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Chapter 3

One-dimensional topological phases

Learning goals

• We know the Su-Schrieffer-Herger model.
• We understand its bulk-boundary correspondence.
• We can characterize its topology through winding number invariants and Wilson loops.
• We understand the connection between Wilson loops, polarization, and the position operator.

• J. Zak, Phys. Rev. Lett. 62, 2747–2750 (1989)
• L. Fidkowski, T. S. Jackson, and I. Klich, Phys. Rev. Lett. 107, 036601 (2011)
• N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys. 84,
1419 (2012)

In the following chapters, we are mostly concerned with the topological characterization of non-
interacting electron Hamiltonians on a lattice. In general, an insulating topological phase of
matter may be defined by the requirement that the many-body ground state of the corresponding
Hamiltonian (given by a Slater determinant in the non-interacting case) cannot be adiabatically
connected to the atomic limit of vanishing hopping between the sites of the lattice. Further
requiring that certain symmetries such as time-reversal are not violated along any such adiabatic
interpolation enriches the topological classification, in that phases which were classified as trivial
in the previous sense now acquire a topological distinction which is protected by the respective
symmetry.
In this chapter we will work towards an initial understanding of the fundamental topological
properties of insulating (gapped) topological band structures. We will introduce topological
invariants and the bulk-boundary correspondence. These concepts can be found in systems of
any dimension and likewise we will introduce the bulk-boundary correspondence for arbitrary
dimension, using a Wannier state approach. Specifically, we will learn how to employ Wilson
loops as a generalization of the one-dimensional (1D) Berry phase to characterize topological
properties of a phase. This provides a framework of topological invariants which makes direct
contact with the protected boundary degrees of freedom of a given phase. As a pedagogical
example for illustration, we will resort to the simplest case of one dimension and there specifically
to the Su-Schrieffer-Heeger model throughout.

3.1 Definitions
In this chapter and the following ones, we will be concerned to a large extend with tight-binding
models of non-interacting electron system. Therefore it is useful to clarify some notation first.
We work in units where ~ = c = e = 1 and denote by σi, i = x, y, z, the 2 × 2 Pauli matrices.
We define σ0 = 12×2 for convenience. We express eigenfunctions of a translationally invariant
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single-particle Hamiltonian in the basis

φk,α(r) = 1√
N

∑
R

eik·(R+rα)ϕR,α(r −R− rα), (3.1.1)

where ϕR,α, α = 1, · · · , N , are the orbitals chosen as basis for the finite-dimensional Hilbert
space in each unit cell, labelled by the lattice vector R, and rα is the center of each of these
orbitals relative to the origin of the unit cell. Including rα in the exponential corresponds to a
convenient choice of gauge when studying the response to external fields defined in continuous
real space.
A general non-interacting Hamiltonian then has the Bloch matrix elements

Hα,β(k) =
ˆ

ddrφ∗k,α(r)Ĥφk,β(r), (3.1.2)

as well as energy eigenstates

ψk,n(r) =
N∑
α

uk;n,αφk,α(r), (3.1.3)

where ∑
β

Hα,β(k)uk;n,β = εn(k)uk;n,α, n = 1, · · · , N. (3.1.4)

In the following, we are interested in situations where the system has an energy gap after the
first M < N bands, i.e., εM (k) < εM+1(k) for all k in the first Brillouin zone (BZ).

3.2 The the Su-Schrieffer-Heeger model
One of the simplest examples of a topological phase is exemplified by the Su-Schrieffer-Heeger
(SSH) model, initially devised to model polyacetylene. It describes electrons hopping on a 1D
dimerized lattice with two sites A and B in its unit cell (see Fig 3.1a). In momentum space,
the Bloch Hamiltonian reads

H(k) =
(

0 t+ t′eik

t+ t′e−ik 0

)
. (3.2.1)

The model has an inversion symmetry IH(k)I−1 = H(−k), with I = σx. Since it does not
couple sites A to A or B to B individually, it furthermore enjoys a chiral or sublattice symmetry
CH(k)C−1 = −H(k) with C = σz. [Notice some abuse of language here: The chiral symmetry
is not a “symmetry” in the sense of a commuting operator on the level of the first quantized
Bloch Hamiltonian. Still, as a mathematical fact, this chiral symmetry can be helpful to infer
and protect the existence of topological boundary modes.] While a standard discussion of the
SSH model would focus on the chiral symmetry and its role in protecting topological phases,
here we will first consider the implications of the crystalline inversion symmetry. It will be useful
to note that the spectrum is given by

ε±(k) = ±
√
t2 + t′2 + 2tt′ cos k (3.2.2)

with a gap closing at k = π for t = t′ and at k = 0 for t = −t′. When |t| 6= |t′|, the system is thus
insulating (gapped) and we can study its topological properties. The phases t > t′, −t′ < t < t′,
and t < −t′ are separated by gap closing and could thus potentially be topological different.
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Figure 3.1: a The model consists of electrons hopping on a dimerized chain with alternating
hopping strengths t and t′. For the case of t′ > t, the model is in its topological phase, which is
adiabatically connected to the special case t′ 6= 0, t = 0. In this limit the presence of gapless edge
modes is evident when the chain is cut after a full unit cell. b The polarization is a measure
of where charges sit in the unit cell. Shown is the case P = 1/2, where the charge center is
displaced by exactly half a lattice spacing. When cutting the system after a full unit cell, the
edge hosts a state of charge 1/2. This is the simplest example of charge fractionalization in
topological condensed matter systems.

3.3 Wilson loop and position operator
Introduced in 1984 by Sir Michael Berry, the so-called Berry phase describes a phase factor
which arises in addition to the dynamical evolution ei

´
E[λ(t)]dt of a quantum mechanical state in

an adiabatic interpolation of the corresponding Hamiltonian H[λ(t)] along a closed path λ(t) in
parameter space. It depends only on the geometry of the path chosen, and can be expressed as a
line integral of the Berry connection, which we define below for the case where the parameter λ
is a single particle momentum. If degeneracies between energy levels are encountered along the
path, we have to consider the joint evolution of a set of eigenstates that may have degeneracies.
If we consider M such states, the Berry phase generalizes to a U(M) matrix, which may be
expressed as the line integral of a non-Abelian Berry connection, and is called non-Abelian
Wilson loop.
In the BZ, we may consider momentum k as a parameter of the Bloch Hamiltonian H(k). The
corresponding non-Abelian Berry-Wilczek-Zee connection is then given by

Am,n(k) = 〈uk,m|∇k|uk,n〉, n,m = 1, · · · ,M. (3.3.1)

Note that it is anti-Hermitian, that is, it satisfies A∗n,m(k) = −Am,n(k). Using matrix notation,
we define the Wilson loop, a unitary operator, as

W [l] = exp
[
−
ˆ
l
dl ·A(k)

]
, (3.3.2)

where l is a loop in momentum space and the overline denotes path ordering of the exponential.
This unitary operator acts on the occupied band manifold, and can be numerically evaluated
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with the formula

Wn1,nR+1 [l] = lim
R→∞

M∑
n2,···nR=1

R∏
i=1

[
exp [−(ki+1 − ki) ·A(ki+1)]

]
ni,ni+1

= lim
R→∞

M∑
n2,···nR=1

R∏
i=1

[
δni,ni+1 − (ki+1 − ki) ·Ani,ni+1(ki+1)

]

= lim
R→∞

M∑
n2,···nR=1

R∏
i=1

[
〈uki+1,ni |uki+1,ni+1〉 (3.3.3)

−(ki+1 − ki) · 〈uki+1,ni |∇ki+1 |uki+1,ni+1〉
]

= lim
R→∞

M∑
n2,···nR=1

R∏
i=1
〈uki+1,ni |uki,ni+1〉

= 〈ukR+1,n1 | lim
R→∞

R∏
i=2

(
M∑
ni

|uki,ni〉 〈uki,ni |
)
|uk1,nR+1〉 , (3.3.4)

where the path l is sampled into R momenta ki, i = 1, · · · , R, and the limit R → ∞ is taken
such that the distance between any two neighboring momentum points goes to zero. Further,
k1 = kR+1 are the initial and final momenta along the loop, respectively, on which the Wilson
loop matrix depends.
By the last line of Eq. (3.3.3) it becomes clear that W [l] is gauge covariant, that is, transforms
as an operator under a general gauge transformation S(k) ∈ U(M) of the occupied subspace
given by |uk〉 → S(k) |uk〉, only for a closed loop l (the case where l is non-contractible is also
referred to as the Zak phase). However, the Wilson loop spectrum for a closed loop is gauge
invariant, that is, the eigenvalues of W [l] are not affected by gauge transformations (note that
they also do not depend on the choice of ki = kf ) and may therefore carry physical information.
We will show in the following that this is indeed the case: the Wilson loop spectrum is related
to the spectrum of the position operator projected into the space of occupied bands.
To proceed, we consider a geometry where l is parallel to the x coordinate axis, and winds
once around the BZ. Let k denote the (d− 1) dimensional vector of remaining good momentum
quantum numbers. Then W (k) is labelled by these remaining momenta. Denote by exp(iϑα,k),
α = 1, · · · ,M , the eigenvalues of W (k). The set of phases {ϑα,k} forms a band structure in the
(d− 1) dimensional BZ and is often equivalently referred to as the Wilson loop spectrum. Note
that all ϑα,k are only defined modulo 2π, which makes the Wilson loop spectrum inherently
different from the spectrum of a physical Bloch Hamiltonian.
The spectral equivalence we will show relates the eigenvalues of the operator (−i/2π) log[W (k)]
with those of the projected position operator

P (k)x̂P (k), (3.3.5)

where the projector P (k) onto all occupied band eigenstates along l (i.e., all states with wave
vector k) is given by

P (k) =
M∑
n

ˆ π

−π

dkx
2π |ψk,n〉〈ψk,n|, (3.3.6)

where the states |ψk,n〉 are given by Eq. (3.1.3). The eigenvalues of the projected position
operator have the interpretation of the charge centers in the ground state of the Hamiltonian
considered, while the eigenstates are known as hybrid Wannier states, which are localized in the
x-direction and plane waves perpendicular to it.
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To prove the equivalence, we start with the eigenfunctions of P (k)x̂P (k), which satisfy[
P (k)x̂P (k)− ϑ̃k

2π

]
|Ψk〉 = 0. (3.3.7)

Note that there are M eigenvectors, the form of the corresponding eigenvalues ϑ̃α,k/(2π), α =
1, · · · ,M has been chosen for later convenience and in particular has not yet been logically
connected to the ϑα,k making up the Wilson loop spectrum (however, we will do so shortly).
An eigenfunction can be expanded as

|Ψk〉 =
M∑
n

ˆ
dkx fk,n(kx)|ψk,n〉, (3.3.8)

where the coefficients fk,n satisfy the equation

〈ψk,n|P (k)x̂P (k)|Ψk〉

=
∑
m

ˆ
dk̃x 〈ψk,n|(i∂k̃x)fk,m(k̃x)|ψk̃,m〉

=
∑
m

ˆ
dk̃x i∂fk,m(k̃x)

∂k̃x
(δm,nδk̃x,kx) (3.3.9)

+
∑
m

ˆ
dk̃xfk,m(k̃x)

ˆ dx
2π
〈
uk,n

∣∣∣e−ikxx(i∂k̃x)eik̃xx
∣∣∣uk̃,m

〉
= i∂fk,n(kx)

∂kx
− fk,n(kx)

ˆ dx
2πx+ i

∑
m

ˆ
dk̃xfk,m(k̃x)

ˆ dx
2π e

−i(kx−k̃x)x 〈uk,n|∂kx |uk̃,m〉

= i∂fk,n(kx)
∂kx

+ i
∑
m

fk,m(kx) 〈uk,n|∂kx |uk,m〉

= i∂fk,n(kx)
∂kx

+ i
M∑
m

Ax;n,m(k)fk,m(kx). (3.3.10)

(Note that we have to assume an appropriate regularization to make the term
´

dxx vanish
in this continuum calculation, reflecting the ambiguity in choosing the origin of the coordinate
system.) Then, integrating the resulting Eq. (3.3.7) for fk,n(kx), we obtain

fk,n(kx) = e−i(kx−k0
x)ϑ̃k/(2π)

M∑
m

exp
[
−
ˆ kx

k0
x

dk̃xAx(k̃x,k)
]
n,m

fk,m(k0
x). (3.3.11)

We now choose kx = k0
x + 2π. Periodicity of fk,m(k0

x) as k0
x → k0

x + 2π yields (choosing k0
x = π

without loss of generality)

M∑
m

W (k)n,mfk,m(π) = eiϑ̃kfk,n(π), (3.3.12)

showing that the expansion coefficients of an eigenstate of P (k)x̂P (k) with eigenvalue ϑ̃k/(2π)
form eigenvectors of W (k) with eigenvalues eiϑ̃k . This establishes the spectral equivalence ϑ̃k =
ϑk.
Note that there are M eigenvalues of the Wilson loop, while the number of eigenvalues of
P (k)x̂P (k) is extensive in the system size. Indeed, for each occupied band (i.e., every Wilson
loop eigenvalue ϑα,k, α = 1, · · · ,M) there exists a ladder of eigenvalues of the projected position
operator

ϑα,k,X
2π = ϑα,k

2π +X, X ∈ Z, α = 1, · · · ,M. (3.3.13)
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Notice that we have set the lattice spacing in the x-direction to 1 for convenience here and in
the following.
The eigenstates of the projected position operator are then given by

Ψα,k(x−X) =
M∑
n

ˆ dkx
2π e

−i[ϑα,k/(2π)+X]fk,n;α(kx)ψk,n(x), (3.3.14)

i.e., they are hybrid Wannier states which are maximally localized in x direction, but take
on plane wave form in the perpendicular directions. Note that since the eigenvalues of W (k)
along any non-contractible loop of k in the BZ define a map S1 → U(1) ∼= S1, their winding
number, which is necessarily an integer, provides a topological invariant that cannot be changed
by smooth deformations of the system’s Hamiltonian.

3.4 Wilson loops, polarization and the winding number invari-
ant in the Su-Schrieffer-Heeger model

So far, this has been a rather formal and general introduction to Wilson loops and their connec-
tion to the projected position operator. To illustrate them, we go back to the example of the
SSH model. Let us start by calculating the Wilson loop for the case where (t, t′) = (0, 1). The
eigenvectors of H(k) are then given by

|uk,1〉 = 1√
2

(
−eik

1

)
, |uk,2〉 = 1√

2

(
eik

1

)
, (3.4.1)

with energies −1 and +1, respectively. Since the occupied subspace is one-dimensional in this
case, the Berry connection A(k) = 〈uk,1|∂k|uk,1〉 = i/2 is Abelian and given by just a purely
imaginary number (remember that it is anti-Hermitian in general). We thus obtain

P := − i
2π logW = − i

2π

ˆ 2π

0
A(k)dk = 1

2 . (3.4.2)

The physical interpretation of P is given within the modern theory of polarization as that of a
bulk electrical dipole moment or charge polarization, which is naturally only defined modulo 1
since the coordinate of a center of charge on the lattice is only defined up to a lattice translation
(remember that we have chosen the lattice spacing a = 1). It is directly connected to the Wilson
loop spectrum ϑα,k by a rescaling which makes sure that the periodicity of the charge centers
defined in this way is that of the real-space lattice. See also Fig. 3.1b.
The result P = 1/2 is by no means accidental: In fact, since the inversion symmetry reverses
the path of integration in W , but leaves inner products such as A(k) invariant, the Wilson loop
eigenvalues of an inversion symmetric system come in complex conjugate pairs, i.e., for each
eigenvalue ϑ there exists another eigenvalue ϑ′ such that eiϑ = e−iϑ′ . In the Abelian case of a
single band, this means that P be quantized to 0 (ϑ = 0) or 1/2 (ϑ = π). This is an example where
a crystalline symmetry such as inversion, which acts non-locally in space, protects a topological
phase by enforcing the quantization of a topological invariant to values that cannot be mapped
into one another by an adiabatic evolution of the corresponding Hamiltonian. Note that since
the eigenstates for the parameter choice (t, t′) = (1, 0) do not depend on k, we immediately
obtain P = 0 for this topologically trivial case.
By these considerations it is clear that in fact the full parameter regime where t < t′ is topo-
logical, while the regime t > t′ is trivial. This is because it is possible to perform an adiabatic
interpolation from the specific parameter choices (t, t′) ∈ {(0, 1), (1, 0)} considered above to all
other values as long as there is no gap closing and no breaking of inversion symmetry, which is
true provided that the line t = t′ is avoided in parameter space.
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In many cases, a topological phase comes with topologically protected gapless boundary modes
on boundaries which preserve the protecting symmetry. For inversion symmetry, however, there
are no boundaries satisfying this requirement. Even though the model at (t, t′) = (0, 1) has
zero-mode end states [since in this case, H(k) does not act at all on the A (B) site in the unit
cell at the left (right) edge of the sample], these modes can be removed from zero energy by
generic local perturbations even without a bulk gap closing. To protect the end modes, we need
to invoke the chiral symmetry, which implies that an eigenstate at any energy E is paired up
with an eigenstate at energy −E. Eigenstates of the chiral symmetry can then only appear at
E = 0. A spatially and spectrally isolated boundary mode at E = 0 can thus not be removed
by perturbations that retain the chiral symmetry.
In fact, in the presence of chiral symmetry, the above discussion can be generalized to arbitrary
one-dimensional models. In the eigenbasis of C, we can write any Hamiltonian with chiral
symmetry in the form

H(k) =
(

0 q(k)
q†(k) 0

)
, (3.4.3)

where for the SSH model the matrix q(k) was given by just a complex number. The chiral
symmetry allows for the definition of a winding number

ν = i
2π

ˆ
dkTr

[
q(k)∂kq†(k)

]
∈ Z. (3.4.4)

This winding number is a topological invariant, i.e., a quantized number that is the same in the
entire phase. Note that the formulation of Eq. (3.4.4) is only possible when chiral symmetry is
present. We can make contact with the overarching concept of Wilson loops by calculating the
connection

A = 1
2q(k)∂kq†(k). (3.4.5)

Thus the Wilson loop eigenvalues eiϑα satisfy

1
2π
∑
α

ϑα = ν

2 mod 1. (3.4.6)

In particular, in the Abelian case, chiral symmetry thus implies the quantization of P to half-
integer values, just as inversion symmetry did it above. An important distinction to be made is
that with inversion symmetry, we have a Z2 topological classification (P can be either 0 or 1/2),
while with chiral symmetry the winding number allows for a Z classification.

3.5 Bulk-boundary correspondence
As already mentioned, Wilson loops not only provide a convenient formulation of many topolog-
ical invariants, but are also in one-to-one correspondence with the boundary degrees of freedom
of the system considered. We will now show that indeed the spectrum of a Hamiltonian in the
presence of a boundary is smoothly connected to the spectrum of its Wilson loop along the direc-
tion perpendicular to the boundary. Note that since the Wilson loop is determined entirely by
the bulk Bloch Hamiltonian, this relation provides an explicit realization of the bulk-boundary
correspondence underlying topological phases.
We consider a semi-infinite slab geometry with a single edge of the system at x = 0, while
keeping k as good quantum numbers. From a topological viewpoint, the actual energetics of the
band structure are irrelevant, and we can always deform the Hamiltonian for the sake of clarity
to a spectrally flattened Hamiltonian where all bands above and below the gap are at energy
+1 and −1, respectively, without closing the gap. It is therefore enough to work with

Hflat(k) = 1− 2P (k) (3.5.1)
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Figure 3.2: a For V0(x) as given by Eq. (3.5.4), Hbdr varies discontinuously from a trivial
projector in the domain x < 0 to Hflat in the domain x > 0. Translational symmetry along
x is thus broken, however it is preserved along all perpendicular directions, which still have
good momentum quantum numbers k. b The spectrum of Hbdr has accumulation points at ±1,
stemming from the semi-infinite regions to the left and right of the domain wall, and a discrete
set of bands in between, coming from the finite domain wall region.

to model the bulk system. Here, P (k) as defined in Eq. (3.3.6), repeated here for convenience,

P (k) =
M∑
n

ˆ π

−π

dkx
2π |ψk,n〉〈ψk,n|, (3.5.2)

is the projector onto the occupied subspace for a given k. Note that Hflat(k) actually has the
same eigenvectors as the original Hamiltonian. To model a system with boundary, we use

Hbdr(k) = P (k)V0(x̂)P (k) + 1− P (k), (3.5.3)

with

V0(x) =
{

1 x < 0
−1 x > 0

(3.5.4)

so that we have Hbdr(k)→ Hflat(k) for x→ +∞ and Hbdr(k)→ 1 for x→ −∞ (see Fig. 3.2a).
The latter limit corresponds to a description of the vacuum with the chemical potential chosen
so that no electron states will be occupied, which we take to be the topologically trivial limit.
Since we take space to be infinitely extended away from the domain wall at x = 0, the spectrum
of Hbdr(k) includes the spectrum of Hflat(k), given by ±1 since P 2(k) = P (k), as well as that of
the operator 1, trivially given by +1. The boundary region is of finite extent and can therefore
contribute only a finite number of midgap states as the system has exponentially decaying
correlations on either side of the boundary. There are therefore spectral accumulation points at
±1, but otherwise we are left with a discrete spectrum (see Fig. 3.2b). We will focus on this
part of the spectrum.
We will now deform the spectrum of Hbdr(k) to that of (−i/2π) log[W (k)] by considering an
evolution that takes P (k)V0(x̂)P (k) to P (k)x̂P (k), the eigenvalues of which were previously
shown to be directly related to those of (−i/2π) log[W (k)]. The deformation is continuous in k
and therefore preserves both discreteness of the spectrum as well as its topological properties.
An example for this interpolation is given by

Vλ(x) =
{
−x
λ for |x| < λ/(1− λ)
− sgn(x)

1−λ for |x| ≥ λ/(1− λ)
, 0 ≤ λ ≤ 1. (3.5.5)
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Importantly, for any λ < 1, P (k)Vλ(x̂)P (k) is a finite rank (finite support) perturbation of
(1− λ)−1P (k)V0(x̂)P (k), so it will retain the property that the spectrum is discrete. However,
the point λ = 1 deserves closer inspection, as P (k)x̂P (k) is not a bounded operator. However,
we can handle this subtlety by defining

h(r) =
{
r for− w < r < w

sgn(r)w else
(3.5.6)

and considering h[P (k)Vλ(x̂)P (k)] for some large w. The spectrum evolves uniformly continu-
ously from h[P (k)V0(x̂)P (k)] to h[P (k)V1(x̂)P (k)] for any finite w.
The topology of the Wilson loop spectrum and the physical boundary spectrum is thus identical.
Protected spectral flow in the former implies gapless boundary modes in the latter, as long as
the form of the boundary [i.e., V (x)] does not break a symmetry that protects the bulk spectral
flow.
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