a+ a⇤.

Therefore a = �a⇤ and hence, Re[a] = 0.
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Figure 3.5: Left: Two patches introduced by the gauge choice for the ground state of a spin-1/2
in a magnetic field. No single patch can describe all eigenstate. However, the two patches can
be glued together via ⇣('). Right: Triangulation of the torus where the gluing phase between
two individual patches i and j is indicated.

(ii) Integrated over the solid angle d⌦ we obtain a Berry phase ' = �↵
2 d⌦. (iii) The field A

corresponds to a monopole at h = 0. At h = 0 the Hamiltonian is zero, i.e., the system is doubly
degenerate. To appreciate this further, we write (see Ref. [5] for details)

F = B = r^ h |r i = hr | ^ |r i =
X

m 6=0

hr |mi ^ hm|r i =
X

m 6=0

h |rH|mi ^ hm|rH| i
(Em � E0)2

.

It is easy to show that r ·B = 0 if Em � E0 6= 0.
To take another step towards understanding the quantization of the Chern number, let us

show that ↵ cannot take arbitrary values. We calculate the Berry phase along a path � that
does not contain the south pole. For simplicity, let us take the equator. We can therefore write

'� =

I

�
dlA =

Z

�
d⌦F = �↵⌦(�)/2 mod 2⇡, (3.50)

where ⌦(�) is the solid angle of the surface �. We closed � such that � contains the north pole.
Alternatively we could have closed � to �0 = S2 � � and write

'� = �
Z

�0
d⌦F = ↵(4⇡ � ⌦(�))/2 mod 2⇡. (3.51)

In order for (3.50) and (3.51) to yield the same result we require

↵ 2 Z. (3.52)

This observation leads us back to the definition of the Chern number

C =
1

2⇡

Z

M
d⌦F 2 Z (3.53)

for any “well behaved”, compact, two-dimensional manifold M without boundaries. It can be
shown that C is a topological invariant of the fiber bundle looking locally like M ⇥ U(1), where
M = S2 is the base manifold defined by the parameters of the Hamiltonian (or more precisely,
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the parameters defining the projectors | 0ih 0| onto the ground state) and U(1) is called the
fibre defined by the phase of the ground state a any given point on S2. Note, however, that the
fibre bundle we are dealing with only locally looks like S2 ⇥ U(1). To get the full fibre bundle
we need to stitch together the two patches defined by |⇠1/2i. The role of the gluing phases ⇣ij
for patches i, j on the compact manifold M can be further highlighted through the formula

C =
1

2⇡

X

i<j

Z

�
ik

d⇣ij 2 Z. (3.54)

In other words, a non-vanishing Chern number C is intrinsically linked to the inability to chose
a smooth gauge, i.e., only if we have to chose several patches that we glue together with ⇣ij can
C be non-zero, see Fig. 3.5. A concrete example of this is our example of the spin-1/2 for which
we have

C =
1

2⇡

Z

S2

d⌦F = �1 =
1

2⇡

I

equator

d' ⇣('). (3.55)

For further details we refer to the book by Nakahara [4] for a detailed mathematical exposition
or the book by Bohm et al. [6] for a more physical approach. We finish this section by stating
the long-sought formula

�xy =
e2

h
⌫ with ⌫ 2 Z. (3.56)

3.5 Translation invariant systems

Above we made an e↵ort to formulate the derivation of �xy free of relations to momentum
integrals. This allows our formalism to be applied to disordered or interacting systems [3].
However, much of what will follow in Chern insulators and eventually the so-called “topological
insulators” will be formulated in translation-invariant systems.

Both for a systems in free space as well as on a lattice it is easy to see that the (quasi)
momentum k is doing nothing but making the wave-function acquire a phase exp(ik · x) which
is linearly growing in x. Moreover k↵ is the proportionality constant in ↵-direction. The fluxes
(�x,�y) do exactly the same. This can easily be seen by performing a gauge transformation

 (x) = eikx �!  0(x) = ei
e

~
R
x

0 dx0A(x0)eikx = ei
e

~�x

xeikx = ei(k+')x = eik
0x. (3.57)

We see that therefore the integrals over ' in (3.34) are nothing but momentum space integrals
for periodic systems [2]. Show to yourself that for a ground state wave-function which is a Slater
determinant of momentum eigenstates, the expression (3.34) is particularly simple.

3.6 Berry curvature as a magnetic field in momentum space

Before we move on to examples beyond Landau levels which carry a Chern number, we want to
get another intuition of what a non-zero Berry curvature represents. We consider electrons in a
periodic potential under a weak perturbation. Under the right circumstances one can describe
the dynamics in a semiclassical model described by the equations of motion for a wave-packet

ṙ = vn(k) =
1

~rk✏n(k), (3.58)

~k̇ = �e [E(r, t) + ṙ ^B(r, t)] , (3.59)

where n labels the n’th Bloch band. A proper derivation of these equations is beyond the scope
of this course. We refer the reader to Ashcroft & Mermin [7] for a basic introduction and to
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the excellent review by Xiao, et al. [8]. When band properties are taken more properly into
account, one finds the above equations have to be adjusted to read [8]

ṙ = vn(k) =
1

~rk✏n(k)� k̇ ^⌦n(k), (3.60)

~k̇ = �e [E(r, t) + ṙ ^B(r, t)] , (3.61)

with
⌦n(k) = h@k

x

'n(k)| ^ |@k
y

'n(k)i = Fn(k) (3.62)

the Berry curvature of the n’th band and 'n(k) the corresponding Bloch eigenfunctions. From
these equations we can conclude that the Barry curvature takes the role of a “magnetic field”
in k-space.
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