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Chapter 2

The integer quantum Hall effect II

Learning goals

• We know the pumping argument of Laughlin and the concept of spectral flow.
• We know that there is always a delocalized state in each LL.
• We know that σxy is given by the Chern number.
• We understand why the Chern number is an integer.

• R. B. Laughlin, Phys. Rev. B 23, 5632. (1981).
• D. J. Thouless, M. Kohmoto, M. Nightingale & M. den Nijs,

Phys. Rev. Lett. 49, 405 (1982)

2.1 Laughlin’s argument for the quantization of σxy

In the following we try to understand the pumping argument presented by R. Laughlin [1].

2.1.1 Spectral flow

The idea of spectral flow is central to the pumping argument of Laughlin. We try to understand
this idea on the example of a particle on a ring of unit radius r = 1 threaded by a flux Φ1

H = ~2

2m

(
−i∂φ + Φ

Φ0

)2
⇒ ψn(φ) = 1√

2π
einφ with εn = ~2

2m

(
n− Φ

Φ0

)2
. (2.1.1)

After the insertion of a full flux quantum Φ0 = h/e, the Hamiltonian returns to itself. However,
if we follow each state adiabatically, we see that the first excited and the ground state exchanged
their positions. This situation is called spectral flow: While the spectrum has to be the same
for Φ = 0 and Φ = Φ0, the adiabatic evolution does not need to return the ground state to
itself! This is illustrated in Fig. 2.1. While the example of a particle on a ring is particularly
simple, the same situation can occur for a general setup where after the insertion of a flux Φ0

1The particle only lives on a ring, so we use polar coordinates and forget about the radial part:

H = 1
2m

(
−i~∂φ

r
+ eAφ

)2
.

We write the gauge field as

Aφ(r) =

{
Br
2 r < rc,
Br2

c
2r = Φ

2πr = ~
er

Φ
Φ0

r ≥ rc.

At r = 1, we find the expression in (2.1.1).

1
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Figure 2.1: Spectral flow.

the original ground state is adiabatically transferred to an excited state. Let us now see how
this spectral flow effect applies to the quantum Hall problem.

2.1.2 The ribbon geometry

Laughlin proposed that if σxy is quantized, it should not depend on the details of the geometry.
One is therefore allowed to smoothly deform a rectangular sample as shown in Fig. 2.2. In the last
step we replaced the applied voltage V → ∂tΦ with the electromotive force of a time-dependent
flux through the opening of the “Corbino” disk.
Let us see what happens when we insert this flux. We make use of the eigenfunctions in
the radial gauge ψ ∼ zm exp(−z∗z/4), where z = (x − iy)/l which we can also write as
e−imφrm exp(−r2/4l2). Again, we see that these are Gaussians in one of the coordinate, how-
ever, shifted in radial direction depending on m. By calculating ∂rψ = 0 we find that they are
localized around rm =

√
2ml. Therefore, the flux enclosed by the m’th wave function is given

by
πr2

mB = 2πm ~
eB

B = mΦ0. (2.1.2)

We now add slowly another flux Φ0 into the opening of the Corbino disk. Slowly means on a
time-scale t0 � 1/ωc, such that we do not excite any particles into the next LL. From the above
considerations we conclude that

rm(Φ)→ rm(Φ + Φ0) = rm+1(Φ). (2.1.3)

In other words, by inserting a flux quantum we transferred one state from the inner edge of the
disk to the outer perimeter. To reach equilibrium, the system will let the charge relax again and
we obtain

Vφ̂ = −∂Φ
∂t

= h

et0
; Ir̂ = e

t0
⇒ σxy = Ir̂

Vφ̂
= −e

2

h
. (2.1.4)
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This closes the argument of R. Laughlin [1]: The insertion of one flux quantum transfers a
quantized charge across the ribbon and hence leads to the quantized Hall conductance measured
in the experiment. At this point it is in place to review the assumptions that went into this
argument

1. ~/t0 � ~ωc, i.e., we adiabatically inserted the flux. This is well justified as σxy describes
linear response.

2. Spectral flow lead us to an excited state, i.e., the system was sensitive to the flux insertion!

This last statement is somewhat at odds with the comments in the last chapter on the role of
disorder: If we need disorder in an essential way to explain the quantization of σxy, we also have
to accept that disorder in two spatial dimensions leads generically to exponentially localized
wave-functions [2], which in turn is incompatible with the sensitivity to flux insertion: how can
a localized state in the bulk or in the vicinity of the outer edge feel anything of the flux inserted
in the middle?
To reconcile this, one has to understand that a basic assumption of the gang-of-four analysis [2],
one-parameter scaling, is violated in the presence of a strong magnetic field. More importantly,
we should provide a simple, i.e. semi-classical, picture of how to embed at least one extended
bulk state in a disordered Landau level.

Figure 2.2: Change of geometry for Laughlin’s pumping argument.

2.2 The percolation transition
There is a relatively simple picture in terms of percolating clusters that explains the existence
of at least one extended state. We know that semi-classical eigenstates in a disordered LL level
are given by orbits along equipotential lines.2 The question is, if there is always an orbit in each
LL that connects the two edges of our Corbino disk. If this is the case, this state mediates the
sensitivity to the flux insertion and Laughlin’s argument goes through also in the disordered
case. Luckily the answer to this question is a clear yes!
In Fig. 2.3 an energy landscape for a disordered LLL with a confining potential is shown.
Eigenstates are given by equipotential orbits. At low chemical potential µ as shown here, all
orbits are “lakes” and hence all states are localized.
When filling in more water (raising µ) we switch at some point from “lakes” to “island”. Right
at the point where this happens, the shoreline has to connect through the whole sample. This
is the sought after extended state in the middle of the sample. Above the center of the LL we
are left with “islands” where all states in the bulk are localized. However, we get one edge state
on either side of the sample as discussed for the case of no disorder.
We can now summarize our discussion of disorder effects: (i) We found the extended state in
the LL needed for Laughlin’s pumping argument to hold. (ii) The disorder allows the chemical
potential to smoothly change also between the LL’s. Therefore, there is an extensive window
where the chemical potential lies in the range of the (mobility) gap and hence we find

σxy = −e
2

h
ν ν ∈ Z. (2.2.1)

2See exercise number one.
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a b c

Figure 2.3: (a) Chemical potential below the center of the LL: All states are localized in the
form of orbits around lakes. (b) At the percolation threshold there is one shoreline connecting
the two sides of the sample. (c) Above the middle of the LL all but the two edge states are
localized around islands.

2.3 The TKNN integer
We have now seen that the Hall conductivity has to be quantized in two independent ways.
Once, we saw that the edge states of the QHE are chiral one dimensional channels which carry
a conductivity of e2/h. On the other hand, we saw that the pumping argument requires σxy to
be quantized. In both cases the effect was not only stable to disorder but actually required a
certain amount of dirt to lift the huge degeneracy of the LL’s which made the chemical potential
cling to the bulk states. The obvious question is now if there is a deeper, “topological” reason
that links these two arguments given above. The answer was given in another seminal paper by
Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) in 1982 [3–5].

2.3.1 Landau levels on the torus*

The original paper [3] considered electrons in a periodic potential. Here we want to follow a
different route inspired by Avron and Seiler [6] (See also lecture notes by A. Kitaev).

x

y

Lx

Ly

Figure 2.4: Real space
torus.

We consider the problem of a magnetic field on a torus. We use
the gauge field

Ax = Φx

Lx
, Ay = Φy

Ly
+Bx, (2.3.1)

where we added fluxes Φx/y through the openings of the torus. The
boundary conditions on the torus in the presence of a magnetic
field are somewhat non-trivial. Let us define them with respect
to the magnetic translation operators which are defined via the
canonical momentum operator (−i~∇− eA)

TAu = e
i
~u·p = e

i
~u·(−i~∇−eA). (2.3.2)

Note that these operators depend on the choice of gauge. To derive the boundary conditions,
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we now consider u1 = (Lx, 0) and u2 = (0, Ly).

TAu1ψ(x, y) = ψ(x+ Lx, y) != ψ(x, y), (2.3.3)

TAu2ψ(x, y) = e−
ie
~ BxLyψ(x, y + Ly)

!= ψ(x, y). (2.3.4)

These two conditions are only compatible if

TAu1T
A
u2 = TAu2T

A
u1 . (2.3.5)

This is only the case for
eB

~
LxLy = LxLy

l2
= 2πn (2.3.6)

with n ∈ Z. In other words, an integer number of flux quanta has to pierce the surface of the
torus (we can only put quantized magnetic monopoles inside the torus). One can also see that
the boundary conditions contain a “gluing phase”

ψ(0, y) = ψ(Lx, y), (2.3.7)

ψ(x, 0) = e−
ie
~ BxLyψ(x, Ly). (2.3.8)

In order to appreciate the role of (Φx,Φy) we calculate the Wilson loops

Wx(y) =
˛
dxÃx(x, y) = BLxy + Φx, (2.3.9)

Wy(x) =
˛
dyÃy(x, y) = BLyx+ Φy, (2.3.10)

where we absorbed the gluing phase in the vector potential Ã. W = (Wx(y),Wy(x)) is a gauge
invariant vector and shows that on a torus a magnetic field breaks all translational symmetries.
Moreover, we see, that we can view (Φx,Φy) as a shift in (x, y). Equipped with these details
about the problem of a magnetic field on a torus we now want to embark on the calculation of
the Hall conductivity.

2.3.2 Kubo formula

For a microscopic calculation of the conductivity we need a bit of linear response theory. We
are interested in the (linear) response of a system to a (small) applied perturbation. In our case
the response of interest is the current density j(r) = e

2m
∑
i[piδ(r − ri) + δ(r − ri)pi)]. The

perturbation is given by an applied electric field E = −∂tA. The perturbing Hamiltonian can
therefore be written as

H ′ = −
ˆ
dr j(r) ·A(r), (2.3.11)

We are interested in the expectation value of the current density operator

j̄(r, t) = 〈ψ|U †(t)j(r, t)U(t)|ψ〉 with U(t) = Tte
− i

~
´ t
−∞ dt′H′(t′), (2.3.12)

and

j(r, t) = e
i
~
´ t
−∞ dt′H0(t′)j(r)e−

i
~
´ t
−∞ dt′H0(t′) and H ′(t) = e

i
~
´ t
−∞ dt′H0(t′)H ′e−

i
~
´ t
−∞ dt′H0(t′)

(2.3.13)
Here, Tt is the time-ordering operator and |ψ〉 is the unperturbed ground state of the original
HamiltonianH0. As usual for perturbation theory, we switched to the interaction representation.
We assume the vector potential inH ′ to be given byA = (Φx/Lx,Φy/Ly)et/τ , which corresponds
to slowly turning on the fluxes through the opening of the torus. Moreover, we only drive with
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a spatially constant field. Note, that A0 = Bxŷ is not included in H ′ as this is not considered
to be small but part of the unperturbed Hamiltonian H0. In linear response we can expand the
exponent in U(t) to obtain

j̄α(r, t) = i
~
∑
β

ˆ t

−∞
dt′Aβ(t′)〈[jα(r, t),

ˆ
dr′jβ(r′, t′)]〉 (2.3.14)

= i
~
∑
β

ˆ t

−∞
dt′Aβ(t′)〈[jα(r, t), Jβ(t′)]〉. (2.3.15)

We write Jβ(t′) for the q = 0 Fourier-component of the current as it represent the total current.
Moreover, as we only drive with q = 0, we only get response at this wave vector. To make this
clearer we take the Fourier transform on both side with respect to r

J̄α(t) = i
~
∑
β

ˆ t

−∞
dt′

Φβ

Lβ
e
t′
τ︸ ︷︷ ︸

=τE0
β
et
′/τ

〈[Jα(t), Jβ(t′)]〉. (2.3.16)

We can now relate the current density3 to the final driving field E0
y to obtain an expression for

the Hall conductance
σxy(t) = iτ

~v

ˆ t

−∞
dt′ e

t′
τ 〈[Jx(t), Jy(t′)]〉 (2.3.17)

The result (2.3.17) is known as the Kubo formula. Let us review this result again: The first
current operator arises as we measure a current. The second one because the perturbing Hamil-
tonian H ′ is also proportional to the current. The commutator originates from the perturbation
theory where U(t) is once acting from the left and once from the right. The multiplication by τ
accounts for the time derivative linking the electric field E and the vector potential A. Finally,
in our derivation we made the explicit assumption that we turn on the fluxes Φα adiabatically.
Certainly the Kubo formula is more general and can be derived for an arbitrary time and space
dependence of the perturbation.
To make progress we manipulate (2.3.17) further

σxy := σxy(t = 0) = i
~v

ˆ 0

−∞
dt′ τet

′/τ 〈[Jα(0), Jβ(t′)]〉 (2.3.18)

= i
~v

ˆ ∞
0

dt1

ˆ 0

−∞
dt2〈[Jx(t1), Jy(t2)]〉e−

t1−t2
τ (2.3.19)

= i
~
〈[Q+

x , Q
−
y ]〉, (2.3.20)

where the operators Q±α are defined as

Q+
α = 1

Lα

ˆ ∞
0

dt e−t/τJα(t), and Q−α = 1
Lα

ˆ 0

−∞
dt et/τJα(t). (2.3.21)

To evaluate the above formula for σxy we apply the adiabatic approximation: We try to exchange
the current operators in (2.3.21) with something that explicitly only depends on the ground state

3Note that by taking the Fourier-transform

J̄(q) =
ˆ
dreiq·r j̄(r)

we switched from current density to the total current. However, σxy relates the driving field E to the current
density in J̄x/v = J̄x/LxLy. We account for that by dividing by the volume v = LxLy.
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wave-function |ψt〉 at a given time during the turn-on process. At this point it is convenient to
introduce the (dimensionless) phases

ϕα := 2πΦα

Φ0
. (2.3.22)

Inserted into (2.3.11) we have

H ′(t) = −
ˆ
dr j(r, t) ·A(r, t) = −

∑
α

Jα(t)Φα

Lα
et/τ = −

∑
α

Jα(t)~
e

ϕα
Lα

et/τ . (2.3.23)

Let us write the ground state wave function at t = 0 by evolving the t = −∞ wave function
assuming ϕα to be small

|ψ0〉 = T̂te
− i

~
´ 0
−∞ dt′H′(t′)|ψ−∞〉 ≈ |ψ−∞〉+

∑
α

i
e
ϕαQ

−
α |ψ−∞〉. (2.3.24)

We now make use of the adiabatic approximation: We assume that we do not induce any
transitions to states above a postulated energy gap. Moreover, the state at t = −∞ does not
depend on ϕα. When taking the derivative ∂/∂ϕα on both sides of Eq. (2.3.24) we obtain

Q−α |ψ−∞〉 = −ie
∣∣∣∣ ∂ψ0
∂ϕα

〉
. (2.3.25)

We achieved our goal to replace the unwanted current operators! For clarity and to make
connection to more mathematical literature [7] we introduce the Berry connection

Aα = i〈ψ0|∂αψ0〉, or A = i〈ψ0|∇ψ0〉 (2.3.26)

and the corresponding Berry curvature

Fαβ = ∂αAβ − ∂βAα or F = ∇∧A. (2.3.27)

We can now write for σxy

σxy = e2

~
Fxy, (2.3.28)

Let us take the step from the adiabatic turning-on of the field to a dc-field. In that case the
field A grows linearly in time, or in other words, the phase ϕx winds as a function of time. We
therefore average the above result over

´
dϕx/2π. To make matters more symmetric, we also

average over ϕy.4. This leads us to the formula

σxy = e2

~

ˆ
dϕxdϕy
(2π)2 Fxy = e2

h

ˆ
dϕxdϕy

2π Fxy = e2

h

C(1)

2π , (2.3.29)

where we identified the Chern number C(1) [7]. In order to get a better understanding of
Eq. (2.3.29) we related it to the Berry phase of a spin-1/2 in a magnetic field before we motivate
it to be quantized to an integer number times the quantum of conductance e2/h.

4You can argue, that the Hall response should not depend on the arbitrary (but constant) flux through the
other opening of the torus. This flux averaging has been widely accepted and recently been put on solid grounds
[8].
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2.4 The Berry phase
We would like to establish the link between the well known Berry phase [4] and the expression
for the Hall conductance derived above. Let us assume that we have a Hamiltonian H[R(t)]
that depends on time dependent parameters R(t). These parameters are supposed to evolve
slowly

~
∂Ri(t)
∂t

� ∆, (2.4.1)

where ∆ is the minimal gap between the instantaneous ground state and the first excited state at
any given time t. If we start at t = 0 in the ground state, we will always stay in the instantaneous
ground state. However, along the way we will pick up a phase

eiϕ(t)|ψ0(R)〉 : i~∂teiϕ(t)|ψ0(R)〉 = H[R(t)]eiϕ(t)|ψ0(R)〉. (2.4.2)

Multiplying this expression from the left with 〈ψ0(R)|e−iϕ(t) we obtain

∂tϕ(t) = i〈ψ0(R)|∇R|ψ0(R)〉 · ∂R
∂t
− 1

~
E0(R). (2.4.3)

Integrating this equation leads to

ϕ(t)− ϕ(0) =
ˆ R(t)

R(0)
〈ψ0(R)|i∇R|ψ0(R)〉 · dR︸ ︷︷ ︸
geometrical phase

− 1
~

ˆ t

0
dt′E0(t′)︸ ︷︷ ︸

dynamical phase

. (2.4.4)

If we now consider a path along a closed contour γ, the dynamical phase drops out and we find

ϕγ =
˛
γ
dl i〈ψ0|∇Rψ0〉 =

˛
γ
dlA =

ˆ
Γ
dSF , (2.4.5)

where Γ is the area enclosed by the contour γ. With this we see, that σxy is given by the Berry
phase5 of the ground state when we move the system once around the torus [0, 2π]× [0, 2π]. Let
us gain a deeper understanding of the Berry phase by recalling the example of a spin-1/2 in a
magnetic field.

2.4.1 Spin-1/2 in a magnetic field

The Hamiltonian of a spin-1/2 in a magnetic field is given by

H = −h · σ = −
∑

α=x,y,z
hασα. (2.4.6)

If we write the magnetic field in spherical coordinates

hx = h sin(ϑ) cos(ϕ), (2.4.7)
hy = h sin(ϑ) sin(ϕ), (2.4.8)
hz = h cos(ϑ), (2.4.9)

the ground state can be written as

|ξ1〉 =
(

cos(ϑ/2)
eiϕ sin(ϑ/2)

)
or |ξ2〉 =

(
e−iϕ cos(ϑ/2)

sin(ϑ/2)

)
. (2.4.10)

5Why do we call this a phase? Note that

0 = ∂η1 = ∂η〈ψ|ψ〉 = 〈∂ηψ|ψ〉+ 〈ψ|∂ηψ〉 = 〈∂ηψ|ψ〉+ 〈∂ηψ|ψ〉∗ = a+ a∗.

Therefore a = −a∗ and hence, Re[a] = 0.
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Both states |ξ1〉 and |ξ2〉 describe the ground state. However, |ξ1〉 is singular at ϑ = π (or at the
south-pole), while |ξ2〉 is singular at the north-pole. In other words, we had to introduce two
patches on the sphere to obtain a smooth parameterization of the instantaneous eigenstates, see
Fig. 2.5. However, we can glue these two patches together via a gluing phase

|ξ1〉 = eiζ(ϕ)|ξ2〉 with ζ(ϕ) = ϕ (2.4.11)

along the equator. Let us calculate the Berry connection for the two states. Recall that in
spherical coordinates the differential operators take the forms

∇f = ∂

∂r
f r̂ + 1

r

∂

∂ϑ
f ϑ̂+ 1

r sin(ϑ)
∂

∂ϕ
f ϕ̂, (2.4.12)

and

∇∧A = 1
r sin(ϑ)

{
∂

∂ϑ
[Aϕ sin(ϑ)]− ∂Aϑ

∂ϕ

}
r̂ + 1

r

{ 1
sin(ϑ)

∂Ar
∂ϕ
− ∂

∂r
(rAϕ)

}
ϑ̂

+ 1
r

{
∂

∂r
(rAϑ)− ∂Ar

∂ϑ

}
ϕ̂. (2.4.13)

With this we immediately find

A = 1
2r ϕ̂ ·

{
− tan(ϑ/2) |ξ1〉
cot(ϑ/2) |ξ2〉

and F = − α

2r2 r̂. (2.4.14)

Here, we introduced α = 1 for later purposes. A few remarks are in order: (i) The “B”-field
Fϕϑ corresponds to a monopole field of a monopole of strength −α at the origin. This can be
seen by integrating Fϕϑ over the whole sphere S2

ˆ
S2
dΩ F = −α. (2.4.15)

(ii) Integrated over the solid angle dΩ we obtain a Berry phase ϕ = −α
2 dΩ. (iii) The field A

corresponds to a monopole at h = 0. At h = 0 the Hamiltonian is zero, i.e., the system is doubly
degenerate. To appreciate this further, we write (see Ref. [4] for details)

F = B = ∇∧ 〈ψ|∇ψ〉 = 〈∇ψ| ∧ |∇ψ〉 =
∑
m6=0
〈∇ψ|m〉 ∧ 〈m|∇ψ〉 =

∑
m 6=0

〈ψ|∇H|m〉 ∧ 〈m|∇H|ψ〉
(Em − E0)2 .

It is easy to show that ∇ ·B = 0 if Em − E0 6= 0.
To take another step towards understanding the quantization of the Chern number, let us show
that α cannot take arbitrary values. We calculate the Berry phase along a path γ that does not
contain the south pole. For simplicity, let us take the equator. We can therefore write

ϕγ =
˛
γ
dlA =

ˆ
Γ
dΩ F = −αΩ(Γ)/2 mod 2π, (2.4.16)

where Ω(Γ) is the solid angle of the surface Γ. We closed γ such that Γ contains the north pole.
Alternatively we could have closed γ to Γ′ = S2 − Γ and write

ϕγ = −
ˆ

Γ′
dΩ F = α(4π − Ω(Γ))/2 mod 2π. (2.4.17)

In order for (2.4.16) and (2.4.17) to yield the same result we require

α ∈ Z. (2.4.18)
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ϑ

ϕ

0 π/2
0

2π

|ξ1〉

ϑ

ϕ

0
π/2 π

2π

|ξ2〉

ζ(ϕ)
i

j

γij

Figure 2.5: Left: Two patches introduced by the gauge choice for the ground state of a spin-1/2
in a magnetic field. No single patch can describe all eigenstate. However, the two patches can
be glued together via ζ(ϕ). Right: Triangulation of the torus where the gluing phase between
two individual patches i and j is indicated.

This observation leads us back to the definition of the Chern number

C(1) = 1
2π

ˆ
M
dΩ F ∈ Z (2.4.19)

for any “well behaved”, compact, two-dimensional manifold M without boundaries. It can be
shown that C(1) is a topological invariant of the fiber bundle looking locally likeM×U(1), where
M = S2 is the base manifold defined by the parameters of the Hamiltonian (or more precisely,
the parameters defining the projectors |ψ0〉〈ψ0| onto the ground state) and U(1) is called the
fibre defined by the phase of the ground state at any given point on S2. Note, however, that the
fibre bundle we are dealing with only locally looks like S2 × U(1). To get the full fibre bundle
we need to stitch together the two patches defined by |ξ1/2〉. The role of the gluing phases ζij
for patches i, j on the compact manifold M can be further highlighted through the formula

C(1) = 1
2π
∑
i<j

ˆ
γij

dζij ∈ Z. (2.4.20)

In other words, a non-vanishing Chern number C is intrinsically linked to the inability to chose
a smooth gauge, i.e., only if we have to chose several patches that we glue together with ζij can
C(1) be non-zero, see Fig. 2.5. A concrete example of this is our example of the spin-1/2 for
which we have

C(1) = 1
2π

ˆ
S2
dΩ F = −1 = 1

2π

˛
equator

dϕ ζ(ϕ). (2.4.21)

For further details we refer to the book by Nakahara [7] for a detailed mathematical exposition
or the book by Bohm et al. [9] for a more physical approach. We finish this section by stating
the long-sought formula

σxy = e2

h
ν with ν ∈ Z. (2.4.22)
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2.5 Translation invariant systems
Above we made an effort to formulate the derivation of σxy free of relations to momentum
integrals. This allows our formalism to be applied to disordered or interacting systems [6].
However, much of what will follow in Chern insulators and eventually the so-called “topological
insulators” will be formulated in translation-invariant systems.
Both for a systems in free space as well as on a lattice it is easy to see that the (quasi) momentum
k is doing nothing but making the wave-function acquire a phase exp(ik · x) which is linearly
growing in x. Moreover kα is the proportionality constant in α-direction. The fluxes (Φx,Φy)
do exactly the same. This can easily be seen by performing a gauge transformation

ψ(x) = eikx −→ ψ′(x) = ei e~
´ x
0 dx′A(x′)eikx = ei e~Φxxeikx = ei(k+ϕ)x = eik′x. (2.5.1)

We see that therefore the integrals over ϕ in (2.3.29) are nothing but momentum space integrals
for periodic systems [3]. Show to yourself that for a ground state wave-function which is a Slater
determinant of momentum eigenstates, the expression (2.3.29) is particularly simple.

2.6 Berry curvature as a magnetic field in momentum space
Before we move on to examples beyond Landau levels which carry a Chern number, we want to
get another intuition of what a non-zero Berry curvature represents. We consider electrons in a
periodic potential under a weak perturbation. Under the right circumstances one can describe
the dynamics in a semiclassical model described by the equations of motion for a wave-packet

ṙ = vn(k) = 1
~
∇kεn(k), (2.6.1)

~k̇ = −e [E(r, t) + ṙ ∧B(r, t)] , (2.6.2)

where n labels the n’th Bloch band. A proper derivation of these equations is beyond the scope
of this course. We refer the reader to Ashcroft & Mermin [10] for a basic introduction and to
the excellent review by Xiao, et al. [11]. When band properties are taken more properly into
account, one finds the above equations have to be adjusted to read [11]

ṙ = vn(k) = 1
~
∇kεn(k)− k̇ ∧Ωn(k), (2.6.3)

~k̇ = −e [E(r, t) + ṙ ∧B(r, t)] , (2.6.4)

with
Ωn(k) = 〈∂kxϕn(k)| ∧ |∂kyϕn(k)〉 = Fn(k) (2.6.5)

the Berry curvature of the n’th band and ϕn(k) the corresponding Bloch eigenfunctions. From
these equations we can conclude that the Berry curvature takes the role of a “magnetic field” in
k-space.
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