
Chapter 5

Topological insulators and
superconductors

Learning goals

• We know the Kane Mele model.
• We can derive the topological index based on time reversal polarization.
• We understand the entries of the periodic table for topological insulators.
• We know what a px + ipy superconductor is.
• We are acquainted with the Kitaev wire.
• We know the Su-Schrie↵er-Heeger model.

• M. König et al., Science 318, 766 (2007)

In this chapter we try to understand what topological properties can arise for free fermion sys-
tems subject to some symmetry constraints. The exposition starts from a historical perspective
with the first time-reversal symmetric topological insulator in two dimensions by Kane and Mele
[1]. We then motivate on physical grounds how one can construct a topological index charac-
terizing this new type of band insulator. Our derivation follows the historically motivated path
covered in the book by Bernevig and Hughes [2]. The so derived topological index for two-
dimensional systems readily generalizes to three dimensions. Once we established the presence
of two- and three-dimensional topological insulators protected by time-reversal symmetry we
take a somewhat more formal perspective and discuss the periodic table for topological insula-
tors which catalogues all symmetry protected topological free fermion systems. We learn how
to read and use the table and relate its entries to experimentally relevant response functions.
Finally, we conclude this chapter by covering three archetypal models in di↵erent symmetry
classes.

5.1 The Kane-Mele model

In the last chapter we have seen that we can construct lattice models where the Bloch bands
have a non-vanishing Chern number despite the absence of a net magnetic field. Here we try
to build a time-reversal invariant version based on Haldane’s honeycomb model for a Chern
insulator.
We start from the low energy version of graphene

H0 = �i~vF [�x⌧z@x + �y@y] , (5.1)

where � acts on the sub-lattice index and ⌧ on the valley (K, K 0) space.
Let us add spin s to the game. With this we arrive at an 8 ⇥ 8 problem. The question
is what kind of terms can we add in order to open a “non-trivial” gap. We have seen that
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arise due to a perpendicular electric field or interaction
with a substrate. The fourth term is a staggered sublattice
potential (!i ! "1), which we include to describe the
transition between the QSH phase and the simple insulator.
This term violates the symmetry under twofold rotations in
the plane.
H is diagonalized by writing "s#R$ #d% !

u#s#k%eik&R. Here s is spin and R is a bravais lattice vector
built from primitive vectors a1;2 ! #a=2%#

!!!
3
p

ŷ " x̂%. # !
0; 1 is the sublattice index with d ! aŷ=

!!!
3
p

. For each k the
Bloch wave function is a four component eigenvector
ju#k%i of the Bloch Hamiltonian matrix H #k%. The 16
components of H #k% may be written in terms of the
identity matrix, 5 Dirac matrices !a and their 10 commu-
tators !ab ! '!a;!b(=#2i% [9]. We choose the following
representation of the Dirac matrices: !#1;2;3;4;5% !
#$x ) I;$z ) I;$y ) sx;$y ) sy;$y ) sz%, where the
Pauli matrices $k and sk represent the sublattice and spin
indices. This choice organizes the matrices according to
T . The T operator is given by "jui * i#I ) sy%jui+. The
five Dirac matrices are even under T , "!a",1 ! !a

while the 10 commutators are odd, "!ab",1 ! ,!ab.
The Hamiltonian is thus

H #k% !
X5

a!1

da#k%!a $
X5

a<b!1

dab#k%!ab; (2)

where the d#k%’s are given in Table I. Note that H #k$
G% !H #k% for reciprocal lattice vectors G, so H #k% is
defined on a torus. The T invariance of H is reflected in
the symmetry (antisymmetry) of da #dab% under k! ,k.

Equation (2) gives four energy bands, of which two are
occupied. For %R ! 0 there is an energy gap with magni-
tude j6

!!!
3
p
%SO , 2%vj. For %v > 3

!!!
3
p
%SO the gap is domi-

nated by %v, and the system is an insulator. 3
!!!
3
p
%SO > %v

describes the QSH phase. Though the Rashba term violates
Sz conservation, for %R < 2

!!!
3
p
%SO there is a finite region of

the phase diagram in Fig. 1 that is adiabatically connected
to the QSH phase at %R ! 0. Figure 1 shows the energy
bands obtained by solving the lattice model in a zigzag
strip geometry [7] for representative points in the insulat-
ing and QSH phases. Both phases have a bulk energy gap
and edge states, but in the QSH phase the edge states
traverse the energy gap in pairs. At the transition between
the two phases, the energy gap closes, allowing the edge
states to ‘‘switch partners.’’

The behavior of the edge states signals a clear difference
between the two phases. In the QSH phase for each energy

in the bulk gap there is a single time reversed pair of
eigenstates on each edge. Since T symmetry prevents
the mixing of Kramers’ doublets these edge states are
robust against small perturbations. The gapless states
thus persist even if the spatial symmetry is further reduced
[for instance, by removing the C3 rotational symmetry in
(1)]. Moreover, weak disorder will not lead to localization
of the edge states because single particle elastic backscat-
tering is forbidden [7].

In the insulating state the edge states do not traverse the
gap. It is possible that for certain edge potentials the edge
states in Fig. 1(b) could dip below the band edge, reduc-
ing—or even eliminating—the edge gap. However, this is
still distinct from the QSH phase because there will nec-
essarily be an even number of Kramers’ pairs at each
energy. This allows elastic backscattering, so that these
edge states will in general be localized by weak disorder.
The QSH phase is thus distinguished from the simple
insulator by the number of edge state pairs modulo 2.
Recently two-dimensional versions [10] of the spin Hall
insulator models [11] have been introduced, which under
conditions of high spatial symmetry exhibit gapless edge
states. These models, however, have an even number of
edge state pairs. We shall see below that they are topologi-
cally equivalent to simple insulators.

The QSH phase is not generally characterized by a
quantized spin Hall conductivity. Consider the rate of
spin accumulation at the opposite edges of a cylinder of
circumference L, which can be computed using Laughlin’s
argument [12]. A weak circumferential electric field E can
be induced by adiabatically threading magnetic flux
through the cylinder. When the flux increases by h=e
each momentum eigenstate shifts by one unit: k! k$
2&=L. In the insulating state [Fig. 1(b)] this has no effect,
since the valence band is completely full. However, in the
QSH state a particle-hole excitation is produced at the
Fermi energy EF. Since the particle and hole states do
not have the same spin, spin accumulates at the edge.
The rate of spin accumulation defines a spin Hall conduc-
tance dhSzi=dt ! Gs

xyE, where

TABLE I. The nonzero coefficients in Eq. (2) with x ! kxa=2
and y !

!!!
3
p
kya=2.

d1 t#1$ 2 cosx cosy% d12 ,2t cosx siny
d2 %v d15 %SO#2 sin2x, 4 sinx cosy%
d3 %R#1, cosx cosy% d23 ,%R cosx siny
d4 ,

!!!
3
p
%R sinx siny d24

!!!
3
p
%R sinx cosy
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FIG. 1 (color online). Energy bands for a one-dimensional
‘‘zigzag’’ strip in the (a) QSH phase %v ! 0:1t and (b) the
insulating phase %v ! 0:4t. In both cases %SO ! :06t and %R !
:05t. The edge states on a given edge cross at ka ! &. The inset
shows the phase diagram as a function of %v and %R for 0<
%SO - t.
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Figure 5.1: Edge spectrum of the Kane Mele model for two di↵erent values of �R. On the left,
two edge states cross the gap (colors label the edge). On the right, no edge states cross the
gap. The inset shows the phase diagram as a function of �v and �R. Figure take from Ref. [1]
(Copyright (2005) by The American Physical Society).

m�z + ⌧z�z3
p
3t sin(') does the job. However, this is not time-reversal symmetric for ' 6= 0,⇡

and m alone opens trivial gaps with C = 0.
We construct a “non-trivial” time-reversal invariant gap step by step. First, in the sub-lattice
space we need a �z term, otherwise we just move around the K and K 0 Dirac points in k-space.
Next, we need a spin dependent (s) part to couple the two copies of the Haldane model. Let us
try for the K point

�z ⌦ sz =

✓
�z 0
0 ��z

◆
, (5.2)

which gives us di↵erent gaps [with di↵erent “sign(m)”] for the two spins. How do we now add
the valley degree of freedom (⌧ ) in order to make it time-reversal invariant? The T -operator
acts in sub-lattice and spin space as

T = 1� ⌦ isyK =

✓
0 �1�

1� 0

◆
. (5.3)

Therefore, the term / �z ⌦ sz transforms as

T �z ⌦ szT �1 =

✓
0 �1�

1� 0

◆✓
�z 0
0 ��z

◆✓
0 1�

�1� 0

◆

=

✓
0 �1�

1� 0

◆✓
0 �z
�z 0

◆
=

✓
��z 0
0 �z

◆
= ��z ⌦ sz. (5.4)

Under time reversal, K ! K 0. Hence, we need the gap opening term in K 0 to be T �z⌦szT �1 =
��z ⌦ sz to have T H(k)T �1 = H(�k). From this we conclude that the full gap opening term
should be of the form

HKM = �SO�z ⌦ ⌧z ⌦ sz. (5.5)

We labelled the interaction with spin-orbit (�SO) to stress that HKM couples spin (sz) and
orbital (⌧z) degrees of freedom. Moreover, HKM is time-reversal invariant (TRI) by construction.
Reverse engineering to a full lattice model we find

HKM =
X

hi,ji,↵
c†i↵cj↵ + i�SO

X

hhi,jii,↵�
⌫ijc

†
i↵s

z
↵�cj� + �v

X

i↵

✏ic
†
i,↵ci,↵, (5.6)

where ✏i and the sign strucutre of ⌫ij are the same as in Haldane’s ’88 model [3]. The above
model was the first TRI topological insulator proposed by Kane and Mele in 2005 [1]. As
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it is TRI, the total Chern number cannot be non-zero. However, in the form (5.6), the spin
projections | "i, | #i are good eigenstates. Therefore, we can use the Chern number C� in each
spin-sector to characterize the phases. Indeed

⌫ =
C" � C#

2
mod 2 2 Z2 (5.7)

defines a good topological index as we will see below [4]. The addition of a Rashba term

HR = �R [�x⌧zsx � �ysx] (5.8)

removes this conserved quantity. While HR does not open a gap by itself (why?), it can influence
the �SO induced gap, see Fig. 5.1. However, the above topological index ⌫ is not well defined
anymore. In the following section we aim at deriving a Z2 index which does not rely on spin-
Chern numbers.

5.2 Z2 index

5.2.1 Charge polarization

We revisit Laughlin’s pumping argument to make progess towards a Z2 index for TRI topological
insulators. We consider a one dimensional system on a lattice (with lattice constant a = 1) with
Bloch wave functions

| n,ki =
1p
L
eikx|'nk(x)i with |'nk(x)i = |'nk(x+ 1)i. (5.9)

The corresponding Wannier functions are defined as

|WnR(x)i =
1

2⇡

Z ⇡

�⇡
dkeik(R�x))|'nk(x)i, (5.10)

with R = m 2 Z a lattice vector. Note that the Wannier functions are not gauge invariant as
the relative phase between di↵erent |'nk(x)i is not a priori fixed. However, for a filled band,
the Slater determinant is insensitive to a unitary transformation (which the transformation to
Wannier states is) among the filled states. For a smooth gauge, the Wannier functions are
exponentially localized around a well defined center [5].
The total charge polarization is now defined as

P =
X

n filled

Z
dx hW0n(x)|x|W0n(x)i. (5.11)

We try to write this polarization in a more familiar way

P =
X

n filled

1

(2⇡)2
1

L

Z ⇡

�⇡
dk1

Z ⇡

�⇡
dk2e

i(k1�k2)xh'nk1 |i@k|'nk2i (5.12)

=
X

n filled

i

2⇡

Z ⇡

�⇡
dk h'nk|i@k|'nki =

1

2⇡

Z ⇡

�⇡
dkAx(k), (5.13)

with
Ax(k) =

X

n filled

ih'nk|@k|'nki. (5.14)

Two comments are in order:

1. If we re-gauge |'i ! ei#(k)|'i with a #(k) that is winding by 2⇡m throughout the Brillouin
zone, the corresponding polarization changes to

P ! P +m.

This is ok, as charge polarization is anyway only defined up to a lattice constant.
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Figure 5.2: Energy levels for a time revesal invariant system.

2. P depends on the chosen gauge. But changes in P by a smooth change in system param-
eters are gauge independent. So let us imagine a tuning parameter ky with

H(ky) ! H(k0y)

which is slow in time. The change in charge polarization is given by

�P =
1

2⇡

Z ⇡

�⇡
dkA(k, ky)�

Z ⇡

�⇡
dkA(k, k0y)

�
(5.15)

If we use Stokes’ theorem we arrive at

k0
y

k
y

k
x

�P =

Z k0
y

k
y

dky

Z ⇡

�⇡
dkF(k, ky). (5.16)

By chosing k0y = ky +2⇡, we find for the change in charge polarization �P = C where C is
the Chern number. We known, however that C ⇠ �xy and hence is equal to zero for TRI
systems.

Building on the above insight we try to refine the charge pumping of Laughlin to be able to
characterize a TRI system.

5.2.2 Time reversal polarization

Let us now try to generalize the charge pumping approach to the TRI setup. For this it is
beneficial to look at the structure of a generic energy diagram as shown in Fig 5.2. Under
time-reversal, momenta k are mapped to �k. Moreover, there are special points in the Brillouin
zone which are mapped onto themselves. This is true for all momenta which fulfill k = �k+G,
where G is a reciprocal lattice vector. This is trivially true for k = 0, but also for special points
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on the borders of the Brillouin zone. On such time reversal invariant momenta (TRIM’s), the
spectrum has to be doubly degenerate due to Kramer’s theorem.
Owing to the symmetry between k and �k we can constrain ourselves to only half the Brillouin
zone. In this half, we label all bands by 1.I, 1.II, 2.I, 2.II, . . . . The arabic number simply label
pairs of bands. Due to the double degeneracy at the TRIMs, we need an additional (roman
number) to label the two (sub)-bands emerging form the TRIMs. One can also say that the
roman index labels Kramers pairs

T |'n.I(k)i = ei�n,k |'n.II(�k)i. (5.17)

We now try to constuct the polarization for only one of the two labels s = I or II

P s =
1

2⇡

Z ⇡

�⇡
dkAs(k) with As(k) = i

X

n filled

h'n.s(k)|@k|'n.s(k)i. (5.18)

It is clear that P = P I+P II will vanish. However, the same must not hold for the time reversal
polarization

P T = P I � P II. (5.19)

The problem is, that we assigned the labels I and II. It is not a priori clear if this can be done
in a gauge invariant fashion. In particular, the Slater determinant of a band insulator with 2n
filled bands has a SU(2n) symmetry, as basis changes of filled states do not a↵ect the total
wave function. With our procedure we explicitly broke this SU(2n) symmetry. There is a way
however, to formulate the same T -polarization P T in a way that does not rely on a specific
labeling of the Kramers pairs. This can be achieved by the use of the so-called sewing matrix
[2]

Bmn(k) = h'm(�k)|T |'n(k)i. (5.20)

B(k) has the following properties: (i) it is unitary, and (ii) it is anti-symmetric, i.e., BT(k) =
�B(k) only if k is a TRIM. Using this matrix one can show that

P T =
1

i⇡
log

"p
detB(⇡)

Pf B(⇡)

Pf B(0)p
detB(0)

#
. (5.21)

This expression is manifestly invariant under SU(2n) rotations within the filled bands. Moreover,
it only depends on the two TRIMs k = 0,⇡, and it is defined modulo two.

The Pfa�an Pf B(k) of a 2n⇥ 2n anti-symmetric matrix matrix B is defined as

Pf B =
1

2nn!

X

�2S2n

sign(�)
nY

i=1

b�(2i�1),�(1i) (5.22)

with the property
Pf2B = detB. (5.23)

Let us now see how we can describe changes in the time-reversal polarization under the influence
of an additional parameter ky. Written as in (5.21), it is only defined for ky = 0,⇡, 2⇡, i.e, at
TRIMs. In Fig. 5.3 we illustrate what we can expect from such a smooth change. We start
at ky = 0. If we now change ky slowly, we know that due to TRI, we cannot build up a
charge polarization. However, the Wannier centers of two Kramers pairs will evolve in opposite
direction. At ky = ⇡, we can check how far these centers evolved away from each other. As
P T is well defined and equal to 0 or 1 we have two options: (i) Each Wannier center meets up
with one coming from a neighboring site [Fig. 5.3(a)]. This gives rise to P T (ky = ⇡) = 1 and
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Figure 5.3: (a) Pumping of time reversal polarization in a topologically non-trivial state. (b)
Pumping of time reversal polarization in a trivial state.

this e↵ect is called pair switching. (ii) The centers fall back onto each other again [Fig. 5.3(b)],
resulting in P T (ky = ⇡) = 0.
Let us further assume that we have a smooth confining potential V (x) in x-direction. As in the
case of the quantum Hall e↵ect, we see how states can be pushed up-hill or pulled down-hill as
a function of ky. However, as opposed to the quantum Hall e↵ect, we have here the situation
that on each edge we have both a state coming down in energy as well as one climbing up! From
that we conclude that if we have pair-switching, we expect two counter-propagating edge states
on both sides of the sample.
We can now construct a topological index for the two-dimensional system: If the T -polarization
at ky = 0 and ky = ⇡ di↵er by one, we expect an odd number of pairs of edge states. Hence, we
define

⌫ =
4Y

l=1

p
detB(⇤l)

Pf B(⇤l)
2 Z2 with ⇤l : TRIM. (5.24)

5.2.3 Three dimensional topological insulators

The above formulation immediately suggests a three-dimensional generalization of the Z2 index

⌫s =
8Y

l=1

p
detB(⇤l)

Pf B(⇤l)
2 Z2 with ⇤l : TRIM, (5.25)

where now the product runs over all eight TRIMs of the three-dimensional Brillouin zone shown
in Fig. 5.4. This index is called the strong topological index. Additionally, one can think of a
three-dimensional system to be made out of planes of two-dimensional topological insulators.
In Fig. 5.5 we show how one can attribute a weak topological index (⌫x, ⌫y, ⌫z) corresponding to
the stacking directions.
According to our reasoning above, when we cut the system perpendicular to the direction defined
by the weak index, we expect two Dirac cones on the resulting surface (why?). However, if we
have a strong topological index, there is a single Dirac cone irrespective of the way we terminate
the bulk system. To wrap up, we mention that one usually gathers the indices to

⌫ = (⌫s; ⌫x, ⌫y, ⌫z). (5.26)
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Figure 5.4: TRIMs of the three-dimensional Brillouin zone.

5.3 Complete classification

We now try to understand how one can put the above manipulations that lead to the Z2 index for
TRI topological insulators into a bigger context. Let us review what (topological) classification
schemes we already encountered. The first example was the characterization of a spin-1/2 in
a magnetic field. There we discussed the geometric phase as a function of a smooth change in
parameters of a Hamiltonian. The mathematical structure behind that was a fibre bundle. A
fiber bundle is an object which locally looks like M ⇥ f , where M is some base manifold and
f the “fibre”. For our case of the geometric phase, the base manifold was S2 describing the
parameter space of the ground state projector | 0ih 0|. The fiber f = U(1) was the phase of
the ground state | 0i that dropped out when we considered the projector. We have seen that
one can classify such fibre bundles via a Chern number C. For the example of a spin-1/2 in a
magnetic field, the Chern number took the value C = �2⇡. For the quantum Hall e↵ect, we
identified the fibre bundle with what looks locally like T2 ⇥ U(1) where T2 is the torus defined
by the Aharonov Bohm fluxes through the openings of the (real space!) torus. We argued that
also in this case the fibre bundle is characterized by the Chern number which can take any value
in 2⇡⌫ with ⌫ 2 Z [6, 7].
We also considered special cases where the Aharonov-Bohm fluxes could be replaced by lattice
momenta (kx, ky). Moreover, in the simple case of a two-band Chern insulator the Chern number
was shown to be equivalent to the Skyrmion number which characterizes mappings T2 ! S2

instead of fibre bundles. In general, we can hope to find the classification of mappings Td ! M ,
where Td is the d-dimensional Brillouin zone and M is some target manifold.
Attempting a topological classification of free fermion systems really means to define equivalence
classes of first quantized Hamiltonians. Not so surprisingly, such equivalence classes depend
strongly on the presence of symmetries: If we allow for arbitrary deformations of Hamiltonians

~v = (0, 000) ~v = (0, 100) ~v = (0, 011) ~v = (0, 111) ~v = (1,�)

Figure 5.5: Stacking directions of 2D topological insulators.
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(of course without the closing of the gap above the ground state!), we might be able to deform
two Hamiltonians into each other that are distinct if we restrict the possible interpolation path
by requiring symmetries.
A simple example of such a symmetry constraint is the following setup: Consider the restricted
one-dimensional two-band system

H =
X

i

di(k)�i with {H,�y} = 0. (5.27)

This symmetry requirement is identical with the demand that there is no y-component of the
d-vector. In other words, the normalized d-vector lives on S1. Thanks to this restriction, or
symmetry, each Hamiltonian in this class defines a mapping

S1 ! S1 (5.28)

which is characterized by the winding number W. In the absence of the symmetry {H,�y}=0,
the d-vector could point anywhere on S2. Mappings

S1 ! S2 (5.29)

are all trivial, however, as any closed one-dimensional path defined by the image of S1 is smoothly
contractible to a point. Hence, we cannot define a winding number in this case.
In the following we want to achieve three goals. First, we want to see how symmetries can
influence the possible topological quantum numbers of band insulators. To this end we discuss
three particular “symmetries” and see how they, together with the spatial dimension, give rise to
a periodic table of topological insulators. The second goal will be to get the gist of what underlies
the structure of the periodic table. The key ingredient will be the tool of dimensional reduction:
We start with some topological quantum number (typically the Chern number) in some higher
dimension. We then show how one can characterize families of lower-dimensional Hamiltonians
obeying some symmetries using the higher dimensional topological number. Finally, our third
goal is to be able to read the periodic table, find the right (hopefully simple) expression of
the topological index and be able to calculate it. We will do so on three concrete examples in
Sec. 5.4.

5.3.1 Anti-unitary symmetries

When we discuss symmetry constraints on possible equivalence relations between Hamiltonians
we have to consider anti-unitary symmetries such as time reversal invariance with T iT �1 =
�i. Unitary symmetries S that commute with the Hamiltonian [H,S] = 0 do not help us for
the following reason: We simply go to combined eigenstates of both the symmetry S and the
Hamiltonian. We want to assume that we only deal with such block-diagonal Hamiltonians from
the outset. If we deal with anti-unitary symmetries, which do not have eigenstates, we cannot
use this program of decomposing H into symmetric sub-blocks, however. The same holds for
unitary symmetries S that anti-commute with the Hamiltonian, i.e., {H,S} = 0. We will see
how such “symmetries” help us to classify topological insulators.
In the following we use a first quantized language where we write the single particle Hamiltonian
as

H =
X

AB

 †
AHAB B, (5.30)

where A,B run over all relevant quantum numbers. The object of interest is the matrix HAB.
In case we deal with superconducting problems the corresponding matrix is constructed from
the Nambu spinor

H =
X

AB

⇣
 †
A  

Ā

⌘
HAB

 
 B

 †
B̄

!
. (5.31)

Here A and Ā correspond to the paired quantum numbers: For example for an s-wave super-
conductor A = (k, ") and Ā = (�k, #).
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Time reversal

Let us now start with the anti-unitary time reversal symmetry

T : U †
T H⇤UT = H, with U †

T UT = 1, (5.32)

for some unitary rotation UT . Using the second quantized language we find for these matrices

T  AT �1 =
X

B

[UT ]AB B. (5.33)

Applying this identity twice, and making use of the fact that T is anti-unitary, we find

T 2 AT �2 =
X

B

[U⇤
T UT ]AB B = ± A, i.e., U⇤

T UT = ±1. (5.34)

Here we used that T 2 = �1 or T 2 = 1, depending on whether we deal with systems of half-
integer spins or not. The last equation can also be written as

UT = ±UT
T . (5.35)

Charge conjugation

The next (anti-) symmetry we consider is the charge-conjugation, or particle-hole symmetry

C : U †
CH⇤UC = �H with U †

CUC = 1. (5.36)

Where again we find UC via

C AC�1 =
X

B

[U⇤
C ]AB 

†
B. (5.37)

And also in this case we can either have

UC = ±UT
C , (5.38)

depending on wether C2 = ±1. As this particle hole symmetry is slightly less standard than
the time reversal symmetry we give two concrete examples. First, the Hamiltonian of an s-wave
superconductor can be written as

H =
X

k

⇣
ck" ck# c†�k" c†�k,#

⌘†

0

BB@

⇠(k) 0 0 �s

0 ⇠(k) ��s 0
0 ��⇤

s �⇠(k) 0
�⇤

s 0 0 �⇠(k)

1

CCA

| {z }
H

s

0

BBB@

ck"
ck#
c†�k"
c†�k,#

1

CCCA
. (5.39)

This Hamiltonian has the anti-symmetry

U †
CH⇤

sUC = �Hs with UC = i�y ⌦ 1 and hence UC = �UT
C . (5.40)

On the other hand, a triplet superconductor can be of the form

H =
X

k

⇣
ck" ck# c†�k" c†�k,#

⌘†

0

BB@

⇠(k) 0 0 �t

0 ⇠(k) �t 0
0 �⇤

t �⇠(k) 0
�⇤

t 0 0 �⇠(k)

1

CCA

| {z }
H

t

0

BBB@

ck"
ck#
c†�k"
c†�k,#

1

CCCA
. (5.41)

Now the Hamiltonian has the anti-symmetry

U †
CH⇤

tUC = �Ht with UC = �x ⌦ 1 and hence UC = UT
C . (5.42)

Note, that all Bogoliubov-de Gennes (BdG) Hamiltonians of mean-field superconductors have a
C-type symmetry built in by construction (via the Nambu formalism).
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Chiral symmetry

One more option is for the Hamiltonian to posses the following anti-symmetry

S : U †
SHUS = �H with U †

SUS = 1. and U2
S = 1. (5.43)

This symmetry is called chiral or sub-lattice symmetry as it often occurs on bipartite lattice
models. Note, that whenever the system has a chiral symmetry and either a particle-hole or
time-reversal, it actually posses all three of them (show!).

5.3.2 The periodic table

Let us now classify all possible symmetry classes according to the above three “symmetries”.
For the time-reversal and particle-hole symmetry we have three options. Either there is no
symmetry, one that squares to 1, or one that squares to �1. We denote these cases with
0, 1,�1. Together, there are 3 ⇥ 3 = 9 di↵erent options. Turning around the argument above
that a C (T ) together with an S type symmetry implies a T (C) symmetry we see that S = C �T .
Therefore, for all cases where either T or C are present the presence or absence of S is fixed.
Only if both particle-hole and time-reversal symmetry are absent, S can be either present (1)
or absent (0). This yields in total 10 di↵erent symmetry classes. In a series of papers Kitaev [8]
and Ludwig and co-workers [9, 10] classified all possible topological indices given the symmetry
class and the spatial dimension. We summarize their results in Tab. 5.1.

label symmetry spatial dimension

T C S d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 ...

the complex cases:

A 0 0 0 0 Z 0 Z 0 Z 0 Z ...
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0 ...

the real cases:

AI 1 0 0 0 0 0 2Z 0 Z2 Z2 Z ...
BDI 1 1 1 Z 0 0 0 2Z 0 Z2 Z2 ...
D 0 1 0 Z2 Z 0 0 0 2Z 0 Z2 ...
DIII �1 1 1 Z2 Z2 Z 0 0 0 2Z 0 ...
AII �1 0 0 0 Z2 Z2 Z 0 0 0 2Z ...
CII �1 �1 1 2Z 0 Z2 Z2 Z 0 0 0 ...
C 0 �1 0 0 2Z 0 Z2 Z2 Z 0 0 ...
CI 1 �1 1 0 0 2Z 0 Z2 Z2 Z 0 ...

Table 5.1: Periodic table of topological insulators and superconductors. Z2 and Z denote binary
and integer topological indices, respectively. 2Z denotes an even integer. The symmetries T , C
and S = T � C are explained in the text. A zero denotes the absence of the symmetry and for
T and C, the ±1 indicates if these symmetries square to ±1.

One observes an obvious 8-fold symmetry in the direction of the spatial dimension. The expla-
nation of this repetition lies beyond the scope of this course. However, as dimensional reduction
plays a key role in the derivation of Tab. 5.1, we present on such step for the case of symmetry
class D, going from d = 2 ! 1. Before we do so, it is worth mentioning, that from a applicative
point of view, our standard job will be to:

1. Identify the symmetries and with that the class A, AI, AII, AIII, BDI, etc.
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2. Check in Tab. 5.1 if for the given symmetry class and spatial dimension there can be a
topologically non-trivial state.

3. Go to the paper by Ryu et al. [9].

4. Find the explicit formula for the respective index.

5. Compute it.

5.3.3 Dimensional reduction

This section is following the derivation in Ref. [11].

Our goal is to take the step of dimensional reduction to relate the Z index of symmetry class
D in three dimensions to the Z2 index of the same symmetry class in one spatial dimension. in
this section. We consider one dimensional lattice systems where the Hamiltonian matrix fulfills

U †
CH⇤(�k)UC = H(k) with UC = UT

C . (5.44)

We now try to establish an equivalence relation between two such HamiltoniansH1(k) andH2(k).
To borrow the Chern number from one dimension higher, we construct a path, or interpolation
H(k,#), with # 2 [0,⇡] connecting the two Hamiltonians

H(k, 0) = H1(k) and H(k,⇡) = H2(k). (5.45)

In general, the Hamiltonian for an arbitrary # 2 [0,⇡] will not posses the symmetry (5.44). We
correct for this by explicitly constructing the cyclic interpolation for # 2 [⇡, 2⇡]

H(k,#) = �U †
CH⇤(�k, 2⇡ � #)UC . (5.46)

Interpreted as a two-dimensional problem, H(k,#) is now manifestly particle-hole symmetric.
By requiring for the whole interpolation the system to be gapped we can define the Chern
number of this cyclic interpolation1

CH =

I
d#

@P (#)

@#
, (5.49)

1 To see that these formula indeed corresponds to our known result we first state that (we drop the label and
sum over n for simplicity)

F
#k

= @

#

ih'
k

|@
k

'

k

i � @

k

ih'
k

|@
#

'

k

i = ih@
#

'

k

|@
k

'

k

i+ ih'
k

|@
#

@

k

'

k

i � ih@
k

'

k

|@
#

'

k

i � ih'
k

|@
k

@

#

'

k

i
= ih@

#

'

k

|@
k

'

k

i � ih@
k

'

k

|@
#

'

k

i.

We now write
I

d#

@P (#)

@#

=

I
d#

@

@#

I
dk

2⇡
ih'

k

|@
k

'

k

i =
I

d#

I
dk

2⇡
(ih@

#

'

k

|@
k

'

k

i+ ih'
k

|@
#

@

k

'

k

i)

P.I.
=

I
d#

I
dk

2⇡
(ih@

#

'

k

|@
k

'

k

i � ih@
k

'

k

|@
#

'

k

i) +
I

d# ih'
k=2⇡|@#

'

k=2⇡i| {z }
A#(k=2⇡)

+

I
d# ih'

k=0|@#

'

k=0i| {z }
A#(k=0)

.

From the discussion of fiber bundles we know that we cannot necessarily choose a smooth gauge such that A is
a single-valued function over the whole torus. However, we can always choose a gauge where A

#

is single valued
(akin the Landau gauge for the electro-magnetic gauge potential). For such a gauge the integrals

I
d#A

#

(k) = 0 (5.47)

for both k = 0 and k = 2⇡. With this we established
I
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= C, (5.48)

as we tried to prove.
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where as before we defined the charge polarization as a function of the pumping parameter #

P (#) =

I
dk

2⇡

X

n filled

ih'nk|@k'nki (5.50)

To make further progress in establishing an equivalence relation between one dimensional Hamil-
tonians of class D we note that owing to the particle-hole symmetry, eigenstates of di↵erent
locations in the Brillouin zone are related to each other. Without showing the full algebraic
manipulations [11], we state that

P (#) = �P (2⇡ � #). (5.51)

An immediate consequence is

Z ⇡

0
d#P (#) =

Z 2⇡

⇡
d#P (#). (5.52)

We remind ourselves that these two equations rely crucially on the presence of the particle-hole
symmetry. Consider now another particle-hole symmetric interpolation H0(k,#) between H1(k)
and H2(k). We denote the corresponding polarization with P 0(#). The relative Chern number
of the two interpolations is then given by

CH � CH0 =

I
d#

✓
@P (#)

@#
� @P 0(#)

@#

◆
. (5.53)

One can define two yet di↵erent interpolations G1(k,#) and G2(k,#) (not particle-hole symmet-
ric!) via

G1(k,#) =

(
H(k,#) # 2 [0,⇡]

H0(k, 2⇡ � #) # 2 [⇡, 2⇡]
, (5.54)

and

G2(k,#) =

(
H0(k, 2⇡ � #) # 2 [0,⇡]

H(k,#) # 2 [⇡, 2⇡]
. (5.55)

These interpolations are shown in Fig. 5.6. We see that G1 is obtained by reconnecting H and
H0 such that it always runs in the upper half-space and vice-versa for G2. It is straightforward
to see that

CG1 =

Z ⇡

0
d#

✓
@P (#)

@#
� @P 0(#)

@#

◆
, (5.56)

and

CG2 =

Z 2⇡

⇡
d#

✓
@P (#)

@#
� @P 0(#)

@#

◆
. (5.57)

From this it is easy to see that CH � CH0 = CG1 + CG2 . Moreover, if we use the symmetry (5.52)
we see that CG1 = CG2 and hence

CH � CH0 = 2⌫ with ⌫ 2 Z. (5.58)

How can we understand this result? Remember that each interpolation gives rise to a two-
dimensional band-structure. The Chern number of this band-structure, CH can only change if
when going from H ! H0 we close a gap. However, due to the particle-hole symmetry, such gap
closings always occur in two points in the Brillouin zone, see Fig. 5.6. Therefore, for all possible
interpolations between our original one dimensional problems H1(k) and H2(k) the parity of the
Chern number is conserved. We can thus write the relative Chern parity

N [H1(k),H2(k)] = (�1)CH(k,#) . (5.59)
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#

2⇡ � #

#

2⇡ � #

H0(k,#)
H(k,#)

H1(k) H2(k)
C

(a) #

2⇡ � #

2⇡ � #

#

G2(k,#)

G1(k,#)

H1(k) H2(k)
C

(b)

Figure 5.6: (a) Interpolation between two particle-hole symmetric one dimensional Hamiltonians
H1/2(k). Along the horizontal axis we move between di↵erent one-dimensional Hamiltonians.
Along the vertical axis, the particle-hole symmetry operation on the one-dimensional Hamilto-
nians corresponds to a mirroring around the horizontal axis. Hence, we see that the blue (red)
interpolation paths are constructed such that the interpolation, interpreted as a two-dimensional
Hamiltonian, is manifestly symmetric under C. The crosses correspond to gap closings in H(k,#)
and hence the interpolations are not allowed to touch them in order for H(k,#) to have a well
defined Chern number. Due to symmetry constraints, all gap closings away from the particle-
hole symmetric line appear in pairs. Consequently, we might change the Chern number by
deforming the interpolation, but always by two. Hence, independently of how H1(k) and H2(k)
are connected, the Chern number parity is independent of the interpolation and hence can be
used as a Z2 index. (b) Di↵erent interpolation paths to make the arguments in (a) formal.

It is easy to prove that this relative Chern parity has the property

N [H1(k),H2(k)]N [H2(k),H3(k)] = N [H1(k),H3(k)] (5.60)

and consequently defines an equivalence relation. Equivalence classes are given by Hamiltonians
in symmetry class D which have the same relative Chern parity. We can moreover define an
absolute Z2 index by choosing a naturally “trivial” Hamiltonian H0 and then define

H(k) 2 D trivial , N [H(k),H0] = 1, (5.61)

H(k) 2 D non-trivial: , N [H(k),H0] = �1. (5.62)

While the above developments might appear somewhat formal, they have a direct physical
consequence. Imagine a one dimensional system Hnt which is non-trivial according to (5.62).
The two dimensional system given by the interpolation between H0 and Hnt therefore has an
odd Chern number and correspondingly an odd number of surface modes traversing the gap on
a each side of a finite cylinder. Let us imagine # to be the momentum along the edge of the
cylinder. Due to the particle hole symmetry between # and 2⇡�#, zero levels always appear in
pairs at # and 2⇡ � #. As we need an odd number of them, there has to be one either at # = 0
or ⇡. As # = 0 corresponds to the trivial atomic Hamiltonian H0, there are no end states at
# = 0. In other words, a non-trivial Z2 index in class D guarantees the existence of zero energy
end states for a one dimensional system with an end.
This concludes our discussion of the structure of the periodic table 5.1. We have seen on one
concrete example how a Chern number of a higher-dimensional member of a symmetry class can
give rise to a Z2 index in one dimension lower. We refer the interested reader to the publications
by Ryu et al. [9] and Kitaev [8] for further details. Instead of pursuing the study of what lies
behind the periodic table further, we move to the discussion of three prototypical models of
topological free fermion systems. One important void owing to this strategy is that we did
not discuss topological field theories that describe the electro-magnetic response of topological
insulators. For this we need a bit more technical tools which we will develop before we discuss
the fractional quantum Hall e↵ect. Once we are acquainted with these tools we will come back
to this issue.
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Figure 5.7: (a) The Su-Schrie↵er-Heeger model. (b) Localized eigenstate in the flat band Creutz
model.

5.4 Examples of topological free fermion systems

5.4.1 Su-Schrie↵er-Heeger and Creutz model

In this section we discuss a simple one dimensional hopping model originally introduced by
Su, Schrie↵er and Heeger (SSH) to describe certain aspects of polyacetylene [12]. Consider the
following tight binding model

H = �t
X

i

[(�1)i�+ 1]c†ici+1 +H.c. ) H(k) = �t
X

i

di(k)�i, (5.63)

with
dx(k) = 2 cos(k), dy(k) = 2� sin(k), dz(k) = 0. (5.64)

If we rotate the d-vector, the structure of the problem does not change. However, we will see
that the physical interpretation of the model can be quite di↵erent and is then known as the
Creutz ladder [13], cf. Fig. 5.7. We rotate by ⇡/2 around the x-axis to obtain

dx(k) = 2 cos(k), dy(k) = 0, dz(k) = 2� sin(k). (5.65)

As the d-vector does not contain a y-component, we immediately conclude that {H,�y} = 0
with �2

y = 1, i.e., we have a chiral symmetry. Moreover, the Hamiltonian has the property

H⇤(k) = H(k) = ��zH(�k)�z (5.66)

which we identify as a particle hole symmetry with UC = �z. Hence, we also have a time reversal
symmetry with UT = U�1

C US = �z�y = �i�x. We see that both UC/T = UT
C/T and hence both

T and C square to one, which puts us in symmetry class BDI. Consulting Tab. 5.1, we expect a
Z quantum number. Note, however, that we can break either (and hence both) particle-hole or
time-reversal symmetry and we end up in class AIII, which is again described by a Z topological
index. We therefore consult the Ryu paper [9] for class AIII. From Ref. [9] we learn that we
should consider the projector onto the ground state |v�(k)i

P (k) = |v�(k)ihv�(k)| =
1

2

⇥
1� Q̄(k)

⇤
=


1

2
1� 1

2
d(k)�

�
. (5.67)

Due to the chiral symmetry, the Q̄-matrix can be brought in o↵-diagonal form in the eigen-basis
of the S-symmetry, i.e.,

Q(k) =
1

2

✓
�i 1
i 1

◆
Q̄(k)

✓
i �i
1 1

◆
=

✓
0 q(k)

q⇤(k) 0

◆

=

✓
0 �� sin(k)� i cos(k)

�� sin(k) + i cos(k) 0

◆
. (5.68)
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The winding number density is now given by [9]

w(k) = iq�1(k)@kq(k) =
i� cos(k) + sin(k)

i cos(k) + � sin(k)
=

(
1 � = 1,

�1 � = �1.
(5.69)

As the gap is closing only at � = 0, the two special values � = ±1 su�ce for the calculation of
the total winding number in the two distinct phases

W =

Z ⇡

�⇡

dk

2⇡
w(k) =

(
1 � > 0,

�1 � < 0.
(5.70)

What does this winding number signify? From expression (5.67), it is clear that it corresponds
to the winding of the d-vector throughout the Brillouin zone. However, we know, that the
spinor-wave function of a spin-1/2 only returns to itself after a rotation by 4⇡. To investigate
this further, let us specialize to � = 1 for simplicity. In this case, the dispersion reduces to

|d(k)| = ±2, (5.71)

i.e., we deal with two completely flat bands. In the case of the SSH model, this is somewhat
trivial, as we cut the chain into a set to independent dimers. For the Creutz ladder, this indicates
a rather delicate interference e↵ect, see Fig. 5.7! The ground state wave function can be explicitly
written as

|v�(k)i =
✓

cos[(⇡ � 2k)/4]
� sin[(⇡ � 2k)/4]

◆
with |v�(�⇡)i = �|v�(⇡)i. (5.72)

Hence, we see that indeed the winding number W is responsible for a phase jump of ⇡ at the
Brillouin zone-boundary. We try to see what this means for the Wannier functions

W↵,�(l) =
Z ⇡

�⇡

dk

2⇡
v↵,�(k)eikl, (5.73)

where ↵ is the sub-lattice index label. Let us see what we can deduce from the presence of
non-trivial winding number
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il
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�v0↵,�
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�v00↵,�
il3

+O(1/l4)

�
. (5.74)

We make the following two observations. (i) If W = 0, all the discontinuities �v
(n)
↵,� ⌘ 0. This

was to be expected as in this case we know that the Wannier functions are exponentially localized
[14] and hence have an essential singularity at 1/l ! 0. (ii) If W = ±1, v↵,�(k) is a 4⇡-periodic
function and generically has non-zero �v↵,�(k) and therefore

w↵⌫(l)
l!1/ 1

l
. (5.75)

(iii) For an even winding number, there is no such discontinuity. For our problem of the Creutz
ladder we deduce from the above considerations that the large-l behavior is given by

W↵,�(l) ⇠
�ip
2⇡l

. (5.76)
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This result is in accordance with the full expression

W↵,�(l) =
p
2(�1)l(�1± 2il)

⇡ (4l2 � 1)
. (5.77)

Instead of site-centered, we can use bond centered Wannier functions for the lower band

W bond
↵,� (l) =

Z ⇡

�⇡

dk

2⇡
v↵,�(k)eik(l+1/2) =

(
1+i
2
p
2
�l,�1 +

1�i
2
p
2
�l,0 ↵ = 1,

� 1�i
2
p
2
�l,�1 � 1+i

2
p
2
�l,0 ↵ = 2.

(5.78)

These states are not only exponentially but strictly localized to one bond! How can we reconcile
this with the above result that Wannier functions have an 1/l-tail? To see this, we make the
following observation: In the form we wrote the eigenstates |v�(k)i we made a certain gauge
choice. We are free to choose a di↵erent one. Led by the above observation that the bond
centered Wannier function are localized, we make an explicitly gauge transformation

|v�(k)i �! |ṽ�(k)i = eik/2|v�(k)i =
✓

eik/2 cos[(⇡ � 2k)/4]
�eik/2 sin[(⇡ � 2k)/4]

◆
, (5.79)

with the property
|ṽ�(�⇡)i = |ṽ�(⇡)i. (5.80)

Using this gauge, it becomes clear that there are no non-vanishing terms in the 1/l expansion of
the Wannier function. This is a very deep truth: If there is no obstruction to a smooth gauge for
the Bloch wave functions, Wannier functions can be localized (at least) exponentially. Also the
opposite statement is true: If there is an obstruction to a smooth gauge, we cannot localize the
Wannier functions. As we know that the Chern number exactly signals such an impossibility to
choose a smooth gauge. From this we deduce that in a Chern insulator the Wannier functions
can never be localized!

5.4.2 Kitaev wire

In this section we discuss Kitaev’s toy model for a spinless p-wave superconducting chain de-
scribed by

H = �µ
NX

i=1

c†ici �
N�1X

i=1

⇣
tc†ici+1 + ei'�cici+1 +H.c.

⌘
. (5.81)

Here, N is the number of sites, µ the chemical potential, and t and � the hopping and pairing
amplitude, respectively. If we write the same Hamiltonian in momentum space we find

H =
1

2

X

k

⇣
ck c†�k

⌘†✓ �t cos(k)� µ ei'�i sin(k)
�e�i'�i sin(k) t cos(k) + µ

◆

| {z }
H

k

✓
ck
c†�k

◆
with Hk =

X

i

di(k)�i,

where the d-vector is given by

dx(k) = sin(')� sin(k), (5.82)

dy(k) = cos(')� sin(k), (5.83)

dz(k) = �t cos(k)� µ. (5.84)

As we are dealing with a BdG problem, the particle hole symmetry is built in with a UC = �x.
UC = UT

C as expected for a triplet superconductor. It is a bit more involved to determine if
there is also an S symmetry (and consequently also time reversal). A little exercise shows that
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Figure 5.8: (a) Eigenstates for the Kitaev wire for µ < 0 and t = � = 0. (b) The same for
µ > 0, and � = t 6= 0.

for ' = 0, �xH(k)�x = �H(k). Hence, we only need to transform away the phase ' of the
superconducting order parameter. This can be done via

r(') = cos('/2)1+ i sin('/2)�z. (5.85)

With this find an S-symmetry with US = r(')�x. As a by-product, the time-reversal symmetry
is established for a unitary UT = U�1

C US = �xr(')�x = r(�'). A quick look at Tab. 5.1 tells
us that we are in symmetry class BDI characterized by a Z index. Owing to the rotation r('),
which does not depend on k, it is clear that we can use the winding number of chiral systems
to obtain this index. However, we want to anticipate a potential breaking of time reversal
invariance. In this case we deal with a class D-problem for which we established the relative
Chern parity as a good topological index. Recall that the relative Chern parity is obtained by
assuming H(k) to be the ky = ⇡ cut of a two-dimensional Hamiltonian. As a reference we took
for ky = 0 a trivial reference state. Owing to the fact that we deal with a two-band system
we obtain the Chern number from the Skyrmion number (4.9). However, we know that along
ky = 0 the d-vector can be chosen to point constantly in positive z-direction. Moreover, the
particle-hole symmetry forces

dx(0) = dy(0) = dx(⇡) = dy(⇡) = 0. (5.86)

Hence, in order for the Chern number of the interpolation path to be odd, we need (show!)

dz(0)

|dz(0)|
dz(⇡)

|dz(⇡)|
= s0s⇡ = ⌫ < 0. (5.87)

For the present case, this means we require

⌫ = �(t� µ)(t+ µ) < 0 ) |µ| < t. (5.88)

Let us see what this index means for a finite system with edges. To this end it is convenient to
introduce two real fermions per site

ci =
ei'

2
(�iA + i�iB) with the properties �†i↵ = �i↵ and {�i↵, �j�} = 2�↵��ij . (5.89)

In these new real, or Majorana, fermions the Hamiltonian reads

H = �µ

2

NX

i=1

(1 + i�iA�iB)�
i

4

N�1X

i=1

[(�+ t)�iB�i+1A + (�� t)�iA�i+1B] . (5.90)

Let us consider two special points in the phase diagram. For the topologically trivial region we
choose µ < 0 and � = t = 0. In this case the Hamiltonian is trivial and it is clear that in order

52



to write in terms of complex fermions again, we just revert procedure (5.89), cf. Fig 5.8. For the
topologically non-trivial case we choose µ = 0 and � = t 6= 0. The Hamiltonian now reduces to

H = � i

2
t

N�1X

i=1

�iB�i+1A. (5.91)

We make two observations: (i) The Majorana operators �1A and �NB do not appear in the
Hamiltonian. (ii) We can go back to a fermionic representation by “paring” Majorana fermions
over bonds

di =
1

2
(�i+1A + i�iB) . (5.92)

Written in these fermions the Hamiltonian is again strikingly simple

H = t

N�1X

i=1

✓
d†idi +

1

2

◆
. (5.93)

Clearly, the di-fermions are the quasi-particle excitations above the superconducting ground
state. However, owing to the fact that �1A and �NB did not appear in the Hamiltonian, we can
form another fermion, see Fig 5.8

f =
1

2
(�1A + i�NB) . (5.94)

This f -fermion formed out of the Majorana modes at the two edges does not appear in the
Hamiltonian. Therefore, the ground state is doubly degenerate: If f |0i = 0 is a ground state,
also |1i = f †|0i is.

5.4.3 Two dimensional px + ipy superconductor

The two-dimensional generalization of a spin-less fermion system that realizes unpaired Majo-
rana fermions is a px + ipy superconductor.2 In a continuum model such a superconductor is
described by the Hamiltonian [16]

H =

Z
dr

⇢
 †

✓
�r2

2m
� µ

◆
 +

�

2

⇥
ei' (@x + i@y) +H.c

⇤�
. (5.95)

Here,  creates a spinless fermion with mass m and ' is the phase of the superconducting order
parameter � 2 R. We consider a system with periodic boundary conditions in both x- and
y-directions (a torus). Introducing the notation  †

k = [ †
k, �k] the above Hamiltonian can be

written as

H =
1

2

Z
dk

(2⇡)2
 †

kH(k) k with H(k) =
X

i

di(k)�i. (5.96)

The d-vector looks like

dx(k) = ��(kx sin(') + ky cos(')), (5.97)

dy(k) = �(kx cos(')� ky sin(')), (5.98)

dz(k) =
k2

2m
� µ. (5.99)

This Hamiltonian is again particle hole symmetric with UC = �x as it describes a triplet super-
conductor. However, due to the kx+iky nature of the pairing, time reversal symmetry is broken,

2So far we have discussed only lattice models. The same can be done for a two-dimensional p
x

+ ip

y

supercon-
ductor. However, the main features we want to touch upon are also accessible in a (simpler) continuum model.
The interested reader is referred the publication by Asahi and Nagaosa [15] for a lattice version.
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which puts us in class D. Hence, we have to calculate the Chern number. The bulk excitation
spectrum ±d(k) is gapped for all values of k and µ 6= 0. To see if µ = 0 corresponds to a topolog-
ical phase transition we study the evolution of the d-vector as a function of k. Remember that
we had to regularize the Dirac fermion problem in Sec. 4. One can do so by putting the system
on a lattice [15]. Alternatively, we note that for k ! 1 the director d̂(k) tends to a unique
vector which does not depend on the direction of k. At this point we can cut o↵ the momentum
integral as there is no further contribution to the Skyrmion density ✏↵�� d̂↵@k

x

d̂�@k
y

d̂� .3

Let us start with the case µ < 0. Note that for momenta with fixed k, dx and dy always sweep
out a circle on the unit sphere at height dz. At k=0 we start at the north pole and slowly slide
down towards the equator before we move back to the north pole at k ! 1. Therefore, the
d-vector does not wrap around S2 and the Chern number is zero. For µ > 0 the d-vector starts
at the south-pole for k = 0 and smoothly moves up to the north-pole at k ! 1. Hence, the
Chern number is non-zero, concretely C = �1.

(a) (b)

(c) (d)

µ < 0
trivial

µ < 0
trivial

µ > 0
topological

r
i

r
o

� = h

2e

�
i

�
o

n

E

n

E

Figure 5.9: (a) Geometry for the chiral Majorana edge modes. (b) Toy model for a vortex in a
px + ipy superconductor. (c) Edge spectrum for (a). (d) Spectrum for (b).

As for the Kitaev chain we would like to investigate the physical consequences of this Chern
number. We know that at an interface between a topologically trivial and non-trivial region
(where the Chern number changes by one) we expect one chiral edge channel. Following the very
nice review by Alicea [16], we consider an Corbino disk by assuming the the chemical potential
µ(r) smoothly goes from positive inside the annulus to negative outside, see Fig. 5.9(a). If we are
interested in the low-energy modes in the vicinity of the edge and if µ(r) varies slowly enough,

3This tendency towards a direction independent d̂(k) for large k was not present in the Dirac problem, which
resulted in a half-quantized “Chern” number.
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we can neglect the r2-term in the Hamiltonian and write in polar coordinates4 (r,#)

Hedge =

Z
dr

⇢
�µ(r) † +


�

2
ei'ei# 

✓
@r +

i@#
r

◆
 +H.c

��
(5.105)

Note that the factor ei# above means that the pairing couples states with di↵erent angular
momentum. To simplify this problem with change to new variables5

 !  0 = e�i#/2 . (5.106)

It is important to note that in the new variables  0, we need to look for solutions with anti-
periodic boundary conditions when encircling the annulus. In the new variables  0† = [ 0†, 0]
the Hamiltonian is written as H = 1

2

R
dr 0†H(r,#) , with

H(r,#) =

✓
�µ(r) �e�i'(�@r + i@#/r)

�ei'(@r + i@#/r) µ(r)

◆
. (5.107)

To solve for H(r,#)�(r,#) = E�(r,#) we make the Ansatz

�(r,#) = ei(n+1/2)#

✓
e�'/2[f(r) + ig(r)]
ei'/2[f(r)� ig(r)]

◆
, with n 2 Z. (5.108)

The prefactor ei(n+1/2)# accounts for the anti-periodic boundary conditions. From the eigenvalue
equation we obtain

[E � (n+ 1/2)�/r]g(r) = �i[µ(r)��@r]f(r) (5.109)

[E + (n+ 1/2)�/r]f(r) = i[µ(r) +�@r]f(r) (5.110)

If �(#, r) is well localized around the inner (ri) or the outer (ro) radius of the Corbino disk, we
can replace 1/r ! 1/ri/o. Therefore the above equations have a solution for the outer edge with
f(r) ⌘ 0

Eo =
(n+ 1/2)�

ro
, (5.111)

�n
o (r,#) = ei(n+1/2)#e

1
�

R
r

ro
dr0 µ(r0)

✓
iei'/2

�ie�i'/2

◆
. (5.112)

4 We use

x = r cos(#) r =
p

x

2 + y

2
, (5.100)

y = r sin(#) cos(#) =
xp

x

2 + y

2
sin(#) =

yp
x

2 + y

2
. (5.101)

Therefore

@

@x

=
@#

@x

@

@#

+
@r

@x

@

@r

= � sin(#)

r

@

@#

+ cos(#)
@

@r

, (5.102)

@

@y

=
@#

@y

@

@#

+
@r

@y

@

@r

=
cos(#)

r

@

@#

+ sin(#)
@

@r

. (5.103)

The pairing term now reads

@

x

+ i@

y

= [cos(#) + i sin(#)]@
r

+ [� sin(#) + i cos(#)]
@

#

r

= e

i#


@

r

+
i@

#

r

�
. (5.104)

5Remember that this is what we usually do to gauge aways a vector potential for the problem of a particle
on a ring. Correspondingly, this transformation induces a term i@

#

! i@

#

+ 1/2. However, this constant terms
vanishes in the pairing due to the Pauli principle.
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And for the inner edge with g(r) ⌘ 0

Ei = �(n+ 1/2)�

ri
, (5.113)

�n
i (r,#) = ei(n+1/2)#e

� 1
�

R
r

ri
dr0 µ(r0)

✓
ei'/2

e�i'/2

◆
. (5.114)

These solutions have a few remarkable features. First, there is always a finite energy gap of
�

2ri/o
, see Fig. 5.9. Second, the excitations are chiral with opposite chirality on the inner and

outer edge. This looks a bit like the quantum Hall e↵ect. However, here, the edge excitations
are not regular complex fermions but are chiral Majorana modes. To see this we consider

 0(r,#) =
X

n

[�n
i (r,#)�

n
in + �n

o (r,#)�
n
o ] . (5.115)

Since the upper and lower components of  0(r,#) are related by Hermitian conjugation, the
above equations imply that

�n
i/o = [��n

i/o ]
†. (5.116)

This means that the operators

�i/o(#) =
X

n

ein#�n
i/o = �†

i/o(#). (5.117)

are actually Majorana fermions.
In order to complete this section we show that vortices in a px + ipy superconductor carry a
Majorana zero mode. The simplest model for a vortex is to take the annulus of before and
thread a flux h/2e through the inner hole. Such a flux quantum gives rise to a phase winding
of the order parameter �, i.e., � ! �(#) = e�i#�. We immediately observe that this swallows
the ei# in (5.105). This in turn, allows us to write the same solutions for  instead of  0, which
obey periodic instead of anti-periodic boundary conditions. Consequently, we have to shift the
pre-factor ei(n+1/2)# ! ein# in �(r,#). Hence the energies for the states on the inner edge read
now, cf. Fig. 5.9

Ei/o =
n�

ri/o
with n 2 Z. (5.118)

In particular the n = 0 solution is a zero energy Majorana mode.6 To understand the implications
of this zero energy Majorana mode we refer to the seminal paper by Ivanov [17].
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