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Chapter 1

The integer quantum Hall effect I

H.L. Stormer: Nobel Lecture

Learning goals

• We know the basic phenomenology of the quantum Hall effect (QHE)
• We know the structure of the lowest Landau level (LLL)
• We understand the role of disorder for the QHE.

• K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

In large parts of this chapter we follow reference [2].

1.1 Preliminaries
The Lorentz force acting on charged particles moving in a two-dimensional plane leads to a
build-up of charges perpendicular to the direction of motion. This is the classical Hall effect
first discussed by Edwin Hall in 1879 [3]. To understand this, let us consider a two-dimensional
system which is translationally invariant. We move to a frame moving with −v where we
therefore see electrons moving with velocity v and carrying a current

J = −nev, (1.1.1)

where n is the particle density and e is the electron charge. In the laboratory frame we have
E = 0 and B = Bẑ. Hence, in the moving frame we obtain

E = −v ∧B and B = Bẑ. (1.1.2)
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Figure 1.1: Measured Hall resistivity as a function of an applied back-gate which leads to a
change in the particle density n. The pronounced plateau is the hallmark of the quantum Hall
effect. Figure taken from Ref [1].

We can express the electric field as
E = B

ne
J ∧ ẑ. (1.1.3)

The resistivity ρ is defined as the relation between the current and the electric field Eµ = ρµνJ
ν .

We thus find
ρ = B

ne

(
0 1
−1 0

)
⇒ σ = ne

B

(
0 −1
1 0

)
. (1.1.4)

We see that owing to the non-zero σxy the longitudinal resisitivity ρxx = σxx = 0 is equal to the
longitudinal conductivity. Moreover, the Hall resistivity is proportional to the magnetic field

ρxy = B

ne
. (1.1.5)

This is in striking contrast to the seminal discovery of von Klitzing and his co-workers in 1980
[1], see Fig. 1.1. The only ingredient in our theoretical model so far, however, was translational
symmetry. In the following, we first take steps towards a quantum mechanical understanding of
electrons in a magnetic field before we come back to the issue of translational symmetry breaking
via disorder.

1.2 Classical Lagrangian
To motivate how the magnetic field enters our quantum mechanical description, we recall that the
classical equations of motions are reproduced by the following Lagrangian L = m

2 ẋ
µẋµ− eẋµAµ.

− d

dt

∂L
ẋµ

+ ∂L
∂xµ

= 0 ⇒ mẍ = −eBẏ and mÿ = eBẋ. (1.2.1)

The canonical momentum is given by pµ = ∂L
ẋµ = mẋµ − eAµ and therefore the Hamiltonian

reads
H(xµ, pµ) = ẋµpµ − L(xµ, ẋµ) = 1

2m (pµ + eAµ) (pµ + eAµ) . (1.2.2)
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With this small detour into classical mechanics we are now in the position to tackle the quantum
mechanical problem of a particle in a magnetic field.

1.3 Landau levels
We have to solve for the eigenstates of the following Hamiltonian

H = 1
2m(p + eA)2. (1.3.1)

As only the vector potential A enters the Hamiltonian we have to chose an appropriate gauge.
For now we choose the Landau gauge where A = xBŷ. We check that ∇ ∧A ≡ B = (∂xAy −
∂yAx)ẑ = Bẑ. Inserted into the above Hamiltonian we obtain

H = 1
2m

[
p2
x + (py + exB)2

]
. (1.3.2)

We immediately observe that this Hamiltonian has a translational symmetry in y direction. We
therefore choose the following ansatz for the wave function ψ(x, y) = eikyfk(x). With this ansatz
we obtain a family of one-dimensional problems (one per momentum k in y-direction)

hk = −~2∂2
x

2m + 1
2mω

2
c

(
x+ kl2

)2
with ωc = eB

m
and l =

√
~
eB

. (1.3.3)

We see that we are dealing with a (displaced) one-dimensional harmonic oscillator. The charac-
teristic frequency is known as the the cyclotron frequency ωc. The displacement is proportional
to the y-momentum and measured in the natural length scale, the magnetic length l. Solving
the harmonic oscillator we find that

1. εk = ~ωc
(
s+ 1

2

)
with s ∈ N.

2. For s = 0, i.e., the LLL the wave function is a Gaussian centered at Xk = −kl2

ψ(x, y) = 1√
π1/2Lyl

eikye−
1

2l2
(x+kl2)2

= 1√
π1/2Lyl

eikye−
1

2l2
(x−Xk)2

, (1.3.4)

where Ly is the extent in y-direction as shown in Fig. 1.2.

3. We have a vastly degenerate system. The number of degenerate states in each LL is given
by

N = Ly
2π

ˆ Lx/l2

0
dk = LxLy

2πl2 = LxLyB

Φ0
, (1.3.5)

where Φ0 = h/e is the magnetic flux quantum. In other words, per magnetic flux quantum
that penetrates the sample we have one state per Landau level.

Before we continue we should remind ourselves that in the case of huge degeneracies any pertur-
bation might have dramatic effect. Moreover, the choice of basis can facilitate the description
of these effects. For the case of a magnetic field, the choice of gauge determined the shape of
the basis wave-functions. We will come back to this point later.

Xk = −kl2 x

y

Figure 1.2: Eigenfunctions of the LLL in the Landau gauge.

University of Zurich 3 ETH Zurich



Topological condensed matter physics Chapter 1.4

1.4 Currents
We set out to understand the Hall conductivity. To make further progress, we need to calculate
currents. We evaluate the current operator in y direction, Jy = − e

m(py + eAy), in the LLL
eigenfunctions

〈ψ|Jy|ψ〉 = − e

mπ1/2l

ˆ
dx e−

(x−Xk)2

2l2 (~k + eBx)e−
(x−Xk)2

2l2 (1.4.1)

= − eωc
π1/2l

ˆ
dx e−

(x−Xk)2

l2 (x+ kl2) = − eωc
π1/2l

ˆ
dα e−

α2
l2 α = 0. (1.4.2)

The last equality holds as the integrand is odd under α → −α. In other words, no net current
is flowing as shown in Fig. 1.3.

−

+

x

Jy(x)

Figure 1.3: Current distribution in the lowest Landau level.

For a current to flow, we need to add an electric field in x-direction V (x) = eEx. We still are
translationally invariant in y-direction and the one-dimensional problem is changed to

hk = −~2∂2
x

2m + 1
2mω

2
c

(
x+ kl2

)2
+ eEx (1.4.3)

= −~2∂2
x

2m + 1
2mω

2
c

(
x+ kl2 + eE

mω2
c

)2
+ eEX ′k + 1

2mv̄
2, (1.4.4)

where the center of the Gaussians is shifted

X ′k = −kl2 − eE/mω2
c (1.4.5)

and an additional energy 1
2mv̄

2 with v̄ = −E/B arises from the drift of the electrons. The
immediate conclusion is that the new energy depends on k, i.e., the huge degeneracy is lifted

εk = 1
2~ωc + eEX ′k + 1

2mv̄
2. (1.4.6)

With an energy that depends on k we can also calculate a non-zero group velocity

vgroup = 1
~
∂εk
∂k

= eE

~
∂X ′k
∂k

= −eE
~
l2 = −E

B
= v̄. (1.4.7)

With this we reach the classical result

〈Jy〉 = −ev̄ ⇒ σxy = −ne
B
. (1.4.8)

We reached the same conclusion as with the classical manipulations based entirely on transla-
tional symmetry in the beginning of this chapter. In order to make further progress we should
take a closer look at the finite extent of a realistic sample as well as on disorder effects to
understand the quantization of σxy.
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1.5 Edge states

V (x): sample edges

LLL (s = 0)

s = 1

s = 2

Xk

Figure 1.4: Edge states from curved Landau levels.

We try to build an understanding of
the influence of the edges of a two
dimensional sample by considering a
strip which is finite in x-direction and
infinite (or periodic) in y-direction. The
basis wave functions of the LLL, or
equivalently the gauge choice for A,
which we used above is optimally tai-
lored to this geometry. Remember
that the wave functions are localized
in x-direction with a typical extent l.
If we now consider a potential V (x)
that confines the electrons to a finite region which is smooth over the length-scale l, we can
expect the wave function to remain approximately Gaussian. However, the wave functions cen-
tered in the vicinity of the edges will be lifted in energy. As the position of the wave function is
linked to the momentum k in y-direction we obtain dispersive edge channels.

Figure 1.5: Classical
skipping orbits.

In order to determine how the current is distributed we again calculate
the group velocity.

vgroup = 1
~
∂εk
∂k

= 1
~
∂εk
∂Xk

∂Xk

∂k
= − l

2

~
∂εk
∂Xk

=
{
< 0 right edge
> 0 left edge

. (1.5.1)

These simple manipulations reveal that the two opposite edges carry op-
posite current. This can also be understood from the classical “skipping
orbits” picture as shown on the left.
In order to calculate σxy we now apply a voltage VH between the two

edges (in x-direction) and calculate the resulting current along the sample (in y-direction).
Moreover, we assume that the Fermi energy EF lies in between two Landau levels.

VH

EF

Figure 1.6: Voltage bias.

The obtain the total current Iy we sum over the contribution
evk of all occupied states

Iy = −e
ˆ ∞
−∞

dk

2π
1
~
∂εk
∂k

nk, (1.5.2)

where nk is the occupation probability of the k’th mode. Under
the assumption that we only fill the LLL and that we are at
zero temperature the occupation numbers only take the values
nk = {1, 0}. Under these assumptions we arrive at

Iy = − e
h

ˆ µR

µL

dε = − e
h

(µR − µL), (1.5.3)

where µR/L are the respective chemical potentials on the two sides. As we can write eVH =
µR − µL we arrive at

Iy = −e
2

h
VH ⇒ σxy = −e

2

h
. (1.5.4)

Let us move now the Fermi energy in between any two LL and we immediately conclude that

σxy = −ν e
2

h
, (1.5.5)

where the integer ν counts the number of filled LL’s.
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Figure 1.7: Chemical potential stuck to Landau levels.

1.5.1 The effect of disorder*

The above result is strongly suggestive that one dimensional edge channels are responsible for
the transport in the quantum Hall effect. Generically the current carried by a one-dimensional
channel is given by

I = e2

h
|T |2, (1.5.6)

where |T |2 denotes the probability for an electron to be transmitted through a disordered region.
However, our edge channels are chiral where the electrons have no way to be back-scattered and
therefore |T |2 = 1. These arguments explain why even in the case of a disordered sample σxy
can be quantized. However, we did not yet reconcile a quantized σxy with the general result
σxy = ne/B for a clean system.
We assumed the Fermi energy to lie between two Landau levels. Let us see under which condi-
tions this can be the case. We assume the sample to be Lx wide and the edge region which is
curved up to extend over the length W � Lx. From the finite size (or periodic) quantization in
y-direction we know that the momentum can take the values ki = 2π

Ly
i with i ∈ Z. Hence, we

find for the centers of the Localized wave functions Xi = 2π
Ly
l2i. We now count how many wave

functions fit into the bulk and how many into the edge:

edge : W

Xi −Xi−1
∝ Ly, bulk : Lx

Xi −Xi−1
∝ LxLy. (1.5.7)

We see that there are extensively many bulk states but only a sub-extensive number of edge
states as shown in Fig. 1.7.
Translated to a fixed density but varying magnetic field B we find that for almost all values of
B the Fermi energy will lie in the bulk, not the edge! Meaning, our assumption that the we have
a completely filled LL and the relevant physics is happening only on the edge was not justified.
Hence we need to get a better understanding of disorder effects. We do so in App. A.
Let us here briefly summarize some important effects of disorder. First, it spoils translational
symmetry that led to the classical result in contrast with the experimental observation. Second,
it lifts the degeneracy of the Landau levels. Disorder broadens the Landau levels in the bulk and
provides a reservoir of (localized) states which allow the chemical potential to vary smoothly
with density. Since they are localized, these states will not contribute to transport and to the
Hall conductance.
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Appendix A

Scaling theory of localization

Learning goals

• We appreciate the role of the dimensions for the localization of electrons.
• We can reproduce the gang-of-four scaling plot.

• M. A. Paalanen G. A. Thomas, Helv. Phys. Acta 56, 27 (1983)

A.1 Conductance versus conductivity
We want to study the influence of disorder on the electrical resistance R relating the applied
voltage U to the electrical current I

U = RI. (A.1.1)

R connects two macroscopic observables and therefore characterizes a macroscopic sample. The
conductance g is defined as the inverse of the resistance

g = 1
R
. (A.1.2)

These quantities have to be contrasted with the microscopic quantities such as the conductivity
σ

j = σE, (A.1.3)

where E is the electric field and j the microscopic current density. In this chapter we want to
understand if there is a simple bridge between the microscopic quantity σ (which we might be
able to calculate from first principles in simple model situations) and the macroscopic conduc-
tance g. We try to do so by starting from a relatively small system where we are in principle up
to the task of calculating g exactly. We then want to successively increase the system size and
see what we can deduce.

A.2 One parameter scaling
The key step in the program of successively increasing the system size dates back to the very
influential paper by what we now call the the “gang of four”: Abrahams, Anderson, Licciardello,
and Ramakrishnan [1]. Their key insight was that the conductance g(2L)of a block of size 2L
only depends on one parameter, namely the conductance g(L) of the block of size L out of which
the larger was formed, cf. Fig. A.1. In other words

g(2L) = f [g(L)] and not g(2L) = h[g(L), L, . . . ]. (A.2.1)
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Figure A.1: Setup for the renormalization of the conductance.

This statement is not easy to motivate in a systematic way. Instead of attempting to legitimate
(A.2.1), we want to analyze its consequences in the following. To make further progress we write
(A.2.1) in a form that contains no scales

L

g

dg(L)
dL

= d log(g)
d log(L) = β(g). (A.2.2)

Let us have a look at simple limiting cases.
For a good conductor g � 1 we know that the “one parameter scaling” holds in the form of
Ohm’s law

R = ρ
L

A
= ρ

L

Ld−1 ⇒ g = σ0L
2−d. (A.2.3)

From this we immediately obtain

d log(g)
d log(L) = d− 2 ⇒ lim

g→∞
β(g) = d− 2. (A.2.4)

In the other limit of very strong disorder, all wave-function will be exponentially localized.
Therefore, we expect the conductance to behave as

g(L) ∝ e−L/ξ ⇒ d log(g)
d log(L) = −L

ξ
= log(g). (A.2.5)

Hence in the limit of vanishingly small conductance, the β function reads

lim
g→0

β(g) = log(g). (A.2.6)

We summarize these results in Fig. A.2. Due to the dependence of the β-function on the
dimension d, disorder seems to have very different effects depending on the spatial dimension.
Let us discuss the consequences of Fig. A.2 for one, two, and three dimensions separately.

A.2.1 One dimension

In one dimension, β(g) < 0 is always negative. In other words, by increasing the system size,
the conductance g always flows to zero, irrespective of the conductance of a short section of the
wire.
Let us define a localization length ξ, where g(L = ξ) = 1. We find

d log(g)
d log(L) = −1 ⇒ g(L) = g0

L
⇒ ξ ∼ g0, (A.2.7)

where g0 is the conductance calculated for a small segment.
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Figure A.2: Plot of β(g) as a function of log(g) for various dimensions. Figure take from Ref. [1]
(Copyright (1979) by The American Physical Society).

A.2.2 Two dimensions

In two dimensions we encounter a somewhat more intriguing situation. For large values of g the
β-function is zero. In other words, to first order in 1/g, the conductance does not change under
a change in L. Such a situation is called marginal. As we have identified the limit g � 1 as
the classical regime where Ohm’s law holds, this means quantum corrections will play a crucial
role in how β(g) behaves away from g � 1. These quantum corrections are called “weak (anti-)
localization”. Their detailed calculation is beyond the scope of this course. However, we can
estimate them using a simple trick. Let us just calculate the probability for a particle to return
to the point where we inject it into the system

P = |〈ψ†(x)ψ(x)〉|2. (A.2.8)

When we calculate 〈ψ†(x)ψ(x)〉, we have to sum over all path the particle can take from x, back
to the same point x. In quantum mechanics, each path is associated with an amplitude and a
phase. Due to the disorder (which we try to study, after all), all paths sum up incoherently. If
we have a time-reversal invariant system, however, there are paths who’s amplitude and phase
are correlated as shown in Fig. A.3. Owing to the time-reversal symmetry the blue and the red
path have a well defined phase relation. If we now calculate P the sum contains the following
contributions shown in Fig. A.4.

Figure A.3: Return probability.
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Figure A.4: Interference in the return probability.

From this we conclude that we can have two distinctly different situations
1. T 2 = −1 ⇒ the return probability P is reduced, hence quantum mechanical effects lead

to more extended states and we deal with weak anti-localzation.

2. T 2 = 1 ⇒ the return probability P is enhanced, i.e., the states are more localization:
weak localization.

However, a word of caution is in order here! When applying this argument for spin-1/2 fermions
we generically have T 2 = −1. But if the Hamiltonian does not mix the spin degrees of freedom,
we can go to the individual spin sectors and describe the physics as two spin-0 problems. In this
case however, T 2 = 1. The situation changes if we deal with spin-orbit coupling. In this case we
have to stick with the spin-1/2 description and therefore we generically expect anti-localization
in this case.
Let us now analyze the case of no spin-orbit interactions, i.e., weak localization. We solve the
equation

d log(g)
d log(L) = −C

g
or dg

d log(L) = −C < 0. (A.2.9)

We find
g = g0 − C log(L/l), (A.2.10)

where l is the small length at which we managed to solve the problem exactly and found g(l) = g0.
We can now again determine the localization length by equating g(ξ) = 1 to find

ξ ∼ leg0/C . (A.2.11)
Indeed, all states are localized. However, g � g0 and the localization length is astronomical.

A.2.3 Three dimensions

Three dimensions (or two with spin-orbit) are the most interesting cases. Depending on the
initial value g0, β(g) is either positive or negative, i.e., a macroscopic sample can either be
conducting or insulating. In other words, there is a metal-insulator transition as a function of
g0. For the time being three dimensions are not in the scope of the course and we will come
back to it (and spin-orbit in two dimensions) later.
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