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Chapter 6

Two-dimensional Topological
Superconductors

Learning goals

• We know the chiral p-wave superconductor in two dimensions and can argue why it has
bound states in vortices.
• We understand the non-Abelian nature of vortex bound states.
• We can motivate Kitaev’s 16-fold way classification for 2D superconductors.

• R. Jackiw and P. Rossi, Nuclear Phys. B 190, 681-691 (1981)
• D. Ivanov, Phys. Rev. Lett. 86, 268 (2001)
• A. Kitaev, Annals of Physics 321, 2–111 (2006)

6.1 Lattice and continuum model and their topological invariant
After having studied topological superconductivity in 1D, we now want to move to 2D where
we will find qualitatively new physics in the chiral p-wave superconductor. On the level of
the noninteracting Bloch Hamiltonian, it is formally similar to a Chern insulator, but we will
see that the physical degrees of freedom on which this Hamiltonian acts make the story much
richer, bridging to theories with anyonic excitations and topological order. More precisely, the
vortices of the chiral p-wave superconductor exhibit anyon excitations which have exotic non-
Abelian statistics. For the system to be topologically ordered, these vortices should appear as
emergent, dynamical excitations. This requires to treat the electromagnetic gauge field quantum-
mechanically. (In fact, since the fermion number conservation is spontaneously broken down to
the conservation of the fermion parity in the superconductor, the relevant gauge theory involves
only a Z2 instead of a U(1) gauge field.) However, the topological properties that we want to
discuss here can also be seen if we model the gauge field and vortices as static defects, rather
than within a fluctuating Z2 gauge theory. This allows us to study a models very similar to the
“noninteracting” topological superconductor in 1D and still expose the non-Abelian statistics.
For pedagogy we will use both lattice and continuum models of the chiral superconductor. We
begin with the lattice Hamiltonian defined on a square lattice

H =
∑
m,n

{
−t
(
c†m+1,ncm,n + c†m,n+1cm,n + h.c.

)
− (µ− 4t)c†m,ncm,n

+
(
∆c†m+1,nc

†
m,n + i∆c†m,n+1c

†
m,n + h.c.

)}
.

(6.1.1)

The fermion operators cm,n annihilate fermions on the lattice site (m,n) and we are considering
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spinless (or equivalently spin-polarized) fermions. We set the lattice constant a = 1 for simplicity.
The pairing amplitude is anisotropic and has an additional phase of i in the y-direction compared
to the pairing in the x-direction. Because the pairing is not on-site, just as in the lattice version
of the p-wave wire, the pairing terms will have momentum dependence. We can write this
Hamiltonian in the Bogoliubov-deGennes form and, assuming that ∆ is translationally invariant,
can Fourier transform the lattice model to get

HBdG = 1
2
∑
p

Ψ†p

(
ε(p) 2i∆(sin px + i sin py)

−2i∆∗(sin px − i sin py) −ε(p)

)
Ψp, (6.1.2)

where ε(p) = −2t(cos px + cos py) − (µ − 4t) and Ψp =
(
cp c†−p

)T
. For convenience we have

shifted the chemical potential by the constant 4t. As a quick aside we note that the model takes
a simple familiar form in the continuum limit (p→ 0):

H
(cont)
BdG = 1

2
∑
p

Ψ†p

(
p2

2m − µ 2i∆(px + ipy)
−2i∆∗(px − ipy) − p2

2m + µ

)
Ψp (6.1.3)

where m ≡ 1/2t and p2 = p2
x + p2

y. We see that the continuum limit has the characteristic
px + ipy chiral form for the pairing potential. The quasiparticle spectrum of H(cont)

BdG is E± =
±
√

(p2/2m− µ)2 + 4|∆|2p2, which, with a nonvanishing pairing amplitude, is gapped across
the entire BZ as long as µ 6= 0. This is unlike some other types of p-wave pairing terms [e.g.,
∆(p) = ∆px] which can have gapless nodal points or lines in the BZ for µ > 0. In fact, nodal
superconductors, having gapless quasiparticle spectra, are not topological superconductors by
definition (i.e., a bulk excitation gap does not exist).
We recognize the form of H(cont)

BdG as a massive 2D Dirac Hamiltonian, and indeed Eq. (6.1.1)
is just a lattice Dirac Hamiltonian which is what we will consider first. In the first quantized
notation, the single particle Hamiltonian for a superconductor is equivalent to that of an insulator
with an additional particle-hole symmetry (It is thus placed in class D in the classification that
we will introduce in the next lecture) and admits a Z topological classification in 2D. Thus, we
can classify the eigenstates of Hamiltonian (6.1.1) by a Chern number – but due to the breaking
of U(1) symmetry, the Chern number does not have the interpretation of Hall conductance.
However, it is still a topological invariant.
We expect that HBdG will exhibit several phases as a function of ∆ and µ for a fixed t > 0.
For simplicity let us set t = 1/2 and make a gauge transformation cp → eiϑ/2cp, c

†
p → e−iϑ/2c†p

where ∆ = |∆|eiϑ. The Bloch Hamiltonian for the lattice superconductor is then

HBdG(p) = (2− µ− cos px − cos py)σz − 2|∆| sin pxσy − 2|∆| sin pyσx, (6.1.4)

where the σi, i = x, y, z, are the Pauli matrices in the particle/hole basis. Assuming |∆| 6= 0,
this Hamiltonian has several fully-gapped superconducting phases separated by gapless critical
points. The quasi-particle spectrum for the lattice model is

E± = ±
√

(2− µ− cos px − cos py)2 + 4|∆|2 sin2 px + 4|∆|2 sin2 py (6.1.5)

and is gapped (under the assumption that |∆| 6= 0) unless the prefactors of all three Pauli
matrices vanish simultaneously. As a function of (px, py, µ) we find three critical points. The
first critical point occurs at (px, py, µ) = (0, 0, 0). The second critical point has two gap-closings
in the BZ for the same value of µ : (π, 0, 2) and (0, π, 2). The third critical point is again a
singly degenerate point at (π, π, 4). We will show that the phases for µ < 0 and µ > 4 are trivial
superconductors while the phases 0 < µ < 2 and 2 < µ < 4 are topological superconductors with
opposite chirality. In principle one can define a Chern number topological invariant constructed
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from the eigenstates of the lower quasi-particle band to characterize the phases. We will show
this calculation below, but first we make some physical arguments as to the nature of the phases.
We will first consider the phase transition at µ = 0. The low-energy physics for this transition
occurs around (px, py) = (0, 0) and so we can expand the lattice Hamiltonian around this point;
this is nothing but Eq. (6.1.3). One way to test the character of the µ < 0 and µ > 0 phases
is to make an interface between them. If we can find a continuous interpolation between these
two regimes which is always gapped then they are topologically equivalent phases of matter. If
we cannot find such a continuously gapped interpolation then they are topologically distinct.
A simple geometry to study is a domain wall where µ = µ(x) such that µ(x) = −µ0 for
x < 0 and µ(x) = +µ0 for x > 0 for a positive constant µ0. This is an interface which is
translationally invariant along the y-direction, and thus we can consider the momentum py as
a good quantum number to simplify the calculation. What we will now show is that there
exist gapless, propagating fermions bound to the interface which prevent us from continuously
connecting the µ < 0 phase to the µ > 0 phase. This is one indication that the two phases
represent topologically distinct classes.
The single-particle Hamiltonian in this geometry is

HBdG(py) = 1
2

 −µ(x) 2i|∆|
(
−i ddx + ipy

)
−2i|∆|

(
−i ddx − ipy

)
µ(x)

 , (6.1.6)

where we have ignored the quadratic terms in p, and py is a constant parameter, not an operator.
This is a quasi-1D Hamiltonian that can be solved for each value of py independently. We propose
an ansatz for the gapless interface states:

|ψpy (x, y)〉 = eipyy exp
(
− 1

2|∆|

ˆ x

0
µ(x′)dx′

)
|φ0〉 (6.1.7)

for a constant, normalized spinor |φ0〉. The secular equation for a zero-energy mode at py = 0 is

HBdG(0)|ψ0(x, y)〉 = 0 =⇒
(
−µ(x) −µ(x)
µ(x) µ(x)

)
|φ0〉 = 0. (6.1.8)

The constant spinor which is a solution of this equation is |φ0〉 = 1/
√

2 (1,−1)T . This form of
the constant spinor immediately simplifies the solution of the problem at finite py. We see that
the term proportional to py in Eq. (6.1.6) is −2|∆|pyσx. Since σx|φ0〉 = −|φ0〉, i.e., the solution
|φ0〉 is an eigenstate of σx, we conclude that |ψpy (x, y)〉 is an eigenstate of HBdG(py) with energy
E(py) = −2|∆|py. Thus, we have found a normalizable bound state solution at the interface of
two regions with µ < 0 and µ > 0 respectively. This set of bound states, parameterized by the
conserved quantum number py is gapless and chiral, i.e., the group velocity of the quasiparticle
dispersion is always negative and never changes sign (in this simplified model). The chirality is
determined by the sign of the “spectral” Chern number mentioned above which we will calculate
below.
These gapless edge states have quite remarkable properties and are not the same chiral complex
fermions that propagate on the edge of integer quantum Hall states, but chiral real (Majorana)
fermions. Using Clifford algebra representation theory it can be shown that the so-called chiral
Majorana (or Majorana-Weyl) fermions can only be found in spacetime dimensions (8k + 2),
where k = 0, 1, 2, · · · . Thus, we can only find chiral-Majorana states in (1 + 1) dimensions or in
(9+1) dimensions (or higher!). In condensed matter, we are stuck with (1+1) dimensions where
we have now seen that they appear as the boundary states of chiral topological superconductors.
The simplest interpretation of such chiral Majorana fermions is as half of a conventional chiral
fermion, i.e., its real or imaginary part. To show this, we will consider the edge state of a Chern
number 1 quantum Hall system for a single edge

H(QH)
edge = ~v

∑
p

p η†pηp, (6.1.9)
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where p is the momentum along the edge. The fermion operators satisfy
{
η†p, ηp′

}
= δpp′ . Similar

to the discussion on the 1D superconducting wire we can decompose these operators into their
real and imaginary Majorana parts

ηp = 1
2(γ1,p + iγ2,p), η†p = 1

2(γ1,−p − iγ2,−p), (6.1.10)

where γa,p (a = 1, 2) are Majorana fermion operators satisfying γ†a,p = γa,−p and
{
γa,−p, γb,p′

}
=

2δabδpp′ . The quantum Hall edge Hamiltonian now becomes

H(QH)
edge =~v

∑
p≥0

p(η†pηp − η
†
−pη−p)

=~v
4
∑
p≥0

p {(γ1,−p − iγ2,−p)(γ1,p + iγ2,p)− (γ1,p − iγ2,p)(γ1,−p + iγ2,−p)}

=~v
4
∑
p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p − γ1,pγ1,−p − γ2,pγ2,−p)

=~v
2
∑
p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p − 2) .

(6.1.11)

Thus
H(QH)

edge = ~v
2
∑
p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p) (6.1.12)

up to a constant shift of the energy. This Hamiltonian is exactly two copies of a chiral Majorana
Hamiltonian. The edge/domain-wall fermion Hamiltonian of the chiral p-wave superconductor
will be

H(p−wave)
edge = ~v

2
∑
p≥0

pγ−pγp. (6.1.13)

Finding gapless states on a domain wall of µ is an indicator that the phases with µ > 0 and µ < 0
are distinct. If they were the same phase of matter we should be able to adiabatically connect
these states continuously. However, we have shown a specific case of the more general result that
any interface between a region with µ > 0 and a region with µ < 0 will have gapless states that
generate a discontinuity in the interpolation between the two regions. The question remaining
is: Is µ > 0 or µ < 0 non-trivial? The answer is that we have a trivial superconductor for µ < 0
(adiabatically continued to µ → −∞) and a topological superconductor for µ > 0. Remember
that for now we are only considering µ in the neighborhood of 0 and using the continuum
model expanded around (px, py) = (0, 0). We will now define a bulk topological invariant for 2D
superconductors that can distinguish the trivial superconductor state from the chiral topological
superconductor state. For the spinless Bogoliubov-deGennes Hamiltonian, which is of the form

HBdG = 1
2
∑
p

Ψ†p [d(p, µ) · σ] Ψp, (6.1.14a)

d(p, µ) =
(
−2|∆|py,−2|∆|px, p2/2m− µ

)
, (6.1.14b)

the topological invariant is the spectral Chern number which simplifies, for this Hamiltonian, to
the winding number

C(1) = 1
8π

ˆ
d2p εij d̂ ·

(
∂pid̂× ∂pj d̂

)
= 1

8π

ˆ
d2p

εij

|d|3
d ·
(
∂pid× ∂pjd

)
. (6.1.15)

We defined the unit vector d̂ = d/|d|, which is possible since |d| 6= 0 due to the existence
of a gap. This integral has a special form and is equal to the degree of the mapping from
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momentum space onto the 2-sphere S2 given by d̂2
1 + d̂2

2 + d̂2
3 = 1. As it stands, the degree of

the mapping d̂ : R2 → S2 is not well-defined because the domain is not compact, i.e., (px, py) is
only restricted to lie in the Euclidean plane (R2). However, for our choice of the map d̂ we can
define the winding number by choosing an equivalent, but compact, domain. To understand the
necessary choice of domain we can simply look at the explicit form of d̂(p)

d̂(p) =
(
−2|∆|py,−2|∆|px, p2/2m− µ

)√
4|∆|2p2 + (p2/2m− µ)2

. (6.1.16)

We see that lim|p|→∞ d̂(p) = (0, 0, 1) and it does not depend on the direction in which we take
the limit in the 2D plane. Because of the uniqueness of this limit we are free to perform the
one-point compactification of R2 which amounts to including the point at infinity in our domain.
The topology of R2 ∪ {∞} is the same as S2 and thus we can consider the degree of our map
from the compactified momentum space (S2) to the unit d̂-vector space (S2). Using the explicit
form of the d̂-vector for this model, we find

C(1) = 1
π

ˆ
d2p

|∆|2
(
p2

2m + µ
)

[
4|∆|2p2 +

(
p2

2m − µ
)2
]3/2 . (6.1.17)

The evaluation of this integral can be easily carried out numerically. The result is C(1) = 0 for
µ < 0 and C(1) = 1 for µ > 0, i.e., there are two different phases separated by a quantum critical
point at µ = 0. Thus we have identified the phase which is in the chiral superconductor state to
be µ > 0.

6.2 Argument for the existence of Majorana bound states on
vortices

A simple but rigorous argument can show us the presence of zero energy bound states in the
core of vortices in a superconductor. Assume we have a chiral (p + ip) superconductor in
two geometries: a disk with an edge and a cylinder with two edges. Since it is a topological
superconductor, the system will have chiral dispersing (Majorana) gapless modes along the
edges. In Fig. 6.1, the spectra are plotted versus the momentum along the edge, and they are
qualitatively very different in the two cases. For an edge of length L, the smallest difference
between two momenta along the edge is 2π/L. The energy difference between two levels is
v2π/L, where v is the velocity of the edge mode.
In a single particle superconducting Hamiltonian the number of total single-particle eigenvalues
is always even. This is clear from the fact that whatever the spinor of the nonsuperconducting
Hamiltonian is, when superconductivity is added, we have a doubled spectrum, so that every
energy state at E > 0 comes with a counterpart at energy −E. When labeled by momentum
quantum number, for a system with just one edge, like the disk, there cannot be a single state
at momentum p = 0 at energy E = 0. If such a state was there, the spectrum would contain
an odd number of states. Hence the spectrum of the linearized edge mode cannot have a state
at E = 0, p = 0 on the disk. The one way to introduce such a state is to have antiperiodic
boundary conditions, with the spectrum of the edge being at momenta π(2n + 1)/L, n ∈ Z.
On the cylinder, as two edges are present, periodic boundary conditions are allowed (as are
antiperiodic, which can be obtained by threading a flux through the cylinder).
We now add a single vortex inside the disk, far away from the edge of the disk. What is
the influence of the vortex on the edge? The vortex induces a phase 2π in the units of the
superconducting quantum hc/2e, which means that the phase of ∆ changes by 2π, and that

University of Zurich 5 ETH Zurich



Topological condensed matter physics Chapter 6.3

a) b) c) � = ⇡

E

k
0

0

E

k
0

0

E

k
0

0

E

0

Figure 6.1: Spectra of a Chiral superconductor in different geometries: (a) disk, (b) cylinder,
and (c) disk with flux defect. Shown are the spectra of the chiral topological boundary modes
including their finite-size quantization with level spacing v2π/L. If a π flux is inserted in the
disk geometry (c), it binds an isolated zero-energy state. At the same time, a single zero-energy
state appears on the edge.

of the electronic operators by π upon a full rotation around the edge. This implies that the
antiperiodic boundary conditions on the edge without vortex changes to periodic boundary
conditions in the presence of the vortex. The spectrum on the edge then is translated by π/L
compared to the case without the vortex, making it have an energy level at p = 0, E = 0. This
would mean that the spectrum has an odd number of levels. However, this cannot be true, as we
explained above, since the number of levels is always even. We are hence missing one unpaired
level. Where is it? Since the only difference from the case with no vortex is the vortex itself,
we draw the conclusion that the missing level is associated with the vortex, and is a bound
state on the vortex. We also draw the conclusion that, since it is unpaired and really bound to
the vortex, it has to rest exactly at E = 0, thereby showing that chiral superconductors have
Majorana zero modes in their vortex core.

6.3 Vortices in two-dimensional chiral p-wave superconductors

6.3.1 Explicit bound state solutions

Let us explicitly show that a vortex in a chiral superconductor will contain a zero mode. This
calculation, which is a variant of our calculation for the existence of a Majorana mode at the
interface between a topological and a trivial superconductor. We consider a disk of radius R
which has µ > 0 surrounded by a region with µ < 0 for r > R. We know from our previous
discussion that there will be a single branch of chiral Majorana states localized near r = R, but
no exact zero mode. If we take the limit R→ 0 this represents a vortex and all the low-energy
modes on the interface will be pushed to higher energies. If we put a π-flux inside the trivial
region it will change the boundary conditions such that even in the R→ 0 limit there will be a
zero-mode in the spectrum localized on the vortex.
Now let us take the Bogoliubov-deGennes Hamiltonian in the Dirac limit (m → ∞) and solve
the Bogoliubov-deGennes equations in the presence of a vortex located at r = 0 in the disk
geometry in polar coordinates. Let ∆(r, ϑ) = |∆(r)|eiα(r). The profile |∆(r)| for a vortex will
depend on the details of the model, but must vanish inside the vortex core region, e.g., for an
infinitely thin core we just need |∆(0)| = 0. We take the phase α(r) to be equal to the polar
angle ϑ at r.
The first step in the solution of the bound state for this vortex profile is to gauge transform the
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Figure 6.2: Illustration of the exchange of two vortices in a chiral p-wave superconductor. The
dotted lines represent branch cuts across which the phase of the superconducting order parameter
jumps by 2π.

phase of ∆(r, ϑ) into the fermion operators via Ψ(r) → eiα(r)/2Ψ(r). This has two effects: (i)
it simplifies the solution of the Bogoliubov-deGennes differential equations and (ii) converts the
boundary conditions of Ψ(r) from periodic to anti-periodic around the vortex position r = 0.
In polar coordinates the remaining single-particle Bogoliubov-deGennes Hamiltonian is simply

HBdG = 1
2

 −µ 2|∆(r)|eiϑ
(
∂
∂r + i

r
∂
∂ϑ

)
−2|∆(r)|e−iϑ

(
∂
∂r −

i
r
∂
∂ϑ

)
µ

 . (6.3.1)

We want to solve HBdGΨ = EΨ = 0 which we can do with the ansatz

Ψ0(r, ϑ) = i√
rN

exp
[
−1

2

ˆ r

0

µ(r′)
|∆(r′)|dr

′
](
−eiϑ/2

e−iϑ/2

)
≡ ig(r)

(
−eiϑ/2

e−iϑ/2

)
, (6.3.2)

where N is a normalization constant. The function g(r) is localized at the location of the vortex.
We see that Ψ0(r, ϑ + 2π) = −Ψ0(r, ϑ) as required. From an explicit check one can see that
HBdGΨ0(r, ϑ) = 0. The field operator which annihilates fermion quanta in this localized state is

γ =
ˆ
rdrdϑ ig(r)

[
−eiϑ/2c(r, ϑ) + e−iϑ/2c†(r, ϑ)

]
, (6.3.3)

from which we can immediately see that γ = γ†. Thus the vortex traps a single Majorana bound
state at zero-energy.

6.3.2 Non-Abelian statistics of vortices in chiral p-wave superconductors

We have shown in the last Section that on each vortex in a spinless chiral superconductor there
exists a single Majorana bound state. If we have a collection of 2N vortices which are well-
separated from each other, a low-energy subspace is generated which in the thermodynamic
limit leads to a ground state degeneracy of 2N . For example, two vortices give a degeneracy
of 2, which can be understood by combining the two localized Majorana bound states into a
single complex fermion state which can be occupied or un-occupied, akin to the end states of
the superconducting wire. From 2N vortices one can form N complex fermion states giving a
degeneracy of 2N , which can be broken up into the subspace of 2N−1 states with even fermion
parity and the 2N−1 states with odd fermion parity. As an aside, since we have operators that
mutually anti-commute and square to +1 we can define a Clifford algebra operator structure
using the set of 2N γi.
Let us begin with a single pair of vortices which have localized Majorana operators γ1 and γ2
respectively and are assumed to be well separated. We imagine that we adiabatically move the
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vortices in order to exchange the two Majorana fermions. If we move them slow enough then
the only outcome of exchanging the vortices is a unitary operator acting on the two degenerate
states which make up the ground state subspace. If we exchange the two vortices then we have
γ1 → γ2 and γ2 → γ1. However if we look at Fig. 6.2 we immediately see there is a complication.
In this figure we have illustrated the exchange of two vortices and the dotted lines represent
branch cuts across which the phase of the superconductor order parameter jumps by 2π. Since
our solution of the Majorana bound states used the gauge transformed fermion operators we see
that the bound state on the red vortex, which passes through the branch cut of the blue vortex,
picks up an additional minus sign upon exchange. Thus the exchange of two vortices is effected
by

γ1 → γ2, γ2 → −γ1. (6.3.4)

In general, if we have 2N vortices, we can think of the different exchange operators Tij(γa) which
for our choice of conventions send γi → γj , γj → −γi, and γk → γk for all k 6= i, j. A concept
for topological quantum computation arises from using the degenerate Hilbert space spanned
by the Majorana particles as quantum bits (qubits) and the exchange operations as multi-qubit
gates. Importantly, since the exchange operations preserve Fermion parity (we assume they are
adiabatic, so there is no level crossing) we can only work in either the even parity or odd parity
subspace and use it as qubits. Let us consider the case of 4 Majoranas, which span a (

√
24 = 4)-

dimensional Hilbert space. Let us focus on the even-parity sector, which is two-dimensional and
consists of the states |00〉 and |11〉 where the two occupation numbers are those of the fermions
with creation and annihilation operators defined as follows

a = 1
2(γ1 + iγ2), a† = 1

2(γ1 − iγ2),

b = 1
2(γ3 + iγ4), b† = 1

2(γ3 − iγ4).
(6.3.5)

Consider now a double-exchange of Majoranas γ2 and γ4, which results in γ2 → −γ2 and γ4 →
−γ4. As a result, a↔ a† and b↔ b†. Thus, an initially empty state |00〉 would now be measured
as occupied under both operators a and b and thus the double-exchange of the Majoranas
results in |00〉 ↔ |11〉, i.e., a flip of our qubit, also called a Pauli-x gate (because of the matrix
representation of the operation in the |00〉, |11〉 basis being the first Pauli matrix). Importantly,
the operation defined in Eq. (6.3.4) does not commute with this double-exchange of γ2 and
γ4, an indication of the non-Abelian statistics of Majorana fermions. This property allows for
topologically protected, albeit not universal, quantum computation operations.

6.4 The 16-fold way classification of two-dimensional chiral su-
perconductors

We have now noticed that there are two characterizations of a topological superconductor, but
they are seemingly different. First, the spectral Chern number is an integer C(1) ∈ Z. Directly
related to it is the number of chiral Majorana modes on the edge, which in turn is related to an
experimental observable, the thermal conductivity on the edge. Hence the system has a Z index,
which becomes obvious when an edge exists. We then saw that a (p+ ip) superconductor (i.e., a
topological superconductor with Chern number equal to one) with a vortex threaded through it
exhibits a Majorana zero energy mode at the core of the vortex. A (d+id) superconductor, with
Chern number equal to 2, would exhibit two Majorana modes in the core of the vortex. However,
those two Majorana modes would be unstable towards single particle hybridization terms, which
would push them away from zero energy, and leave the core of the vortex with no states in
it. The generalization tells us that an even Chern number topological superconductor has no
Majorana zero modes in the vortex while an odd Chern number topological superconductor has
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one Majorana zero mode in its core. This shows that the defects (vortices) in a topological
superconductor are classified by a Z2 number (C(1) mod 2).
We now show that there is a third classification related to the idea of topological order. In the
absence of an edge and in the absence of vortex defects, there is a Z16 classification of topological
superconductors indexed by C(1) mod 16, which can be put on solid grounds by the formalism
of topological quantum field theory (TQFT).
We ask how we can classify the system in the absence of an edge. One way would be to compute
the phases that wavefunctions can acquire upon taking particles or quasiparticles around each
other. However, the system is made out of electrons (its a superconductor), so usually nothing
special can happen to phases of electrons. The only “special” excitation of the superconductor
is a vortex, so we will look at the phase that two vortices acquire upon exchange. We can
calculate this with an argument. Take two copies of the (p + ip) superconductor governed by
the Hamiltonian

H = i
4
∑
j,k

Ajk(γ1,jγ1,k + γ2,jγ2,k), (6.4.1)

written in terms of Majorana operators γ1,j for one copy and γ2,j for the other copy. These
operators can be combined into an complex fermion cj = (γ1,j + iγ2,j)/2 in terms of which the
Hamiltonian becomes

H = i
∑
j,k

Ajkc
†
jck. (6.4.2)

This Hamiltonian has a “fake” U(1) symmetry given by our choice of Ajk for both Hamiltoni-
ans. (Since the system is gapped, we expect our universal conclusions to hold even when this
symmetry is stripped away). Thus, the system is a quantum Hall state of Hall conductance C(1)

(in units of e2/h) if each of the superconductors had Chern number C(1). We now ask what
happens when we thread a superconducting vortex h/2e, which is equal to π. Threading a flux
2π in a quantum Hall state of Chern number C(1) pulls C(1) electron charges to the vortex core
through the Hall effect, hence a π flux pulls C(1)/2 electron charges towards the core. We then
try to compute the phase acquired when a vortex is exchanged with another vortex. This is an
exchange process, which is half a braid. A braid of two vortices is equivalent to C(1)/2 electrons
braided with a π vortex, giving rise to a phase πC(1)/2 upon a braid, and πC(1)/4 under ex-
change. Since this is the phase for exchange of vortices in two exactly identical superimposed
superconductors, the phase for exchange in one of them is half that, πC(1)/8 = 2πC(1)/16. This
shows that the phase for vortex exchange is defined only mod 16.
Let us summarize what we have learned about the vortices in chiral superconductors with odd
Chern number. We have seen that well-separated vortices hold a Majorana zero mode at their
core. When these vortices come together, the two Majorana modes hybridize and split, giving
rise to two states which differ by their fermion parity. Let us call the Bogoliubov-deGennes
vacuum 1 and the Bogoliubov quasiparticle ψ, and the Majorana fermion of the vortex σ. We
can then formalize the fusion of two vortices by writing down a fusion rule

σ × σ = 1 + ψ, (6.4.3)

which basically tells us that combining two Majoranas can either go to a state with no fermion
or at one with a fermion – the fermion parity (and density) would be different for the two
states. Which one it is depends on the microscopics of the model. Hence a quantum state of
two Majoranas has to be described by another quantum number, which describes the “fusion
channel” of those two Majoranas – either the vacuum or the Bogoliubov quasiparticle. The
fusion rule (6.4.3) allows for multiple fusion channels.This is a manifestation of the fact that the
Majoranas are non-Abelian anyons. When two Bogoliubov quasiparticles fuse, they condense
(form a Cooper pair) and go to the vacuum

ψ × ψ = 1, (6.4.4)

University of Zurich 9 ETH Zurich



Topological condensed matter physics Chapter 6.4

while the fusion of a Bogoliubov and a Majorana quasiparticle basically creates another Majorana

ψ × σ = σ. (6.4.5)

This can be rationalized by thinking of the complex Bogoliubov quasiparticle as made out of two
Majoranas which then couple to the third Majorana. The Hamiltonian is a 3× 3 antisymmetric
matrix that necessarily has a zero eigenvalue which is another Majorana fermion coming as a
result of the fusion.
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