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Chapter 5

One-dimensional Topological
Superconductors

Learning goals

• We understand the Bogoliubov-de-Gennes representation of a mean-field superconducting
Hamiltonian and its relation to a Majorana fermion representation.
• We know one-dimensional topological superconductors, their topological invariant, boundary
modes and topological classification.
• We understand how interactions reduce the topological classification from Z to Z8 in one-
dimensional topological superconductors.

• A. Kitaev, Phys.-Usp. 44, 131 (2001)
• L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011)

5.1 Warmup for superconductivity: 0D superconductors
As a smooth start in the world of superconducting Bogoluibov-de-Gennes mean-field Hamil-
tonians, we consider impurity sites in s and p-wave superconductors and show that these can
experience a transition at which the parity of the many-body ground state changes. To this end,
we consider the simplest noninteracting model of a single site and a pair of sites, respectively,
but work in its many-body Hilbert space.
In superconductors without further symmetries (which applies to chiral p-wave superconduc-
tors) the Z2 topological index of a 1D superconductor denotes the change in fermion parity of
the ground-state as a flux π is inserted through a system with periodic boundary conditions.
This parity change can even be observed in zero-dimensional models of isolated impurities and
provides basic intuition whether and how a 1D chain of scalar impurities has the potential to un-
dergo a topological phase transition. Here, we discuss this minimal model for a parity changing
transition for one and two sites populated with spinless fermions and for a single site populated
with spinful fermions.

5.1.1 Spinless fermions

A single spinless fermion cannot exhibit superconducting pairing. Irrespective of that, we see
that an on-site chemical potential µ can change the fermion parity P of the ground state (i.e.,
whether there is an odd or an even number of electrons in the ground state), for the latter is
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given by sgnµ. In the occupation basis (|0〉, |1〉), the Hamiltonian reads

H =
(

0 0
0 −µ

)
. (5.1.1)

Any other terms in the Hamiltonian violate the conservation of fermion parity. The ground
state is given by |0〉 and |1〉 for µ < 0 and µ > 0, respectively, with opposite parity.
The minimal extension to this model that accounts for superconducting pairing includes two sites
with spinless fermions. In this case, we can have triplet – but not singlet – superconducting
pairing. In the basis (|0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉), the Hamiltonian reads

H =


0 0 0 ∆
0 −µ t 0
0 t −µ 0

∆∗ 0 0 −2µ

 , (5.1.2)

where t is the hopping integral between the two sites. The energies are

εeven = ±
√
|∆|2 + µ2 − µ, εodd = ±t− µ. (5.1.3)

The system does not conserve the fermion number anymore, but it conserves its parity. Whenever
|t| > |∆| (commonly referred to as the weak pairing phase), we can induce a parity change of
the ground state (protected crossing) by changing the chemical potential at

µ2 = t2 − |∆|2. (5.1.4)

For smaller |µ|, the ground state has odd parity, for larger |µ|, it has even parity. This is in line
with the behavior of bound states of two impurities in p-wave superconductors: They exhibit a
protected crossing in the bound state spectrum. The presence of this protected crossing implies
the existence of sub-gap Shiba states in the energy spectrum: since a protected crossing has to
occur upon varying µ, which could be considered as modeling the scalar impurity strength, it
must be that sub-gap E < |∆| states exist.

5.1.2 Spinful fermions

A single site with a spinful fermion degree of freedom will allow for singlet superconducting
pairing ∆. We also apply a Zeeman field B in the direction of the spin-quantization axis. In the
basis (|0, 0〉, | ↑, 0〉, |0, ↓〉, | ↑, ↓〉), the Hamiltonian reads

H =


0 0 0 ∆
0 −µ+B 0 0
0 0 −µ−B 0

∆∗ 0 0 −2µ

 . (5.1.5)

The energies are
εeven = ±

√
|∆|2 + µ2 − µ, εodd = ±B − µ, (5.1.6)

and the eigenstates

|even,±〉 = 1
N±

[(
µ±

√
|∆|2 + µ2

)
|0, 0〉+ ∆∗| ↑, ↓〉

]
,

|odd,−〉 = |0, ↓〉, |odd,+〉 = | ↑, 0〉,
(5.1.7)

where N± is an appropriate normalization.
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We observe a level crossing protected by parity symmetry at

B2 = |∆|2 + µ2. (5.1.8)

For smaller |B|, the ground state has even parity, for larger |B|, it has odd parity. This is
congruent with the behavior of a ferromagnetic Shiba chain on an s-wave superconductor. This
model also indicates that a density impurity cannot induce a subgap bound state deep in an
s-wave superconducting gap, because µ does not induce any phase transition in this model for
B = 0.

5.1.3 Bogoliubov-de-Gennes formulation and Nambu spinors

Writing out Hamiltonian (5.1.5) in second quantization,

H = (B − µ)c†↑c↑ + (−B − µ)c†↓c↓ + ∆c†↑c
†
↓ + ∆∗c↓c↑ (5.1.9)

we find that it cannot be written as a noninteracting Bloch Hamiltonian anymore, but it is still
quadratic in the fermion operators. For that reason we can write it as

H = 1
2Ψ†hΨ, h =


B − µ 0 0 ∆

0 −B − µ −∆ 0
0 −∆∗ −B + µ 0

∆∗ 0 0 B + µ

 , (5.1.10)

where Ψ = (c↑, c↓, c†↑, c
†
↓)T. This description allows us to reduce the problem to the study of

a matrix h (the Bogoliubov-de-Gennes, BdG, Hamiltonian), but it introduces a redundancy in
this matrix in the form of an always present PHS

P = PK, P = τ1 ⊗ σ0, PhP−1 = −h, (5.1.11)

where τi, i = 1, 2, 3 are the Pauli matrices acting on particle-hole space. Notice that P2 = +1.
Diagonalizing the matrix h yields

a−1 = 1
N+

(0, µ+
√
µ2 + |∆|2,∆∗, 0)T,

a1 = 1
N−

(−µ+
√
µ2 + |∆|2, 0, 0,∆∗)T,

a−2 = 1
N+

(−µ−
√
µ2 + |∆|2, 0, 0,∆∗)T,

a2 = 1
N−

(0, µ−
√
µ2 + |∆|2,∆∗, 0)T

(5.1.12)

with eigenvalues E1 = −E−1 = B +
√
|∆|2 + µ2, E2 = −E−2 = −B +

√
|∆|2 + µ2 and the

appropriate normalizations N+ and N−. Let un consider the superconducting limit where the
energies are ordered for B > 0 like E−1 ≤ E−2 < E2 ≤ E1. We can now define the operators

γ−1 := a∗−1Ψ† = 1
N+

[(
µ+

√
µ2 + |∆|2

)
c†↓ + ∆c↑

]
,

γ1 := a∗1Ψ† = 1
N−

[(
−µ+

√
µ2 + |∆|2

)
c†↑ + ∆c↓

]
,

γ−2 := a∗−2Ψ† = 1
N+

[(
−µ−

√
µ2 + |∆|2

)
c†↑ + ∆c↓

]
,

γ2 := a∗2Ψ† = 1
N−

[(
µ−

√
µ2 + |∆|2

)
c†↓ + ∆c↑

]
.

(5.1.13)
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We check that
γ−1|even,−〉 = 0, γ−2|even,−〉 = 0, (5.1.14)

i.e., the ground state is annihilated by the negative energy operators. This defines the BCS
ground state. Furthermore,

γ1|even,−〉 = −|odd,+〉, γ2|even,−〉 = |odd,−〉, γ1γ2|even,−〉 ∝ |even,+〉, (5.1.15)

that is, we can reach all excited states by applying the respective positive energy operators to
the ground state.
In the limit where B dominates, for B > 0 the energies are ordered as E−1 ≤ E2 < E−2 ≤ E1.
In this case, the ground state |odd,−〉 = |0, ↓〉 is annihilated by the negative energy operators
γ−1 and γ2 and excited states can be constructed from this ground state similar to the above.
A more general translational invariant system with Hamiltonian

H =
∑

k

∑
s,s′=↑,↓

[
c†s,k (h0,k)s,s′ cs′,k + c†s,k (∆k)s,s′ c

†
s′,−k + h.c.

]
(5.1.16)

can be recast as
H =

∑
k

Ψ†khkΨk, hk =
(
h0,k ∆k

∆†k −h∗0,−k

)
, (5.1.17)

where Ψk = (c↑,k, c↓,k, c†↑,−k, c
†
↓,−k)T and h0,k as well as ∆k are 2×2 matrices. The BCS ground

state is then again defined by the unique state that is annihilated by all operators γ−1,k and
γ−2,k with negative energies and excited states are constructed by applying all positive energy
operators to it.

5.2 The one-dimensional p-wave superconductor
In the Su-Schrieffer-Heeger model, particle-hole symmetry (and with it the chiral symmetry)
is in some sense fine-tuned, as it is lost if generic longer-range hoppings are considered. In
superconductors, particle-hole symmetry arises more naturally as a symmetry that is inherent
in the redundant description of mean-field Bogoliubov-de-Gennes Hamiltonians.
Before we consider a simplified microscopic model, let us name a set of possible physical ingre-
dients that would be required to realize such a model. They are

• a quasi-1D electronic system

• Rashba spin-orbit coupling

• Zeeman coupling

• proximity-induced s-wave superconductivity.

When corroborating in the correct way, these ingredients yield a 1D system of effectively spinless
electrons that are superconducting. A simple first quantized Hamiltonian for the 1D wire with
Rashba spin-orbit coupling α and Zeeman coupling B is given by

Hwire = k2

2mσ0 + αkσy +Bσx − µ. (5.2.1)

The spectrum εk,± = k2

2m − µ ±
√

(αk)2 +B2 has only two Fermi points k± (instead of 4) if
|B| > |µ| and the spin polarization of the two Fermi points is almost opposite in the limit of
small B. This means that the two states at the Fermi points are almost Kramers pairs and
hence conventional Cooper pairs can effectively couple to this system, gapping out the Fermi
points.
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5.2.1 The Kitaev wire

Here, we want to consider the simplest model for a topological superconductor that has been
studied by Kitaev. The setup is again a 1D chain with one orbital for spinless fermion on each
site (the spinless nature is essentially motivated by the fact that at the Fermi points we find
eigenstates of a definite spin polarization). Superconductivity is encoded in pairing terms c†ic

†
i+1

that do not conserve particle number. The Hamiltonian is given by

H =
N∑
i=1

[
−t
(
c†ici+1 + c†i+1ci

)
− µc†ici + ∆c†i+1c

†
i + ∆∗cici+1

]
. (5.2.2)

Here, µ is the chemical potential and ∆ is the superconducting order parameter, which we will
decompose into its amplitude |∆| and complex phase ϑ, i.e., ∆ = |∆|eiϑ.
The fermionic operators c†i obey the algebra

{c†i , cj} = δi,j , (5.2.3)

with all other anticommutators vanishing. We can chose to trade the operators c†i and ci on
every site i for two other operators ai and bi that are defined by

ai = e−iϑ/2ci + eiϑ/2c†i , bi = 1
i
(
e−iϑ/2ci − eiϑ/2c†i

)
. (5.2.4)

These so-called Majorana operators obey the algebra

{ai, aj} = {bi, bj} = 2δij , {ai, bj} = 0 ∀i, j. (5.2.5)

In particular, they square to 1
a2
i = b2

i = 1, (5.2.6)

and are self-conjugate
a†i = ai, b†i = bi. (5.2.7)

In fact, we can always break up a complex fermion operator on a lattice site into its real and
imaginary Majorana components though it may not always be a useful representation. As an
aside, note that the Majorana anti-commutation relation in Eq. (5.2.5) is the same as that of
the generators of a Clifford algebra where the generators all square to +1. Thus, mathematically
one can think of the operators ai (or bi) as matrices forming by themselves the representation
of Clifford algebra generators.
When rewritten in the Majorana operators, Hamiltonian (5.2.2) takes (up to a constant) the
form

H = i
2

N∑
i=1

[−µai bi + (t+ |∆|)bi ai+1 + (−t+ |∆|)ai bi+1] . (5.2.8)

After imposing periodic boundary conditions, it is again convenient to study the system in
momentum space. When defining the Fourier transform of the Majorana operators ai =

∑
i e

ikiak
we note that the the self-conjugate property (5.2.7) that is local in position space translates into
a†k = a−k in momentum space (and likewise for the bk). The momentum space representation of
the Hamiltonian is

H =
∑
k∈BZ

∑
α=A,B

(ak bk)hk

(
a−k
b−k

)
(5.2.9a)

hk =
(

0 − iµ
2 + it cos k + |∆| sin k

iµ
2 − it cos k + |∆| sin k 0

)
(5.2.9b)

= σx|∆| sin k + σy

(
µ

2 − t cos k
)
, (5.2.9c)
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Figure 4: Schematic illustration of the lattice p-wave superconductor Hamil-
tonian in the (a) trivial limit (b) non-trivial limit. The white (empty) and
red(filled) circles represent the Majorana fermions making up each physical
site (oval). The fermion operator on each physical site (cj) is split up into two
Majorana operators (a2j�1 and a2j). In the non-trivial phase the unpaired
Majorana fermion states at the end of the chain are labelled with a 1 and a
2. These are the states which are continuously connected to the zero-modes
in the non-trivial topological superconductor phase.

though it may not always be a useful representation. As an aside, note that
the Majorana anti-commutation relation in Eq. 45 is the same as that of
the generators of a Cli↵ord algebra where the generators all square to +1.
Thus, mathematically one can think of the operators ai as matrices forming
the representation of Cli↵ord algebra generators.

Using the Majorana representation the Hamiltonian for the lattice p-wave
wire becomes

HBdG =
i

2

X

j

(�µa2j�1a2j + (t + |�|)a2ja2j+1 + (�t + |�|)a2j�1a2j+2) . (47)

The factor of i in front of the Hamiltonian may seem out of place, but it
is required for Hermiticity when using the Majorana representation. As a
quick example, one can see that an operator like (a2ja2j�1)

† = a†
2j�1a

†
2j =

a2j�1a2j = �a2ja2j�1 is anti-Hermitian and becomes Hermitian if a factor of
i is added i.e. ia2ja2j�1 is Hermitian.

In this representation we can illustrate the key di↵erence between the
topological and trivial phases by looking at two special limits
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a1 bN

Figure 5.1: Schematic illustration of the lattice p-wave superconductor Hamiltonian in the
(a) trivial limit (b) non-trivial limit. The white (empty) and red (filled) circles represent the
Majorana fermions making up each physical site (oval). The fermion operator on each physical
site (cj) is split up into two Majorana operators (aj and bj). In the non-trivial phase the
unpaired Majorana fermion states at the end of the chain are labelled with a1 and bN . These
are the states which are continuously connected to the zero-modes in the non-trivial topological
superconductor phase.

While this Bloch Hamiltonian is formally very similar to that of the SSH model, we have to
keep in mind that it acts on entirely different single-particle degrees of freedom, namely in the
space of Majorana operators instead of complex fermionic operators. As with the case of the
Su-Schrieffer-Heeger model, the Hamiltonian (5.2.9) has a time-reversal symmetry T = σzK
and a particle-hole symmetry P = K which combine to the chiral symmetry C = σz. For the
topological properties that we first explore, only the particle-hole symmetry is crucial. We will
see that the model has a Z2 topological classification in this case. We will then take the TRS
as a real symmetry in addition, in which case we can again define a winding number, analogous
to the SSH model. This results in a Z topological classification if only Hamiltonians bilinear in
the Majorana operators are considered (so-called noninteracting systems).
To determine its topological phases, we notice that Hamiltonian (5.2.9) is gapped except for
|t| = |µ/2|. We specialize again on convenient parameter values on either side of this potential
topological phase transition

• µ = 0, |∆| = t : The Bloch matrix hk takes exactly the same form as that of the SSH
model for the parameter choice δ = +1. We conclude that the Hamiltonian (5.2.9) is in a
topological phase. The Hamiltonian reduces to

H = it
∑
j

bjaj+1. (5.2.10)

A pictorial representation of this Hamiltonian is shown in Fig. 5.1 b). With open boundary
conditions it is clear that the Majorana operators a1 and bN are not coupled to the rest
of the chain and are ‘unpaired’. In this limit the existence of two Majorana zero modes
localized on the ends of the chain is manifest.

• ∆ = t = 0, µ < 0 : This is the topologically trivial phase, since the Hamiltonian is
independent of k so that that the winding number vanishes necessarily. In this case the
Hamiltonian reduces to

H = −µ i
2
∑
j

ajbj . (5.2.11)

In its ground state the Majorana operators on each physical site are coupled but the
Majorana operators between each physical site are decoupled. In terms of the physical
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complex fermions, it is the ground state with either all sites occupied or all sites empty.
A representation of this Hamiltonian is shown in Fig. 5.1 a). The Hamiltonian in the
physical-site basis is in the atomic limit, which is another way to see that the ground state
is trivial. If the chain has open boundary conditions there will be no low-energy states on
the end of the chain if the boundaries are cut between physical sites. That is, we are not
allowed to pick boundary conditions where a physical complex fermionic site is cut in half.

These two limits give the simplest representations of the trivial and non-trivial phases. By
tuning away from these limits the Hamiltonian will have some mixture of couplings between
Majorana operators on the same physical site, and operators between physical sites. However,
since the two Majorana modes are localized at different ends of a gapped chain, the coupling
between them will be exponentially small in the length of the wire and they will remain at zero
energy. In fact, in the non-trivial phase the zero modes will not be destroyed until the bulk gap
closes at a critical point.
It is important to note that these zero modes count to a different many-body ground state
degeneracy than the end modes of the Su-Schrieffer-Heeger model. The difference is rooted
in the fact that one cannot build a fermionic Fock space out of an odd number of Majorana
modes, because they are linear combinations of particles and holes. Rather, we can define a
single fermionic operator out of both Majorana end modes a1 and bN as c† := a1 + ibN . The
Hilbert space we can build out of a1 and bN is hence inherently nonlocal. This nonlocal state
can be either occupied or empty giving rise to a two-fold degenerate ground state of the chain
with two open ends. (In contrast, the topological Su-Schrieffer-Heeger chain has a four-fold
degenerate ground state with two open ends, because it has one fermionic mode on each end.)
The Majorana chain thus displays a different form of fractionalization than the Su-Schrieffer-
Heeger chain. For the latter the topological end modes carry fractional charge. In the Majorana
chain, the end modes are a fractionalization of a fermionic mode into a superposition of particle
and hole (and have no well defined charge anymore), but the states |0〉 (with c|0〉 = 0) and
c†|0〉 do have distinct fermion parity. The nonlocal fermionic mode formed by two Majorana
end modes is envisioned to work as a qubit (a quantum-mechanical two-level system) that stores
quantum information (its state) in a way that is protected against local noise and decoherence.

5.2.2 Topological classification

If we disregard the time-reversal symmetry, and two parallel wires are considered, we can gap
out the two end states by a term

ia1a
′
1, (5.2.12)

where the primed and unprimed operator are the end states of the first and the second wire,
respectively. This implies that, while a single end state is protected, a pair of them is not.
The topological classification with only PHS is Z2. Let us now discuss the topological index for
this case. Intuitively, when we consider pairing between opposite momentum eigenstates, the
topological invariant should distinguish the two cases where an even number of pairs of Fermi
points was present before the pairing was introduced from the situation where an odd number
of pairs of Fermi points was present. The former would be topologically trivial, while the latter
would be the non-trivial superconductor. The points k = 0 and k = π are invariant under PHS
and it is sufficient to determine the parity of the number of occupied bands at k = 0 and k = π
to deduce the parity of pairs of Fermi points. If the product of the parities of occupied bands
is odd, there is an odd number of Fermi points. It is not possible to deduce from the BdG
Hamiltonian the parity of the number of occupied bands without particle-hole doubling. In a
sense, we would need to take the square root of it in a controlled way and then compute the
sign of the square root. From Hamiltonian (5.2.9) we make two observations

1. h0 and hπ have the form i times an antisymmetric matrix
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2. the change of the sign of the upper right (or lower left) element between k = 0 and k = π
is what relates to the change in parity between the two points.

For a general Majorana Hamiltonian,

H = i
2
∑
r,r′

γT
r Ar,r′γr′ (5.2.13)

these observations can be generalized by observing that

H = i
2
∑
k

γ̃T
−kÃ(k)γ̃k, (5.2.14)

where we have defined
Ã(k) =

∑
R

eikRAR (5.2.15)

assumed translational invariance Ar,r′ = Ar−r′ = AR. Since Ar,r′ is an antisymmetric matrix,
Ã(k) are also antisymmetric for k = 0, π. For even dimensional antisymmetric matrices, the
Pfaffian

Pf(A) := 1
2nn!εi1,i2,··· ,i2nAi1,i2Ai3,i4 · · ·Ai2n−1,i2n , (5.2.16)

is a way of taking the square root of the determinant. The topological Z2 invariant is given by

ν = sgn
{

Pf[Ã(0)]Pf[Ã(π)]
}

= ±1. (5.2.17)

If translational symmetry is not present, this generalizes to

ν = sgn Pf(A). (5.2.18)

If we also insist on the presence of TRS, the chiral symmetry guarantees that the winding
number is a well-defined topological invariant similar to the case of the SSH model yielding a
Z topological classification if only bilinear (noninteracting) Hamiltonians are considered. For
interacting Hamiltonians, something more interesting happens, as we explore in the next section.

5.2.3 Reduction of the classification by interactions: Z→ Z8

When time-reversal symmetry T = K is present, the model considered in Sec. 5.2 has a nonin-
teracting Z topological characterization. We want to explore how interactions alter this classi-
fication, following a calculation by Fidkowski and Kitaev. To this end, we consider a collection
of n identical 1D topological Majorana chains and only consider their Majorana end modes on
one end, which we denote by a1, · · · , an. We will take the point of view that if we can gap
the edge, we can continue the bulk to a trivial state (insulator). This is not entirely a correct
point of view in general (see 2D topologically ordered states such as the toric code discussed in
the next Section), but works for our purposes. Given some integer n, we ask whether we can
couple the Majorana modes locally on one end such that no gapless degrees of freedom are left
on that end and the ground state with open boundary conditions becomes singly degenerate.
We only allow couplings that respect time-reversal symmetry. Let us first derive the action of T
on the Majorana modes. The complex fermion operators are left invariant under time-reversal
T cT −1 = c. Hence,

T (a+ ib)T −1 = T aT −1 − iT bT −1 != a+ ib ⇒ T aT −1 = a, T bT −1 = −b. (5.2.19)

Thus, when acting on the modes localized on the left end of the wire (which transform like the
a’s), time-reversal symmetry leaves the Majorana operators invariant.
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2 wires 4 wires 8 wires

Figure 5.2: Schematic illustration of the many body energy levels for 2, 4, and 8 wires with
Majorana end states as well as the (partial) lifting of their degeneracy that is in accordance with
time-reversal symmetry.

One now subsequently considers the Majorana end modes from 2,4, and 8 wires and adds suitable
perturbations to see whether a unique (many-body) ground state can be obtained while retaining
time-reversal symmetry. One finds doubly-degenerate ground state for 2 as well as 4 wires (see
exercise). (We note in passing that the ground state from the end states of 4 wires is even
4-fold degenerate if only non-interacting, i.e., Majorana-bilinear terms are allowed.) Going to 8
wires, one can construct an interaction term between them that has a unique ground state (see
Fig. 5.2).
This unique ground state can be adiabatically continued to the atomic limit. In this way the
noninteracting Z classification breaks down to Z8 if interactions are allowed.
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