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Chapter 4

From Chern insulators to 3D
topological insulators

Learning goals

• We know Dirac fermions.
• We know what a Chern insulator is.
• We know the BHZ model.
• We can explain the idea of “pair-switching”.

• G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger,
Nature 515, 237 (2014)

Initially, we dealt with systems subject to a magnetic field B. We could show how their ground
state can be described with a topological invariant, the Chern number. Moreover, we have seen
how topological phenomena can be observed in one dimensional systems without a magnetic
field. In the present chapter, we try to extend these ideas. The main question we are trying to
answer is the following: Can there be lattice systems with Bloch bands that are characterized
by a non-zero Chern number even in the absence of a net magnetic field? Such an insulator
would be termed a Chern insulator. Before we embark on this question, we need to understand
a simple continuum problem called the Dirac model. Moreover, can we get rid of time-reversal
symmetry breaking all-together and find topological insulators in time reversal invariant (TRI)
systems?

4.1 Dirac fermions
Dirac fermions in two dimensions are described by the Hamiltonian

H(k) =
∑
i

di(k)σi with d1(k) = kx, d2(k) = ky, d3(k) = m. (4.1.1)

The energies and eigenstates are given by

ε(k)± = ±d(k) = ±
√
k2 +m2 and ψ±(k) = 1√

2d(k)[d(k)± d3(k)]

(
d3(k)± d(k)
d1(k) + id2(k)

)
.

It is straight forward to show (exercise!) that the Berry connection of the lower band can be
written as

Aµ(k) = i〈ψ−(k)|∂kµψ−(k)〉 = 1
2d(k)[d(k)− d3(k)]

[
d2(k)∂kµd1(k)− d1(k)∂kµd2(k)

]
(4.1.2)

1

http://www.nature.com/nature/journal/v515/n7526/full/nature13915.html
http://www.nature.com/nature/journal/v515/n7526/full/nature13915.html
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Figure 4.1: Regularization of the Dirac spectrum due to a lattice.

And the corresponding Berry curvature is given by

Fµν(k) = 1
2εαβγ d̂α(k)∂kµ d̂β(k)∂kν d̂γ(k) with d̂(k) = d(k)

d(k) . (4.1.3)

Using our concrete d-vector we find

Ax = ky

2
√
k2 +m2(

√
k2 +m2 −m)

and Ay = −kx
2
√
k2 +m2(

√
k2 +m2 −m)

, (4.1.4)

and therefore
Fxy = − m

2(k2 +m2)3/2 . (4.1.5)

Let us plug that into the formula for the Hall conductance

σxy = e2

h

1
2π

ˆ
dkFxy = −e

2

h

ˆ ∞
0

dkk
1
2

m

(k2 +m2)3/2 = −e
2

h

sign(m)
2 . (4.1.6)

We can draw several important insights from this results:

1. σxy 6= 0 ⇒ we must have broken time-reversal invariance. How did this happen?

2. σxy 6= e2

h ν with ν ∈ Z. How can this be?

Let us start with the first question. We have to make the distinction between two cases. (i) If
the σ-matrices encode a real spin-1/2 degree of freedom the time reversal operator is given by

T = iσyK,

(π, 0)

(π, π)(0, π)

Γ

m = 4

m = 0 m = 2

Figure 4.2: Band touching for a simple Chern insulator.

University of Zurich 2 ETH Zurich



Topological condensed matter physics Chapter 4.2

where K denotes complex conjugation. Therefore

T H(k)T −1 =
∑
i

−di(k)σi = −kxσx − kyσy −mσz.

If we want to above Hamiltonian to be time reversal invariant we need this to be

T H(k)T −1 != H(−k) = −kxσx − kyσy +mσz.

From this we conclude that the Dirac fermions are only time reversal invariant for d3(k) = m = 0.
However, in this case, there is no gap in the spectrum at k = 0 and the calculation of σxy does
not make sense. (ii) For the case that the Pauli matrices describe some iso-spin where T = K,
we need to have H∗(k) = H(−k). Or in other words

d1(k) = d1(−k), d2(k) = −d2(−k), d3(k) = d3(−k).

From these considerations we conclude that our Hamiltonian breaks time reversal invariance in
either case and we can indeed expect a non-vanishing Hall conductance.
Let us now address the non-quantized nature of σxy. The quantization of σxy arises from the
quantized value of the Chern number. We have seen in our derivation, however, that it was
crucial that the domain over which we integrated the Berry curvature was closed and orientable.
Here we are in a continuum model where the integral over all momenta extends over the whole
R2. We have therefore no reason to expect σxy to be quantized.
There is value to formula (4.1.6), however. Imagine that the Dirac Hamiltonian arises from some
low-energy expansion (k ·p) around a special point in the Brillouin zone of a lattice model. For
the full lattice, the k → ∞ integral would be regularized due to the Brillouin zone boundary.
The whole system has a quantized Hall conductivity. However, the region close to the “Dirac-
point” contributes ±1/2 to the Chern number, see Fig. 4.1. Moreover, imagine a gap closing
and re-opening transition described by the Dirac Hamiltonian where m changes its value. In
such a situation the change in Chern number ∆C(1) = ±2π. Therefore, the Dirac model is an
excellent way to study changes in the Chern number.
Before we continue to the simplest possible Chern insulator we state the following formula
without proof (exercise!)

H(k) =
2∑

i,j=1
Aijkiσj +mσz ⇒ σxy = −e

2

h

sign(m)
2 sign(detA). (4.1.7)

4.2 The simplest Chern insulator
We obtain the simplest conceivable Chern insulator by elevating the Dirac model to a lattice
problem

d1 = kx → sin(kx), d2 = ky → sin(ky). (4.2.1)
The σ matrices now act in a space of orbitals. The fact that the coupling between them is odd
in k means that they need to differ by one quantum of angular momentum, e.g., an s-type and
a p-type orbital. By symmetry, there can be an even in k term within each orbital, so we add
it to our model

d3 = m→ −2 +m+ cos(kx) + cos(ky).
The Hamiltonian is gapped (d(k) 6= 0 ∀k) ∀m except at the special points in the Brillouin zone
shown in Fig. 4.2.
We begin analyzing the Hamiltonian for m � 0 and m � 4. For m = ±∞, the eigenstates
of the Hamiltonian are fully localized to single sites and the system certainly shows no Hall
conductance. Another way to see this is to observe that

C(1) = 1
2π

ˆ
BZ
dk εαβγ d̂α∂kx d̂β∂ky d̂γ (4.2.2)

University of Zurich 3 ETH Zurich
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Figure 4.3: Left: spin-configuration of a skyrmion. Right: in-plane d-vector of H.
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Figure 4.4: Change of the d3 component at the first critical point.

counts the winding of d̂(k) throughout the Brillouin zone, i.e., it provides us what we know as
the skyrmion number. In Fig. 4.3(a) we show a spin-configuration corresponding to a skyrmion.
When we now look at the planar part of the d-vector, we see that we have all laid out for a
skyrmion. The only addition we need is a sign change of d3 at the right places in the Brillouin
zone. This does not happen for m < 0 or m > 4. Note that exactly this sign change closes
the gap in a fashion describable by Dirac fermions. Hence we appreciate the importance of the
above discussion. It is now trivial to draw the phase diagram.

The case 0 ≤ m < 2: We start from m = −∞ where σxy = 0 and go through the gap-closing
at k = 0 for m = 0. Around k = 0 we find

H = kxσx + kyσy +mσx.

Therefore
∆σxy = −e

2

h

[
1
2sign(m)

∣∣∣∣
m>0
− 1

2sign(m)
∣∣∣∣
m<0

]
= −e

2

h
= σxy.

The correspoding change in d3(k) is shown in Fig. 4.4.

The case 2 ≤ m < 4: At m = 2 the gap closes at (π, 0) and (0, π). Let us expand the
Hamiltonian around these points

H(π,0) = kxσx − kyσy + (−2 +m)σz, (4.2.3)
H(0,π) = −kxσx + kyσy + (−2 +m)σz. (4.2.4)

University of Zurich 4 ETH Zurich
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Figure 4.5: Left: d3 component after the second and third gap closing. Right: Evolution of the
topological index as a function of m.

From this we read out the change in σxy:

∆σxy = 2e
2

h

[
1
2sign(−2 +m)

∣∣∣∣
m>2
− 1

2sign(−2 +m)
∣∣∣∣
m<2

]
= 2e

2

h
. (4.2.5)

Note that the 2 in front stems from the two gap closings, and an additional − sign arises from
the odd sign of the determinant A, cf. Eq. (4.1.7). Together with the value of σxy for 0 < m < 2
we obtain

σxy = +e2

h
.

The corresponding d3(k) is shown in Fig. 4.5.

The case 4 ≤ m: The last gap-closing happens at (π, π) for m = 4. At this point

H(π,π) = −kxσx − kyσy + (−4 +m)σz.

As before the change in σxy is given by

∆σxy = −e
2

h

[
1
2sign(−4 +m)

∣∣∣∣
m>0
− 1

2sign(−4 +m)
∣∣∣∣
m<0

]
= −e

2

h
.

And we arrive again at σxy = 0 as expected for a phase connected to the m =∞ limit. Again,
d3(k) is shown in Fig. 4.5 together with an overview of the whole analysis.
Before we move on, we also show the energy spectrum of the lattice Dirac Hamiltonian analyzed
here. Fig. 4.6 shows such a spectrum for m = 0.8 on a half-plane: We calculate the spectrum
on a cylinder of length L = 60. Around the circumference we use the translation symmetry to
label states with respect to k‖. If we also apply periodic boundary conditions in the direction
where the cylinder has length L (turning the geometry into torus), we find the bulk spectrum
shown in the left panel. By opening the boundaries and only selecting states on one side of the
open cylinder we obtain the right panel showing the expected chiral edge mode traversing the
gap.

4.3 Time reversal invariant topological insulators
In this chapter we try to understand what topological properties can arise for free fermion sys-
tems subject to some symmetry constraints. The exposition starts from a the simplest extension

University of Zurich 5 ETH Zurich
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Figure 4.6: Spectrum of the lattice Dirac model for m = 0.8. The left panel shows the bulk
spectrum as a function of the momentum along one direction (k‖). The right panel shows the
same setup for a half plane including one edge.

of the lattice Dirac model into a time-reversal invariant version. We then motivate on physical
grounds how one can construct a topological index characterizing this new type of band insula-
tor. The so derived topological index for two-dimensional systems readily generalizes to three
dimensions. Note, that our path of going from the lattice Dirac model to the Bernevig-Hughes-
Zhang model [1] below is not following the historical route. For an account of the two milestone
papers by Haldane [2] and Kane and Mele [3], you can consult the App. B. Finally, note that we
build in an essential way on Kramers-pairs which require the time reversal operator T 2 = −1
to square to minus one, i.e., we are dealing with spinful electrons.

4.3.1 The BHZ model

We construct a time reversal invariant Hamiltonian from the lattice Dirac model

HD(k) = [m− 2 + cos(kx) + cos(ky)]σz + sin(kx)σx + sin(ky)σy, (4.3.1)

by explicitly adding the time-reversed partner

HBHZ =
(
HD(k) 0

0 H∗D(−k)

)
= τ0 ⊗ {[m− 2 + cos(kx) + cos(ky)]σz + sin(ky)σy}+ sin(kx)τz ⊗ σx. (4.3.2)

Note, that if we use τ to denote a spin-1/2 degree of freedom, the time reversal operator reads
now T = iτy ⊗ σ0K, where K denotes complex conjugation and T 2 = −τ0⊗ σ0. In other words,
this Hamiltonian simply describes two Chern insulators glued together, each with an opposite
Chern number. As long as the z-component τz⊗σ0 of the spin is conserved, one can immediately
write down a topological index, the spin-Chern number [4]

C(1)
s :=

C(1)
↓ − C(1)

↑
2 mod 2 ∈ Z2. (4.3.3)

When we look at the edge spectrum of the above Hamiltonian in Fig 4.7, it can be understood
why this index is only in Z2 and not in Z as the Chern number. The crossing of the two edge
states at k‖ = 0 is protected by the Kramer’s degeneracy. This degeneracy arises, as k = 0 is
itself a time-reversal invariant momentum (TRIM). If we now would have two such Kramers pairs
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at k = 0, one could unlink the edge states while preserving the double-degeneracy. However,
each time one has an odd number of such crossings, one is bound to remain, hence C(1)

s ∈ Z2.
We can now add a perturbation that breaks the conservation of Sz, such as

H = HBHZ + λτx ⊗ σy. (4.3.4)

As this Hamiltonian still commutes with T , we expect the Kramers argument of above to still
hold. Indeed, as we see in the right panel of Fig. 4.7, the edge states persists also for λ = 0.1.
Clearly we need a better index than the spin-Chern number defined above. While there is an
extension of the spin-Chern number for weakly broken spin-conservation1, we want to make
progress to an index only based on time-reversal symmetry.

4.3.2 Z2 index

Charge polarization

We revisit Laughlin’s pumping argument to make progress towards a Z2 index for TRI topological
insulators. We have seen in the last chapter, that in the simple case of only one filled band in
one spatial dimension, the charge polarization can be written as

P := − i
2π logW = − 1

2π

ˆ 2π

0
A(k)dk. (4.3.5)

Two comments are in order:

1. If we re-gauge |ψk〉 → eiϕ(k)|ψk〉 with a ϕ(k) that is winding by 2πm throughout the
Brillouin zone, the corresponding polarization changes to

P→ P +m.

This is ok, as charge polarization is anyway only defined up to a lattice constant.
1

The two filled bands of HBHZ together have a vanishing Chern number. The Sz quantum number, however,
allowed us to label the two filled bands individually and calculate a Chern number per spin. Here we show how
one can extend this to weak violation of Sz conservation. First, take the two eigenstates of the filled bands

Pfilled(k) =
[
u1(k) u2(k)

]
,

with the two column vectors uα(k), α = 1, 2 of the two lower eigenstates of HBHZ per k. In case τz ⊗ σ0 is a
symmetry, the two labels are also labelling the eigenstates of Sz with (1, 2)→ (↑, ↓). How do we smoothly (as a
function of k) assign the labels α in case this symmetry is broken? We can project the symmetry into the space
of filled states

Sfilled
z (k) = Pfilled(k)τz ⊗ σ0P

†
filled(k).

As Sz is not commuting with HBHZ, Sfilled
z (k) is not diagonal anymore. However, we can diagonalize it(
χ+ 0
0 χ−

)
= M(k)Sfilled

z (k)M†(k).

As long as there is a spin gap ∆S = |χ+ − χ−| > 0 for all k, we can now use the states[
u+(k) u−(k)

]
= M(k)Pfilled(k)

to calculate the spin-Chern number [5] via

A± = i〈u±(k)|∇u±(k)〉.

It is important to note that there is no well-established bulk-boundary relation for the spin-Chern number defined
this way.

University of Zurich 7 ETH Zurich
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Figure 4.7: Spectrum of the BHZ model for m = 0.8. The left panel shows the spectrum for a
half plane including only one edge for λ = 0, where Sz is a good quantum number. The color
code indicates the spin Sz (Note, that the bulk has the same number of both red and blue dots).
The right panel shows the same spectrum for λ = 0.8, where the two spin sectors are mixed
leading to an un-polarized bulk. Due to the type of coupling, the spin-polarization is largely
preserved along the edge.

2. P depends on the chosen gauge. But changes in P by a smooth change in system parameters
are gauge independent. So let us imagine a tuning parameter ky with

H(ky)→ H(k′y)

which is slow in time. The change in charge polarization is given by

∆P = − 1
2π

[ˆ π

−π
dkA(k, ky)−

ˆ π

−π
dkA(k, k′y)

]
(4.3.6)

If we use Stokes’ theorem we arrive at

k′y

ky

kx

∆P =
ˆ k′y

ky

dky

ˆ π

−π
dkF(k, ky). (4.3.7)

By chosing k′y = ky + 2π, we find for the change in charge polarization ∆P = C(1) where
C(1) is the Chern number. We known, however that C(1) ∼ σxy. Indeed, this is nothing
but Laughlin’s pumping argument for the quantum Hall effect and hence is equal to zero
for TRI systems.

Building on the above insight we try to refine the charge pumping of Laughlin to be able to
characterize a TRI system.
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Figure 4.8: Energy levels for a time revesal invariant system.

Time reversal polarization

Let us now try to generalize the charge pumping approach to the TRI setup. For this it is
beneficial to look at the structure of a generic energy diagram as shown in Fig 4.8. Under
time-reversal, momenta k are mapped to −k. Moreover, there are special points in the Brillouin
zone which are mapped onto themselves. This is true for all momenta which fulfill k = −k+G,
where G is a reciprocal lattice vector. This is trivially true for k = 0, but also for special points
on the borders of the Brillouin zone. On such time reversal invariant momenta (TRIM’s), the
spectrum has to be doubly degenerate due to Kramer’s theorem.
Owing to the symmetry between k and −k we can constrain ourselves to only half the Brillouin
zone. In this half, we label all bands by 1.I, 1.II, 2.I, 2.II, . . . . The arabic number simply label
pairs of bands. Due to the double degeneracy at the TRIMs, we need an additional (roman
number) to label the two (sub)-bands emerging form the TRIMs. One can also say that the
roman index labels Kramers pairs

T |ϕn.I(k)〉 = eiχn,k |ϕn.II(−k)〉. (4.3.8)

We now try to construct the polarization for only one of the two labels s = I or II

Ps = − 1
2π

ˆ π

−π
dkAs(k) with As(k) = i

∑
n filled

〈ϕn.s(k)|∂k|ϕn.s(k)〉. (4.3.9)

It is clear that P = PI + PII will vanish. However, the same must not hold for the time reversal
polarization

PT = PI − PII. (4.3.10)

The problem is, that we assigned the labels I and II. It is not a priori clear if this can be done
in a gauge invariant fashion. In particular, the Slater determinant of a band insulator with 2n
filled bands has a SU(2n) symmetry, as basis changes of filled states do not affect the total
wave function. With our procedure we explicitly broke this SU(2n) symmetry. There is a way
however, to formulate the same T -polarization PT in a way that does not rely on a specific
labeling of the Kramers pairs. This can be achieved by the use of the so-called sewing matrix
[6]

Bmn(k) = 〈ϕm(−k)|T |ϕn(k)〉. (4.3.11)
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Figure 4.9: (a) Pumping of time reversal polarization in a topologically non-trivial state. (b)
Pumping of time reversal polarization in a trivial state.

B(k) has the following properties: (i) it is unitary, and (ii) it is anti-symmetric, i.e., BT(k) =
−B(k), only if k is a TRIM. Using this matrix one can show that

PT = 1
iπ log

[√
detB(π)

Pf B(π)
Pf B(0)√
detB(0)

]
. (4.3.12)

This expression is manifestly invariant under SU(2n) rotations within the filled bands. Moreover,
it only depends on the two TRIMs k = 0, π, and it is defined modulo two.
The Pfaffian Pf B(k) of a 2n× 2n anti-symmetric matrix matrix B is defined as

Pf B = 1
2nn!

∑
σ∈S2n

sign(σ)
n∏
i=1

bσ(2i−1),σ(1i) (4.3.13)

with the property
Pf2B = detB. (4.3.14)

Let us now see how we can describe changes in the time-reversal polarization under the influence
of an additional parameter ky. Written as in (4.3.12), it is only defined for ky = 0, π, 2π, i.e,
at TRIMs. In Fig. 4.9 we illustrate what we can expect from such a smooth change. We
start at ky = 0. If we now change ky slowly, we know that due to TRI, we cannot build up a
charge polarization. However, the Wannier centers of two Kramers pairs will evolve in opposite
direction. At ky = π, we can check how far these centers evolved away from each other. As
PT is well defined and equal to 0 or 1 we have two options: (i) Each Wannier center meets up
with one coming from a neighboring site [Fig. 4.9(a)]. This gives rise to PT (ky = π) = 1 and
this effect is called pair switching. (ii) The centers fall back onto each other again [Fig. 4.9(b)],
resulting in PT (ky = π) = 0.
Let us further assume that we have a smooth confining potential V (x) in x-direction. As in the
case of the quantum Hall effect, we see how states can be pushed up-hill or pulled down-hill as
a function of ky. However, as opposed to the quantum Hall effect, we have here the situation
that on each edge we have both a state coming down in energy as well as one climbing up! From
that we conclude that if we have pair-switching, we expect two counter-propagating edge states
on both sides of the sample. The same observation can be made by looking at the Wilson loop
spectrum as described in the last chapter.
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Figure 4.10: TRIMs of the three-dimensional Brillouin zone.

We can now construct a topological index for the two-dimensional system: If the T -polarization
at ky = 0 and ky = π differ by one, we expect an odd number of pairs of edge states. Hence, we
define

ν =
4∏
l=1

√
detB(Λl)

Pf B(Λl)
∈ Z2 with Λl : TRIM. (4.3.15)

4.3.3 Three dimensional topological insulators

The above formulation immediately suggests a three-dimensional generalization of the Z2 index

νs =
8∏
l=1

√
detB(Λl)

Pf B(Λl)
∈ Z2 with Λl : TRIM, (4.3.16)

where now the product runs over all eight TRIMs of the three-dimensional Brillouin zone shown
in Fig. 4.10. This index is called the strong topological index. Additionally, one can think of
a three-dimensional system to be made out of planes of two-dimensional topological insulators.
In Fig. 4.11 we show how one can attribute a weak topological index (νx, νy, νz) corresponding
to the stacking directions.
According to our reasoning above, when we cut the system perpendicular to the direction defined
by the weak index, we expect two Dirac cones on the resulting surface (why?). However, if we
have a strong topological index, there is a single Dirac cone irrespective of the way we terminate
the bulk system. To wrap up, we mention that one usually gathers the indices to

ν = (νs; νx, νy, νz). (4.3.17)

~v = (0, 000) ~v = (0, 100) ~v = (0, 011) ~v = (0, 111) ~v = (1,−)

Figure 4.11: Stacking directions of 2D topological insulators.
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Appendix B

A more historical route to time
reversal invariant topological
insulators*

B.1 The Haldane Chern insulator*
In his seminal paper [1], Haldane considered a honeycomb model with no net magnetic flux but
with complex phases e±iϕ on the next-to-nearest neighbor hoppings. A possible staggered flux
pattern giving rise to such a situation is shown in Fig. B.1. In Fig. B.1 we also indicate the sign
structure of the phases. The model can be written as

H =
∑
〈i,j〉

c†icj + t
∑
〈〈i,j〉〉

e±iϕc†icj +m
∑
i

εic
†
ici , (B.1.1)

where εi = ±1 for the two sub-lattices of the honeycomb lattice. Written in k-space we find
H = ε(k) +

∑
i di(k)σi with

d1(k) = cos(k · a1) + cos(k · a2) + 1, (B.1.2)
d2(k) = sin(k · a1) + sin(k · a2), (B.1.3)
d3(k) = m+ 2t sin(ϕ) [sin(k · a1)− sin(k · a2)− sin(k · (a1 − a2))] , (B.1.4)

with a1 = a(1, 0) and a2 = a(1/2,
√

3/2). We ignore the shift ε(k) in the following. What are
the symmetries of this Hamiltonian? First, d1 and d2 are compatible with the time-reversal T .
However, d3(k) = d3(−k) holds only for ϕ = 0, π. We can therefore expect a non-vanishing
Chern number for a general ϕ. The Hamiltonian has C3 symmetry. Hence, the gap closings
have to happen at the K or K ′ point, see Fig. B.2 (Prove!),

K = 2π
a

(
1, 1√

3

)
, K ′ = 2π

a

(
1,− 1√

3

)
,

where a denotes the lattice constant. To calculate the Chern number we follow the same logic
as in the last chapter. We start from the limit m→∞ and track the gap-closings at the Dirac
points at K and K ′. The low energy expansion at these two points read

HK = 3
2 (kyσx − kxσy) +

(
m− 3

√
3t sin(ϕ)

)
σz, (B.1.5)

HK′ = −3
2 (kyσx + kxσy) +

(
m+ 3

√
3t sin(ϕ)

)
σz. (B.1.6)

Note that the gap-closings at K and K ′ happen at different values ofm (for ϕ 6= 0, π). Moreover,
the two Dirac points give rise to a change in σxy of opposite sign has det(A) as a different sign.
We can now construct the phase diagram

13
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• m > 3
√

2t sin(ϕ): σxy = 0

• −3
√

2t sin(ϕ) < m ≥ 3
√

2t sin(ϕ) for ϕ > 0: At m = 3
√

2t sin(ϕ) the gap closes at K and
we have a ∆σxy = − e2

h . The gap at K ′ stays open.

• m ≤ −3
√

2t sin(ϕ) for ϕ > 0: The gap at K ′ closes at m − 3
√

2t sin(ϕ) and hence the
Chern number changes back to 0.

For ϕ < 0 the signs of the Chern numbers are inverted. The resulting phase diagram is summa-
rized in Fig. B.3.
The model of Haldane breaks time-reversal invariance T . How can we build a model which is
T -symmetric? The easiest way is by doubling the degrees of freedom:

T HT −1 = H ′ 6= H ⇒ Hdoubled =
(
H

H ′

)
.

We will see in the next section how Kane and Mele [2] took this step.

B.2 The Kane-Mele model*
In the last chapter we have seen that we can construct lattice models where the Bloch bands
have a non-vanishing Chern number despite the absence of a net magnetic field. Here we try
to build a time-reversal invariant version based on Haldane’s honeycomb model for a Chern
insulator.
We start from the low energy version of graphene

H0 = −i~vF [σxτz∂x + σy∂y] , (B.2.1)

where σ acts on the sub-lattice index and τ on the valley (K, K ′) space.
Let us add spin s to the game. With this we arrive at an 8 × 8 problem. The question
is what kind of terms can we add in order to open a “non-trivial” gap. We have seen that
mσz + τzσz3

√
3t sin(ϕ) does the job. However, this is not time-reversal symmetric for ϕ 6= 0, π

and m alone opens trivial gaps with C(1) = 0.
We construct a “non-trivial” time-reversal invariant gap step by step. First, in the sub-lattice
space we need a σz term, otherwise we just move around the K and K ′ Dirac points in k-space.
Next, we need a spin dependent (s) part to couple the two copies of the Haldane model. Let us
try for the K point

σz ⊗ sz =
(
σz 0
0 −σz

)
, (B.2.2)

− 2
3Φ

4Φ

A

+

B

−

Figure B.1: The Haldane Chern insulator model.
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K ′

K

K ′

K

K ′

K

Γ

Figure B.2: Gap closings for the Haldane Chern insulator.

0 π
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1
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√
3t2

φ

K

K ′

Figure B.3: Phase diagram of the Haldane model.

which gives us different gaps [with different “sign(m)”] for the two spins. How do we now add
the valley degree of freedom (τ ) in order to make it time-reversal invariant? The T -operator
acts in sub-lattice and spin space as

T = 1σ ⊗ isyK =
(

0 −1σ
1σ 0

)
. (B.2.3)

Therefore, the term ∝ σz ⊗ sz transforms as

T σz ⊗ szT −1 =
(

0 −1σ
1σ 0

)(
σz 0
0 −σz

)(
0 1σ
−1σ 0

)

=
(

0 −1σ
1σ 0

)(
0 σz
σz 0

)
=
(
−σz 0

0 σz

)
= −σz ⊗ sz. (B.2.4)

Under time reversal, K → K ′. Hence, we need the gap opening term in K ′ to be T σz⊗szT −1 =
−σz ⊗ sz to have T H(k)T −1 = H(−k). From this we conclude that the full gap opening term
should be of the form

HKM = λSOσz ⊗ τz ⊗ sz. (B.2.5)

We labelled the interaction with spin-orbit (λSO) to stress that HKM couples spin (sz) and
orbital (τz) degrees of freedom. Moreover, HKM is time-reversal invariant (TRI) by construction.
Reverse engineering to a full lattice model we find

HKM =
∑
〈i,j〉,α

c†iαcjα + iλSO

∑
〈〈i,j〉〉,αβ

νijc
†
iαs

z
αβcjβ + λv

∑
iα

εic
†
i,αci,α, (B.2.6)

where εi and the sign strucutre of νij are the same as in Haldane’s ’88 model [1]. The above
model was the first TRI topological insulator proposed by Kane and Mele in 2005 [2]. As it
is TRI, the total Chern number cannot be non-zero. However, in the form (B.2.6), the spin
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arise due to a perpendicular electric field or interaction
with a substrate. The fourth term is a staggered sublattice
potential (!i ! "1), which we include to describe the
transition between the QSH phase and the simple insulator.
This term violates the symmetry under twofold rotations in
the plane.
H is diagonalized by writing "s#R$ #d% !

u#s#k%eik&R. Here s is spin and R is a bravais lattice vector
built from primitive vectors a1;2 ! #a=2%#

!!!
3
p

ŷ " x̂%. # !
0; 1 is the sublattice index with d ! aŷ=

!!!
3
p

. For each k the
Bloch wave function is a four component eigenvector
ju#k%i of the Bloch Hamiltonian matrix H #k%. The 16
components of H #k% may be written in terms of the
identity matrix, 5 Dirac matrices !a and their 10 commu-
tators !ab ! '!a;!b(=#2i% [9]. We choose the following
representation of the Dirac matrices: !#1;2;3;4;5% !
#$x ) I;$z ) I;$y ) sx;$y ) sy;$y ) sz%, where the
Pauli matrices $k and sk represent the sublattice and spin
indices. This choice organizes the matrices according to
T . The T operator is given by "jui * i#I ) sy%jui+. The
five Dirac matrices are even under T , "!a",1 ! !a

while the 10 commutators are odd, "!ab",1 ! ,!ab.
The Hamiltonian is thus

H #k% !
X5

a!1

da#k%!a $
X5

a<b!1

dab#k%!ab; (2)

where the d#k%’s are given in Table I. Note that H #k$
G% !H #k% for reciprocal lattice vectors G, so H #k% is
defined on a torus. The T invariance of H is reflected in
the symmetry (antisymmetry) of da #dab% under k! ,k.

Equation (2) gives four energy bands, of which two are
occupied. For %R ! 0 there is an energy gap with magni-
tude j6

!!!
3
p
%SO , 2%vj. For %v > 3

!!!
3
p
%SO the gap is domi-

nated by %v, and the system is an insulator. 3
!!!
3
p
%SO > %v

describes the QSH phase. Though the Rashba term violates
Sz conservation, for %R < 2

!!!
3
p
%SO there is a finite region of

the phase diagram in Fig. 1 that is adiabatically connected
to the QSH phase at %R ! 0. Figure 1 shows the energy
bands obtained by solving the lattice model in a zigzag
strip geometry [7] for representative points in the insulat-
ing and QSH phases. Both phases have a bulk energy gap
and edge states, but in the QSH phase the edge states
traverse the energy gap in pairs. At the transition between
the two phases, the energy gap closes, allowing the edge
states to ‘‘switch partners.’’

The behavior of the edge states signals a clear difference
between the two phases. In the QSH phase for each energy

in the bulk gap there is a single time reversed pair of
eigenstates on each edge. Since T symmetry prevents
the mixing of Kramers’ doublets these edge states are
robust against small perturbations. The gapless states
thus persist even if the spatial symmetry is further reduced
[for instance, by removing the C3 rotational symmetry in
(1)]. Moreover, weak disorder will not lead to localization
of the edge states because single particle elastic backscat-
tering is forbidden [7].

In the insulating state the edge states do not traverse the
gap. It is possible that for certain edge potentials the edge
states in Fig. 1(b) could dip below the band edge, reduc-
ing—or even eliminating—the edge gap. However, this is
still distinct from the QSH phase because there will nec-
essarily be an even number of Kramers’ pairs at each
energy. This allows elastic backscattering, so that these
edge states will in general be localized by weak disorder.
The QSH phase is thus distinguished from the simple
insulator by the number of edge state pairs modulo 2.
Recently two-dimensional versions [10] of the spin Hall
insulator models [11] have been introduced, which under
conditions of high spatial symmetry exhibit gapless edge
states. These models, however, have an even number of
edge state pairs. We shall see below that they are topologi-
cally equivalent to simple insulators.

The QSH phase is not generally characterized by a
quantized spin Hall conductivity. Consider the rate of
spin accumulation at the opposite edges of a cylinder of
circumference L, which can be computed using Laughlin’s
argument [12]. A weak circumferential electric field E can
be induced by adiabatically threading magnetic flux
through the cylinder. When the flux increases by h=e
each momentum eigenstate shifts by one unit: k! k$
2&=L. In the insulating state [Fig. 1(b)] this has no effect,
since the valence band is completely full. However, in the
QSH state a particle-hole excitation is produced at the
Fermi energy EF. Since the particle and hole states do
not have the same spin, spin accumulates at the edge.
The rate of spin accumulation defines a spin Hall conduc-
tance dhSzi=dt ! Gs

xyE, where

TABLE I. The nonzero coefficients in Eq. (2) with x ! kxa=2
and y !

!!!
3
p
kya=2.

d1 t#1$ 2 cosx cosy% d12 ,2t cosx siny
d2 %v d15 %SO#2 sin2x, 4 sinx cosy%
d3 %R#1, cosx cosy% d23 ,%R cosx siny
d4 ,

!!!
3
p
%R sinx siny d24

!!!
3
p
%R sinx cosy

0 2π0 2π
−1

0

1

−5 0 5
−5

0

5 I
QSH

λ  / λ
R

λ  / λv SO

SOE
/t

ka kaπ π

(a) (b)

FIG. 1 (color online). Energy bands for a one-dimensional
‘‘zigzag’’ strip in the (a) QSH phase %v ! 0:1t and (b) the
insulating phase %v ! 0:4t. In both cases %SO ! :06t and %R !
:05t. The edge states on a given edge cross at ka ! &. The inset
shows the phase diagram as a function of %v and %R for 0<
%SO - t.

PRL 95, 146802 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
30 SEPTEMBER 2005

146802-2

Figure B.4: Edge spectrum of the Kane Mele model for two different values of λR. On the left,
two edge states cross the gap (colors label the edge). On the right, no edge states cross the
gap. The inset shows the phase diagram as a function of λv and λR. Figure take from Ref. [2]
(Copyright (2005) by The American Physical Society).

projections | ↑〉, | ↓〉 are good eigenstates. Therefore, we can use the Chern number C(1)
σ in each

spin-sector to characterize the phases. Indeed

ν =
C(1)
↑ − C(1)

↓
2 mod 2 ∈ Z2 (B.2.7)

defines a good topological index as we will see below [3]. The addition of a Rashba term

HR = λR [σxτzsx − σysx] (B.2.8)

removes this conserved quantity. While HR does not open a gap by itself (why?), it can influence
the λSO induced gap, see Fig. B.4. However, the above topological index ν is not well defined
anymore. In the following section we aim at deriving a Z2 index which does not rely on spin-
Chern numbers.
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